8aed7696310e20333a8ba199dd86fe47cbbc2df3
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwLJSw_GeomW4W4_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4W4_VF_c
35  * Electrostatics interaction: ReactionField
36  * VdW interaction:            LennardJones
37  * Geometry:                   Water4-Water4
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecRFCut_VdwLJSw_GeomW4W4_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwioffset1;
59     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
60     int              vdwioffset2;
61     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
62     int              vdwioffset3;
63     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
64     int              vdwjidx0;
65     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
66     int              vdwjidx1;
67     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
68     int              vdwjidx2;
69     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
70     int              vdwjidx3;
71     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
72     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
73     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
74     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
75     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
76     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
77     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
78     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
79     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
80     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
81     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
82     real             velec,felec,velecsum,facel,crf,krf,krf2;
83     real             *charge;
84     int              nvdwtype;
85     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
86     int              *vdwtype;
87     real             *vdwparam;
88     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
89
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = fr->epsfac;
102     charge           = mdatoms->chargeA;
103     krf              = fr->ic->k_rf;
104     krf2             = krf*2.0;
105     crf              = fr->ic->c_rf;
106     nvdwtype         = fr->ntype;
107     vdwparam         = fr->nbfp;
108     vdwtype          = mdatoms->typeA;
109
110     /* Setup water-specific parameters */
111     inr              = nlist->iinr[0];
112     iq1              = facel*charge[inr+1];
113     iq2              = facel*charge[inr+2];
114     iq3              = facel*charge[inr+3];
115     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
116
117     jq1              = charge[inr+1];
118     jq2              = charge[inr+2];
119     jq3              = charge[inr+3];
120     vdwjidx0         = 2*vdwtype[inr+0];
121     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
122     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
123     qq11             = iq1*jq1;
124     qq12             = iq1*jq2;
125     qq13             = iq1*jq3;
126     qq21             = iq2*jq1;
127     qq22             = iq2*jq2;
128     qq23             = iq2*jq3;
129     qq31             = iq3*jq1;
130     qq32             = iq3*jq2;
131     qq33             = iq3*jq3;
132
133     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
134     rcutoff          = fr->rcoulomb;
135     rcutoff2         = rcutoff*rcutoff;
136
137     rswitch          = fr->rvdw_switch;
138     /* Setup switch parameters */
139     d                = rcutoff-rswitch;
140     swV3             = -10.0/(d*d*d);
141     swV4             =  15.0/(d*d*d*d);
142     swV5             =  -6.0/(d*d*d*d*d);
143     swF2             = -30.0/(d*d*d);
144     swF3             =  60.0/(d*d*d*d);
145     swF4             = -30.0/(d*d*d*d*d);
146
147     outeriter        = 0;
148     inneriter        = 0;
149
150     /* Start outer loop over neighborlists */
151     for(iidx=0; iidx<nri; iidx++)
152     {
153         /* Load shift vector for this list */
154         i_shift_offset   = DIM*shiftidx[iidx];
155         shX              = shiftvec[i_shift_offset+XX];
156         shY              = shiftvec[i_shift_offset+YY];
157         shZ              = shiftvec[i_shift_offset+ZZ];
158
159         /* Load limits for loop over neighbors */
160         j_index_start    = jindex[iidx];
161         j_index_end      = jindex[iidx+1];
162
163         /* Get outer coordinate index */
164         inr              = iinr[iidx];
165         i_coord_offset   = DIM*inr;
166
167         /* Load i particle coords and add shift vector */
168         ix0              = shX + x[i_coord_offset+DIM*0+XX];
169         iy0              = shY + x[i_coord_offset+DIM*0+YY];
170         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
171         ix1              = shX + x[i_coord_offset+DIM*1+XX];
172         iy1              = shY + x[i_coord_offset+DIM*1+YY];
173         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
174         ix2              = shX + x[i_coord_offset+DIM*2+XX];
175         iy2              = shY + x[i_coord_offset+DIM*2+YY];
176         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
177         ix3              = shX + x[i_coord_offset+DIM*3+XX];
178         iy3              = shY + x[i_coord_offset+DIM*3+YY];
179         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
180
181         fix0             = 0.0;
182         fiy0             = 0.0;
183         fiz0             = 0.0;
184         fix1             = 0.0;
185         fiy1             = 0.0;
186         fiz1             = 0.0;
187         fix2             = 0.0;
188         fiy2             = 0.0;
189         fiz2             = 0.0;
190         fix3             = 0.0;
191         fiy3             = 0.0;
192         fiz3             = 0.0;
193
194         /* Reset potential sums */
195         velecsum         = 0.0;
196         vvdwsum          = 0.0;
197
198         /* Start inner kernel loop */
199         for(jidx=j_index_start; jidx<j_index_end; jidx++)
200         {
201             /* Get j neighbor index, and coordinate index */
202             jnr              = jjnr[jidx];
203             j_coord_offset   = DIM*jnr;
204
205             /* load j atom coordinates */
206             jx0              = x[j_coord_offset+DIM*0+XX];
207             jy0              = x[j_coord_offset+DIM*0+YY];
208             jz0              = x[j_coord_offset+DIM*0+ZZ];
209             jx1              = x[j_coord_offset+DIM*1+XX];
210             jy1              = x[j_coord_offset+DIM*1+YY];
211             jz1              = x[j_coord_offset+DIM*1+ZZ];
212             jx2              = x[j_coord_offset+DIM*2+XX];
213             jy2              = x[j_coord_offset+DIM*2+YY];
214             jz2              = x[j_coord_offset+DIM*2+ZZ];
215             jx3              = x[j_coord_offset+DIM*3+XX];
216             jy3              = x[j_coord_offset+DIM*3+YY];
217             jz3              = x[j_coord_offset+DIM*3+ZZ];
218
219             /* Calculate displacement vector */
220             dx00             = ix0 - jx0;
221             dy00             = iy0 - jy0;
222             dz00             = iz0 - jz0;
223             dx11             = ix1 - jx1;
224             dy11             = iy1 - jy1;
225             dz11             = iz1 - jz1;
226             dx12             = ix1 - jx2;
227             dy12             = iy1 - jy2;
228             dz12             = iz1 - jz2;
229             dx13             = ix1 - jx3;
230             dy13             = iy1 - jy3;
231             dz13             = iz1 - jz3;
232             dx21             = ix2 - jx1;
233             dy21             = iy2 - jy1;
234             dz21             = iz2 - jz1;
235             dx22             = ix2 - jx2;
236             dy22             = iy2 - jy2;
237             dz22             = iz2 - jz2;
238             dx23             = ix2 - jx3;
239             dy23             = iy2 - jy3;
240             dz23             = iz2 - jz3;
241             dx31             = ix3 - jx1;
242             dy31             = iy3 - jy1;
243             dz31             = iz3 - jz1;
244             dx32             = ix3 - jx2;
245             dy32             = iy3 - jy2;
246             dz32             = iz3 - jz2;
247             dx33             = ix3 - jx3;
248             dy33             = iy3 - jy3;
249             dz33             = iz3 - jz3;
250
251             /* Calculate squared distance and things based on it */
252             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
253             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
254             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
255             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
256             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
257             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
258             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
259             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
260             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
261             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
262
263             rinv00           = gmx_invsqrt(rsq00);
264             rinv11           = gmx_invsqrt(rsq11);
265             rinv12           = gmx_invsqrt(rsq12);
266             rinv13           = gmx_invsqrt(rsq13);
267             rinv21           = gmx_invsqrt(rsq21);
268             rinv22           = gmx_invsqrt(rsq22);
269             rinv23           = gmx_invsqrt(rsq23);
270             rinv31           = gmx_invsqrt(rsq31);
271             rinv32           = gmx_invsqrt(rsq32);
272             rinv33           = gmx_invsqrt(rsq33);
273
274             rinvsq00         = rinv00*rinv00;
275             rinvsq11         = rinv11*rinv11;
276             rinvsq12         = rinv12*rinv12;
277             rinvsq13         = rinv13*rinv13;
278             rinvsq21         = rinv21*rinv21;
279             rinvsq22         = rinv22*rinv22;
280             rinvsq23         = rinv23*rinv23;
281             rinvsq31         = rinv31*rinv31;
282             rinvsq32         = rinv32*rinv32;
283             rinvsq33         = rinv33*rinv33;
284
285             /**************************
286              * CALCULATE INTERACTIONS *
287              **************************/
288
289             if (rsq00<rcutoff2)
290             {
291
292             r00              = rsq00*rinv00;
293
294             /* LENNARD-JONES DISPERSION/REPULSION */
295
296             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
297             vvdw6            = c6_00*rinvsix;
298             vvdw12           = c12_00*rinvsix*rinvsix;
299             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
300             fvdw             = (vvdw12-vvdw6)*rinvsq00;
301
302             d                = r00-rswitch;
303             d                = (d>0.0) ? d : 0.0;
304             d2               = d*d;
305             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
306
307             dsw              = d2*(swF2+d*(swF3+d*swF4));
308
309             /* Evaluate switch function */
310             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
311             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
312             vvdw            *= sw;
313
314             /* Update potential sums from outer loop */
315             vvdwsum         += vvdw;
316
317             fscal            = fvdw;
318
319             /* Calculate temporary vectorial force */
320             tx               = fscal*dx00;
321             ty               = fscal*dy00;
322             tz               = fscal*dz00;
323
324             /* Update vectorial force */
325             fix0            += tx;
326             fiy0            += ty;
327             fiz0            += tz;
328             f[j_coord_offset+DIM*0+XX] -= tx;
329             f[j_coord_offset+DIM*0+YY] -= ty;
330             f[j_coord_offset+DIM*0+ZZ] -= tz;
331
332             }
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             if (rsq11<rcutoff2)
339             {
340
341             /* REACTION-FIELD ELECTROSTATICS */
342             velec            = qq11*(rinv11+krf*rsq11-crf);
343             felec            = qq11*(rinv11*rinvsq11-krf2);
344
345             /* Update potential sums from outer loop */
346             velecsum        += velec;
347
348             fscal            = felec;
349
350             /* Calculate temporary vectorial force */
351             tx               = fscal*dx11;
352             ty               = fscal*dy11;
353             tz               = fscal*dz11;
354
355             /* Update vectorial force */
356             fix1            += tx;
357             fiy1            += ty;
358             fiz1            += tz;
359             f[j_coord_offset+DIM*1+XX] -= tx;
360             f[j_coord_offset+DIM*1+YY] -= ty;
361             f[j_coord_offset+DIM*1+ZZ] -= tz;
362
363             }
364
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             if (rsq12<rcutoff2)
370             {
371
372             /* REACTION-FIELD ELECTROSTATICS */
373             velec            = qq12*(rinv12+krf*rsq12-crf);
374             felec            = qq12*(rinv12*rinvsq12-krf2);
375
376             /* Update potential sums from outer loop */
377             velecsum        += velec;
378
379             fscal            = felec;
380
381             /* Calculate temporary vectorial force */
382             tx               = fscal*dx12;
383             ty               = fscal*dy12;
384             tz               = fscal*dz12;
385
386             /* Update vectorial force */
387             fix1            += tx;
388             fiy1            += ty;
389             fiz1            += tz;
390             f[j_coord_offset+DIM*2+XX] -= tx;
391             f[j_coord_offset+DIM*2+YY] -= ty;
392             f[j_coord_offset+DIM*2+ZZ] -= tz;
393
394             }
395
396             /**************************
397              * CALCULATE INTERACTIONS *
398              **************************/
399
400             if (rsq13<rcutoff2)
401             {
402
403             /* REACTION-FIELD ELECTROSTATICS */
404             velec            = qq13*(rinv13+krf*rsq13-crf);
405             felec            = qq13*(rinv13*rinvsq13-krf2);
406
407             /* Update potential sums from outer loop */
408             velecsum        += velec;
409
410             fscal            = felec;
411
412             /* Calculate temporary vectorial force */
413             tx               = fscal*dx13;
414             ty               = fscal*dy13;
415             tz               = fscal*dz13;
416
417             /* Update vectorial force */
418             fix1            += tx;
419             fiy1            += ty;
420             fiz1            += tz;
421             f[j_coord_offset+DIM*3+XX] -= tx;
422             f[j_coord_offset+DIM*3+YY] -= ty;
423             f[j_coord_offset+DIM*3+ZZ] -= tz;
424
425             }
426
427             /**************************
428              * CALCULATE INTERACTIONS *
429              **************************/
430
431             if (rsq21<rcutoff2)
432             {
433
434             /* REACTION-FIELD ELECTROSTATICS */
435             velec            = qq21*(rinv21+krf*rsq21-crf);
436             felec            = qq21*(rinv21*rinvsq21-krf2);
437
438             /* Update potential sums from outer loop */
439             velecsum        += velec;
440
441             fscal            = felec;
442
443             /* Calculate temporary vectorial force */
444             tx               = fscal*dx21;
445             ty               = fscal*dy21;
446             tz               = fscal*dz21;
447
448             /* Update vectorial force */
449             fix2            += tx;
450             fiy2            += ty;
451             fiz2            += tz;
452             f[j_coord_offset+DIM*1+XX] -= tx;
453             f[j_coord_offset+DIM*1+YY] -= ty;
454             f[j_coord_offset+DIM*1+ZZ] -= tz;
455
456             }
457
458             /**************************
459              * CALCULATE INTERACTIONS *
460              **************************/
461
462             if (rsq22<rcutoff2)
463             {
464
465             /* REACTION-FIELD ELECTROSTATICS */
466             velec            = qq22*(rinv22+krf*rsq22-crf);
467             felec            = qq22*(rinv22*rinvsq22-krf2);
468
469             /* Update potential sums from outer loop */
470             velecsum        += velec;
471
472             fscal            = felec;
473
474             /* Calculate temporary vectorial force */
475             tx               = fscal*dx22;
476             ty               = fscal*dy22;
477             tz               = fscal*dz22;
478
479             /* Update vectorial force */
480             fix2            += tx;
481             fiy2            += ty;
482             fiz2            += tz;
483             f[j_coord_offset+DIM*2+XX] -= tx;
484             f[j_coord_offset+DIM*2+YY] -= ty;
485             f[j_coord_offset+DIM*2+ZZ] -= tz;
486
487             }
488
489             /**************************
490              * CALCULATE INTERACTIONS *
491              **************************/
492
493             if (rsq23<rcutoff2)
494             {
495
496             /* REACTION-FIELD ELECTROSTATICS */
497             velec            = qq23*(rinv23+krf*rsq23-crf);
498             felec            = qq23*(rinv23*rinvsq23-krf2);
499
500             /* Update potential sums from outer loop */
501             velecsum        += velec;
502
503             fscal            = felec;
504
505             /* Calculate temporary vectorial force */
506             tx               = fscal*dx23;
507             ty               = fscal*dy23;
508             tz               = fscal*dz23;
509
510             /* Update vectorial force */
511             fix2            += tx;
512             fiy2            += ty;
513             fiz2            += tz;
514             f[j_coord_offset+DIM*3+XX] -= tx;
515             f[j_coord_offset+DIM*3+YY] -= ty;
516             f[j_coord_offset+DIM*3+ZZ] -= tz;
517
518             }
519
520             /**************************
521              * CALCULATE INTERACTIONS *
522              **************************/
523
524             if (rsq31<rcutoff2)
525             {
526
527             /* REACTION-FIELD ELECTROSTATICS */
528             velec            = qq31*(rinv31+krf*rsq31-crf);
529             felec            = qq31*(rinv31*rinvsq31-krf2);
530
531             /* Update potential sums from outer loop */
532             velecsum        += velec;
533
534             fscal            = felec;
535
536             /* Calculate temporary vectorial force */
537             tx               = fscal*dx31;
538             ty               = fscal*dy31;
539             tz               = fscal*dz31;
540
541             /* Update vectorial force */
542             fix3            += tx;
543             fiy3            += ty;
544             fiz3            += tz;
545             f[j_coord_offset+DIM*1+XX] -= tx;
546             f[j_coord_offset+DIM*1+YY] -= ty;
547             f[j_coord_offset+DIM*1+ZZ] -= tz;
548
549             }
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             if (rsq32<rcutoff2)
556             {
557
558             /* REACTION-FIELD ELECTROSTATICS */
559             velec            = qq32*(rinv32+krf*rsq32-crf);
560             felec            = qq32*(rinv32*rinvsq32-krf2);
561
562             /* Update potential sums from outer loop */
563             velecsum        += velec;
564
565             fscal            = felec;
566
567             /* Calculate temporary vectorial force */
568             tx               = fscal*dx32;
569             ty               = fscal*dy32;
570             tz               = fscal*dz32;
571
572             /* Update vectorial force */
573             fix3            += tx;
574             fiy3            += ty;
575             fiz3            += tz;
576             f[j_coord_offset+DIM*2+XX] -= tx;
577             f[j_coord_offset+DIM*2+YY] -= ty;
578             f[j_coord_offset+DIM*2+ZZ] -= tz;
579
580             }
581
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             if (rsq33<rcutoff2)
587             {
588
589             /* REACTION-FIELD ELECTROSTATICS */
590             velec            = qq33*(rinv33+krf*rsq33-crf);
591             felec            = qq33*(rinv33*rinvsq33-krf2);
592
593             /* Update potential sums from outer loop */
594             velecsum        += velec;
595
596             fscal            = felec;
597
598             /* Calculate temporary vectorial force */
599             tx               = fscal*dx33;
600             ty               = fscal*dy33;
601             tz               = fscal*dz33;
602
603             /* Update vectorial force */
604             fix3            += tx;
605             fiy3            += ty;
606             fiz3            += tz;
607             f[j_coord_offset+DIM*3+XX] -= tx;
608             f[j_coord_offset+DIM*3+YY] -= ty;
609             f[j_coord_offset+DIM*3+ZZ] -= tz;
610
611             }
612
613             /* Inner loop uses 332 flops */
614         }
615         /* End of innermost loop */
616
617         tx = ty = tz = 0;
618         f[i_coord_offset+DIM*0+XX] += fix0;
619         f[i_coord_offset+DIM*0+YY] += fiy0;
620         f[i_coord_offset+DIM*0+ZZ] += fiz0;
621         tx                         += fix0;
622         ty                         += fiy0;
623         tz                         += fiz0;
624         f[i_coord_offset+DIM*1+XX] += fix1;
625         f[i_coord_offset+DIM*1+YY] += fiy1;
626         f[i_coord_offset+DIM*1+ZZ] += fiz1;
627         tx                         += fix1;
628         ty                         += fiy1;
629         tz                         += fiz1;
630         f[i_coord_offset+DIM*2+XX] += fix2;
631         f[i_coord_offset+DIM*2+YY] += fiy2;
632         f[i_coord_offset+DIM*2+ZZ] += fiz2;
633         tx                         += fix2;
634         ty                         += fiy2;
635         tz                         += fiz2;
636         f[i_coord_offset+DIM*3+XX] += fix3;
637         f[i_coord_offset+DIM*3+YY] += fiy3;
638         f[i_coord_offset+DIM*3+ZZ] += fiz3;
639         tx                         += fix3;
640         ty                         += fiy3;
641         tz                         += fiz3;
642         fshift[i_shift_offset+XX]  += tx;
643         fshift[i_shift_offset+YY]  += ty;
644         fshift[i_shift_offset+ZZ]  += tz;
645
646         ggid                        = gid[iidx];
647         /* Update potential energies */
648         kernel_data->energygrp_elec[ggid] += velecsum;
649         kernel_data->energygrp_vdw[ggid] += vvdwsum;
650
651         /* Increment number of inner iterations */
652         inneriter                  += j_index_end - j_index_start;
653
654         /* Outer loop uses 41 flops */
655     }
656
657     /* Increment number of outer iterations */
658     outeriter        += nri;
659
660     /* Update outer/inner flops */
661
662     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*332);
663 }
664 /*
665  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4W4_F_c
666  * Electrostatics interaction: ReactionField
667  * VdW interaction:            LennardJones
668  * Geometry:                   Water4-Water4
669  * Calculate force/pot:        Force
670  */
671 void
672 nb_kernel_ElecRFCut_VdwLJSw_GeomW4W4_F_c
673                     (t_nblist * gmx_restrict                nlist,
674                      rvec * gmx_restrict                    xx,
675                      rvec * gmx_restrict                    ff,
676                      t_forcerec * gmx_restrict              fr,
677                      t_mdatoms * gmx_restrict               mdatoms,
678                      nb_kernel_data_t * gmx_restrict        kernel_data,
679                      t_nrnb * gmx_restrict                  nrnb)
680 {
681     int              i_shift_offset,i_coord_offset,j_coord_offset;
682     int              j_index_start,j_index_end;
683     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
684     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
685     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
686     real             *shiftvec,*fshift,*x,*f;
687     int              vdwioffset0;
688     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
689     int              vdwioffset1;
690     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
691     int              vdwioffset2;
692     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
693     int              vdwioffset3;
694     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
695     int              vdwjidx0;
696     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
697     int              vdwjidx1;
698     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
699     int              vdwjidx2;
700     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
701     int              vdwjidx3;
702     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
703     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
704     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
705     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
706     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
707     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
708     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
709     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
710     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
711     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
712     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
713     real             velec,felec,velecsum,facel,crf,krf,krf2;
714     real             *charge;
715     int              nvdwtype;
716     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
717     int              *vdwtype;
718     real             *vdwparam;
719     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
720
721     x                = xx[0];
722     f                = ff[0];
723
724     nri              = nlist->nri;
725     iinr             = nlist->iinr;
726     jindex           = nlist->jindex;
727     jjnr             = nlist->jjnr;
728     shiftidx         = nlist->shift;
729     gid              = nlist->gid;
730     shiftvec         = fr->shift_vec[0];
731     fshift           = fr->fshift[0];
732     facel            = fr->epsfac;
733     charge           = mdatoms->chargeA;
734     krf              = fr->ic->k_rf;
735     krf2             = krf*2.0;
736     crf              = fr->ic->c_rf;
737     nvdwtype         = fr->ntype;
738     vdwparam         = fr->nbfp;
739     vdwtype          = mdatoms->typeA;
740
741     /* Setup water-specific parameters */
742     inr              = nlist->iinr[0];
743     iq1              = facel*charge[inr+1];
744     iq2              = facel*charge[inr+2];
745     iq3              = facel*charge[inr+3];
746     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
747
748     jq1              = charge[inr+1];
749     jq2              = charge[inr+2];
750     jq3              = charge[inr+3];
751     vdwjidx0         = 2*vdwtype[inr+0];
752     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
753     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
754     qq11             = iq1*jq1;
755     qq12             = iq1*jq2;
756     qq13             = iq1*jq3;
757     qq21             = iq2*jq1;
758     qq22             = iq2*jq2;
759     qq23             = iq2*jq3;
760     qq31             = iq3*jq1;
761     qq32             = iq3*jq2;
762     qq33             = iq3*jq3;
763
764     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
765     rcutoff          = fr->rcoulomb;
766     rcutoff2         = rcutoff*rcutoff;
767
768     rswitch          = fr->rvdw_switch;
769     /* Setup switch parameters */
770     d                = rcutoff-rswitch;
771     swV3             = -10.0/(d*d*d);
772     swV4             =  15.0/(d*d*d*d);
773     swV5             =  -6.0/(d*d*d*d*d);
774     swF2             = -30.0/(d*d*d);
775     swF3             =  60.0/(d*d*d*d);
776     swF4             = -30.0/(d*d*d*d*d);
777
778     outeriter        = 0;
779     inneriter        = 0;
780
781     /* Start outer loop over neighborlists */
782     for(iidx=0; iidx<nri; iidx++)
783     {
784         /* Load shift vector for this list */
785         i_shift_offset   = DIM*shiftidx[iidx];
786         shX              = shiftvec[i_shift_offset+XX];
787         shY              = shiftvec[i_shift_offset+YY];
788         shZ              = shiftvec[i_shift_offset+ZZ];
789
790         /* Load limits for loop over neighbors */
791         j_index_start    = jindex[iidx];
792         j_index_end      = jindex[iidx+1];
793
794         /* Get outer coordinate index */
795         inr              = iinr[iidx];
796         i_coord_offset   = DIM*inr;
797
798         /* Load i particle coords and add shift vector */
799         ix0              = shX + x[i_coord_offset+DIM*0+XX];
800         iy0              = shY + x[i_coord_offset+DIM*0+YY];
801         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
802         ix1              = shX + x[i_coord_offset+DIM*1+XX];
803         iy1              = shY + x[i_coord_offset+DIM*1+YY];
804         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
805         ix2              = shX + x[i_coord_offset+DIM*2+XX];
806         iy2              = shY + x[i_coord_offset+DIM*2+YY];
807         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
808         ix3              = shX + x[i_coord_offset+DIM*3+XX];
809         iy3              = shY + x[i_coord_offset+DIM*3+YY];
810         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
811
812         fix0             = 0.0;
813         fiy0             = 0.0;
814         fiz0             = 0.0;
815         fix1             = 0.0;
816         fiy1             = 0.0;
817         fiz1             = 0.0;
818         fix2             = 0.0;
819         fiy2             = 0.0;
820         fiz2             = 0.0;
821         fix3             = 0.0;
822         fiy3             = 0.0;
823         fiz3             = 0.0;
824
825         /* Start inner kernel loop */
826         for(jidx=j_index_start; jidx<j_index_end; jidx++)
827         {
828             /* Get j neighbor index, and coordinate index */
829             jnr              = jjnr[jidx];
830             j_coord_offset   = DIM*jnr;
831
832             /* load j atom coordinates */
833             jx0              = x[j_coord_offset+DIM*0+XX];
834             jy0              = x[j_coord_offset+DIM*0+YY];
835             jz0              = x[j_coord_offset+DIM*0+ZZ];
836             jx1              = x[j_coord_offset+DIM*1+XX];
837             jy1              = x[j_coord_offset+DIM*1+YY];
838             jz1              = x[j_coord_offset+DIM*1+ZZ];
839             jx2              = x[j_coord_offset+DIM*2+XX];
840             jy2              = x[j_coord_offset+DIM*2+YY];
841             jz2              = x[j_coord_offset+DIM*2+ZZ];
842             jx3              = x[j_coord_offset+DIM*3+XX];
843             jy3              = x[j_coord_offset+DIM*3+YY];
844             jz3              = x[j_coord_offset+DIM*3+ZZ];
845
846             /* Calculate displacement vector */
847             dx00             = ix0 - jx0;
848             dy00             = iy0 - jy0;
849             dz00             = iz0 - jz0;
850             dx11             = ix1 - jx1;
851             dy11             = iy1 - jy1;
852             dz11             = iz1 - jz1;
853             dx12             = ix1 - jx2;
854             dy12             = iy1 - jy2;
855             dz12             = iz1 - jz2;
856             dx13             = ix1 - jx3;
857             dy13             = iy1 - jy3;
858             dz13             = iz1 - jz3;
859             dx21             = ix2 - jx1;
860             dy21             = iy2 - jy1;
861             dz21             = iz2 - jz1;
862             dx22             = ix2 - jx2;
863             dy22             = iy2 - jy2;
864             dz22             = iz2 - jz2;
865             dx23             = ix2 - jx3;
866             dy23             = iy2 - jy3;
867             dz23             = iz2 - jz3;
868             dx31             = ix3 - jx1;
869             dy31             = iy3 - jy1;
870             dz31             = iz3 - jz1;
871             dx32             = ix3 - jx2;
872             dy32             = iy3 - jy2;
873             dz32             = iz3 - jz2;
874             dx33             = ix3 - jx3;
875             dy33             = iy3 - jy3;
876             dz33             = iz3 - jz3;
877
878             /* Calculate squared distance and things based on it */
879             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
880             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
881             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
882             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
883             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
884             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
885             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
886             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
887             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
888             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
889
890             rinv00           = gmx_invsqrt(rsq00);
891             rinv11           = gmx_invsqrt(rsq11);
892             rinv12           = gmx_invsqrt(rsq12);
893             rinv13           = gmx_invsqrt(rsq13);
894             rinv21           = gmx_invsqrt(rsq21);
895             rinv22           = gmx_invsqrt(rsq22);
896             rinv23           = gmx_invsqrt(rsq23);
897             rinv31           = gmx_invsqrt(rsq31);
898             rinv32           = gmx_invsqrt(rsq32);
899             rinv33           = gmx_invsqrt(rsq33);
900
901             rinvsq00         = rinv00*rinv00;
902             rinvsq11         = rinv11*rinv11;
903             rinvsq12         = rinv12*rinv12;
904             rinvsq13         = rinv13*rinv13;
905             rinvsq21         = rinv21*rinv21;
906             rinvsq22         = rinv22*rinv22;
907             rinvsq23         = rinv23*rinv23;
908             rinvsq31         = rinv31*rinv31;
909             rinvsq32         = rinv32*rinv32;
910             rinvsq33         = rinv33*rinv33;
911
912             /**************************
913              * CALCULATE INTERACTIONS *
914              **************************/
915
916             if (rsq00<rcutoff2)
917             {
918
919             r00              = rsq00*rinv00;
920
921             /* LENNARD-JONES DISPERSION/REPULSION */
922
923             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
924             vvdw6            = c6_00*rinvsix;
925             vvdw12           = c12_00*rinvsix*rinvsix;
926             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
927             fvdw             = (vvdw12-vvdw6)*rinvsq00;
928
929             d                = r00-rswitch;
930             d                = (d>0.0) ? d : 0.0;
931             d2               = d*d;
932             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
933
934             dsw              = d2*(swF2+d*(swF3+d*swF4));
935
936             /* Evaluate switch function */
937             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
938             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
939
940             fscal            = fvdw;
941
942             /* Calculate temporary vectorial force */
943             tx               = fscal*dx00;
944             ty               = fscal*dy00;
945             tz               = fscal*dz00;
946
947             /* Update vectorial force */
948             fix0            += tx;
949             fiy0            += ty;
950             fiz0            += tz;
951             f[j_coord_offset+DIM*0+XX] -= tx;
952             f[j_coord_offset+DIM*0+YY] -= ty;
953             f[j_coord_offset+DIM*0+ZZ] -= tz;
954
955             }
956
957             /**************************
958              * CALCULATE INTERACTIONS *
959              **************************/
960
961             if (rsq11<rcutoff2)
962             {
963
964             /* REACTION-FIELD ELECTROSTATICS */
965             felec            = qq11*(rinv11*rinvsq11-krf2);
966
967             fscal            = felec;
968
969             /* Calculate temporary vectorial force */
970             tx               = fscal*dx11;
971             ty               = fscal*dy11;
972             tz               = fscal*dz11;
973
974             /* Update vectorial force */
975             fix1            += tx;
976             fiy1            += ty;
977             fiz1            += tz;
978             f[j_coord_offset+DIM*1+XX] -= tx;
979             f[j_coord_offset+DIM*1+YY] -= ty;
980             f[j_coord_offset+DIM*1+ZZ] -= tz;
981
982             }
983
984             /**************************
985              * CALCULATE INTERACTIONS *
986              **************************/
987
988             if (rsq12<rcutoff2)
989             {
990
991             /* REACTION-FIELD ELECTROSTATICS */
992             felec            = qq12*(rinv12*rinvsq12-krf2);
993
994             fscal            = felec;
995
996             /* Calculate temporary vectorial force */
997             tx               = fscal*dx12;
998             ty               = fscal*dy12;
999             tz               = fscal*dz12;
1000
1001             /* Update vectorial force */
1002             fix1            += tx;
1003             fiy1            += ty;
1004             fiz1            += tz;
1005             f[j_coord_offset+DIM*2+XX] -= tx;
1006             f[j_coord_offset+DIM*2+YY] -= ty;
1007             f[j_coord_offset+DIM*2+ZZ] -= tz;
1008
1009             }
1010
1011             /**************************
1012              * CALCULATE INTERACTIONS *
1013              **************************/
1014
1015             if (rsq13<rcutoff2)
1016             {
1017
1018             /* REACTION-FIELD ELECTROSTATICS */
1019             felec            = qq13*(rinv13*rinvsq13-krf2);
1020
1021             fscal            = felec;
1022
1023             /* Calculate temporary vectorial force */
1024             tx               = fscal*dx13;
1025             ty               = fscal*dy13;
1026             tz               = fscal*dz13;
1027
1028             /* Update vectorial force */
1029             fix1            += tx;
1030             fiy1            += ty;
1031             fiz1            += tz;
1032             f[j_coord_offset+DIM*3+XX] -= tx;
1033             f[j_coord_offset+DIM*3+YY] -= ty;
1034             f[j_coord_offset+DIM*3+ZZ] -= tz;
1035
1036             }
1037
1038             /**************************
1039              * CALCULATE INTERACTIONS *
1040              **************************/
1041
1042             if (rsq21<rcutoff2)
1043             {
1044
1045             /* REACTION-FIELD ELECTROSTATICS */
1046             felec            = qq21*(rinv21*rinvsq21-krf2);
1047
1048             fscal            = felec;
1049
1050             /* Calculate temporary vectorial force */
1051             tx               = fscal*dx21;
1052             ty               = fscal*dy21;
1053             tz               = fscal*dz21;
1054
1055             /* Update vectorial force */
1056             fix2            += tx;
1057             fiy2            += ty;
1058             fiz2            += tz;
1059             f[j_coord_offset+DIM*1+XX] -= tx;
1060             f[j_coord_offset+DIM*1+YY] -= ty;
1061             f[j_coord_offset+DIM*1+ZZ] -= tz;
1062
1063             }
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             if (rsq22<rcutoff2)
1070             {
1071
1072             /* REACTION-FIELD ELECTROSTATICS */
1073             felec            = qq22*(rinv22*rinvsq22-krf2);
1074
1075             fscal            = felec;
1076
1077             /* Calculate temporary vectorial force */
1078             tx               = fscal*dx22;
1079             ty               = fscal*dy22;
1080             tz               = fscal*dz22;
1081
1082             /* Update vectorial force */
1083             fix2            += tx;
1084             fiy2            += ty;
1085             fiz2            += tz;
1086             f[j_coord_offset+DIM*2+XX] -= tx;
1087             f[j_coord_offset+DIM*2+YY] -= ty;
1088             f[j_coord_offset+DIM*2+ZZ] -= tz;
1089
1090             }
1091
1092             /**************************
1093              * CALCULATE INTERACTIONS *
1094              **************************/
1095
1096             if (rsq23<rcutoff2)
1097             {
1098
1099             /* REACTION-FIELD ELECTROSTATICS */
1100             felec            = qq23*(rinv23*rinvsq23-krf2);
1101
1102             fscal            = felec;
1103
1104             /* Calculate temporary vectorial force */
1105             tx               = fscal*dx23;
1106             ty               = fscal*dy23;
1107             tz               = fscal*dz23;
1108
1109             /* Update vectorial force */
1110             fix2            += tx;
1111             fiy2            += ty;
1112             fiz2            += tz;
1113             f[j_coord_offset+DIM*3+XX] -= tx;
1114             f[j_coord_offset+DIM*3+YY] -= ty;
1115             f[j_coord_offset+DIM*3+ZZ] -= tz;
1116
1117             }
1118
1119             /**************************
1120              * CALCULATE INTERACTIONS *
1121              **************************/
1122
1123             if (rsq31<rcutoff2)
1124             {
1125
1126             /* REACTION-FIELD ELECTROSTATICS */
1127             felec            = qq31*(rinv31*rinvsq31-krf2);
1128
1129             fscal            = felec;
1130
1131             /* Calculate temporary vectorial force */
1132             tx               = fscal*dx31;
1133             ty               = fscal*dy31;
1134             tz               = fscal*dz31;
1135
1136             /* Update vectorial force */
1137             fix3            += tx;
1138             fiy3            += ty;
1139             fiz3            += tz;
1140             f[j_coord_offset+DIM*1+XX] -= tx;
1141             f[j_coord_offset+DIM*1+YY] -= ty;
1142             f[j_coord_offset+DIM*1+ZZ] -= tz;
1143
1144             }
1145
1146             /**************************
1147              * CALCULATE INTERACTIONS *
1148              **************************/
1149
1150             if (rsq32<rcutoff2)
1151             {
1152
1153             /* REACTION-FIELD ELECTROSTATICS */
1154             felec            = qq32*(rinv32*rinvsq32-krf2);
1155
1156             fscal            = felec;
1157
1158             /* Calculate temporary vectorial force */
1159             tx               = fscal*dx32;
1160             ty               = fscal*dy32;
1161             tz               = fscal*dz32;
1162
1163             /* Update vectorial force */
1164             fix3            += tx;
1165             fiy3            += ty;
1166             fiz3            += tz;
1167             f[j_coord_offset+DIM*2+XX] -= tx;
1168             f[j_coord_offset+DIM*2+YY] -= ty;
1169             f[j_coord_offset+DIM*2+ZZ] -= tz;
1170
1171             }
1172
1173             /**************************
1174              * CALCULATE INTERACTIONS *
1175              **************************/
1176
1177             if (rsq33<rcutoff2)
1178             {
1179
1180             /* REACTION-FIELD ELECTROSTATICS */
1181             felec            = qq33*(rinv33*rinvsq33-krf2);
1182
1183             fscal            = felec;
1184
1185             /* Calculate temporary vectorial force */
1186             tx               = fscal*dx33;
1187             ty               = fscal*dy33;
1188             tz               = fscal*dz33;
1189
1190             /* Update vectorial force */
1191             fix3            += tx;
1192             fiy3            += ty;
1193             fiz3            += tz;
1194             f[j_coord_offset+DIM*3+XX] -= tx;
1195             f[j_coord_offset+DIM*3+YY] -= ty;
1196             f[j_coord_offset+DIM*3+ZZ] -= tz;
1197
1198             }
1199
1200             /* Inner loop uses 285 flops */
1201         }
1202         /* End of innermost loop */
1203
1204         tx = ty = tz = 0;
1205         f[i_coord_offset+DIM*0+XX] += fix0;
1206         f[i_coord_offset+DIM*0+YY] += fiy0;
1207         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1208         tx                         += fix0;
1209         ty                         += fiy0;
1210         tz                         += fiz0;
1211         f[i_coord_offset+DIM*1+XX] += fix1;
1212         f[i_coord_offset+DIM*1+YY] += fiy1;
1213         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1214         tx                         += fix1;
1215         ty                         += fiy1;
1216         tz                         += fiz1;
1217         f[i_coord_offset+DIM*2+XX] += fix2;
1218         f[i_coord_offset+DIM*2+YY] += fiy2;
1219         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1220         tx                         += fix2;
1221         ty                         += fiy2;
1222         tz                         += fiz2;
1223         f[i_coord_offset+DIM*3+XX] += fix3;
1224         f[i_coord_offset+DIM*3+YY] += fiy3;
1225         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1226         tx                         += fix3;
1227         ty                         += fiy3;
1228         tz                         += fiz3;
1229         fshift[i_shift_offset+XX]  += tx;
1230         fshift[i_shift_offset+YY]  += ty;
1231         fshift[i_shift_offset+ZZ]  += tz;
1232
1233         /* Increment number of inner iterations */
1234         inneriter                  += j_index_end - j_index_start;
1235
1236         /* Outer loop uses 39 flops */
1237     }
1238
1239     /* Increment number of outer iterations */
1240     outeriter        += nri;
1241
1242     /* Update outer/inner flops */
1243
1244     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*285);
1245 }