d62b96799837b2ba38fd464ca9846c9c4de784e5
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_c
49  * Electrostatics interaction: ReactionField
50  * VdW interaction:            LennardJones
51  * Geometry:                   Water4-Particle
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwioffset1;
73     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     int              vdwioffset2;
75     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwioffset3;
77     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
84     real             velec,felec,velecsum,facel,crf,krf,krf2;
85     real             *charge;
86     int              nvdwtype;
87     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
88     int              *vdwtype;
89     real             *vdwparam;
90     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
91
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = fr->epsfac;
104     charge           = mdatoms->chargeA;
105     krf              = fr->ic->k_rf;
106     krf2             = krf*2.0;
107     crf              = fr->ic->c_rf;
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     /* Setup water-specific parameters */
113     inr              = nlist->iinr[0];
114     iq1              = facel*charge[inr+1];
115     iq2              = facel*charge[inr+2];
116     iq3              = facel*charge[inr+3];
117     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
118
119     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
120     rcutoff          = fr->rcoulomb;
121     rcutoff2         = rcutoff*rcutoff;
122
123     rswitch          = fr->rvdw_switch;
124     /* Setup switch parameters */
125     d                = rcutoff-rswitch;
126     swV3             = -10.0/(d*d*d);
127     swV4             =  15.0/(d*d*d*d);
128     swV5             =  -6.0/(d*d*d*d*d);
129     swF2             = -30.0/(d*d*d);
130     swF3             =  60.0/(d*d*d*d);
131     swF4             = -30.0/(d*d*d*d*d);
132
133     outeriter        = 0;
134     inneriter        = 0;
135
136     /* Start outer loop over neighborlists */
137     for(iidx=0; iidx<nri; iidx++)
138     {
139         /* Load shift vector for this list */
140         i_shift_offset   = DIM*shiftidx[iidx];
141         shX              = shiftvec[i_shift_offset+XX];
142         shY              = shiftvec[i_shift_offset+YY];
143         shZ              = shiftvec[i_shift_offset+ZZ];
144
145         /* Load limits for loop over neighbors */
146         j_index_start    = jindex[iidx];
147         j_index_end      = jindex[iidx+1];
148
149         /* Get outer coordinate index */
150         inr              = iinr[iidx];
151         i_coord_offset   = DIM*inr;
152
153         /* Load i particle coords and add shift vector */
154         ix0              = shX + x[i_coord_offset+DIM*0+XX];
155         iy0              = shY + x[i_coord_offset+DIM*0+YY];
156         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
157         ix1              = shX + x[i_coord_offset+DIM*1+XX];
158         iy1              = shY + x[i_coord_offset+DIM*1+YY];
159         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
160         ix2              = shX + x[i_coord_offset+DIM*2+XX];
161         iy2              = shY + x[i_coord_offset+DIM*2+YY];
162         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
163         ix3              = shX + x[i_coord_offset+DIM*3+XX];
164         iy3              = shY + x[i_coord_offset+DIM*3+YY];
165         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
166
167         fix0             = 0.0;
168         fiy0             = 0.0;
169         fiz0             = 0.0;
170         fix1             = 0.0;
171         fiy1             = 0.0;
172         fiz1             = 0.0;
173         fix2             = 0.0;
174         fiy2             = 0.0;
175         fiz2             = 0.0;
176         fix3             = 0.0;
177         fiy3             = 0.0;
178         fiz3             = 0.0;
179
180         /* Reset potential sums */
181         velecsum         = 0.0;
182         vvdwsum          = 0.0;
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end; jidx++)
186         {
187             /* Get j neighbor index, and coordinate index */
188             jnr              = jjnr[jidx];
189             j_coord_offset   = DIM*jnr;
190
191             /* load j atom coordinates */
192             jx0              = x[j_coord_offset+DIM*0+XX];
193             jy0              = x[j_coord_offset+DIM*0+YY];
194             jz0              = x[j_coord_offset+DIM*0+ZZ];
195
196             /* Calculate displacement vector */
197             dx00             = ix0 - jx0;
198             dy00             = iy0 - jy0;
199             dz00             = iz0 - jz0;
200             dx10             = ix1 - jx0;
201             dy10             = iy1 - jy0;
202             dz10             = iz1 - jz0;
203             dx20             = ix2 - jx0;
204             dy20             = iy2 - jy0;
205             dz20             = iz2 - jz0;
206             dx30             = ix3 - jx0;
207             dy30             = iy3 - jy0;
208             dz30             = iz3 - jz0;
209
210             /* Calculate squared distance and things based on it */
211             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
212             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
213             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
214             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
215
216             rinv00           = gmx_invsqrt(rsq00);
217             rinv10           = gmx_invsqrt(rsq10);
218             rinv20           = gmx_invsqrt(rsq20);
219             rinv30           = gmx_invsqrt(rsq30);
220
221             rinvsq00         = rinv00*rinv00;
222             rinvsq10         = rinv10*rinv10;
223             rinvsq20         = rinv20*rinv20;
224             rinvsq30         = rinv30*rinv30;
225
226             /* Load parameters for j particles */
227             jq0              = charge[jnr+0];
228             vdwjidx0         = 2*vdwtype[jnr+0];
229
230             /**************************
231              * CALCULATE INTERACTIONS *
232              **************************/
233
234             if (rsq00<rcutoff2)
235             {
236
237             r00              = rsq00*rinv00;
238
239             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
240             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
241
242             /* LENNARD-JONES DISPERSION/REPULSION */
243
244             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
245             vvdw6            = c6_00*rinvsix;
246             vvdw12           = c12_00*rinvsix*rinvsix;
247             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
248             fvdw             = (vvdw12-vvdw6)*rinvsq00;
249
250             d                = r00-rswitch;
251             d                = (d>0.0) ? d : 0.0;
252             d2               = d*d;
253             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
254
255             dsw              = d2*(swF2+d*(swF3+d*swF4));
256
257             /* Evaluate switch function */
258             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
259             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
260             vvdw            *= sw;
261
262             /* Update potential sums from outer loop */
263             vvdwsum         += vvdw;
264
265             fscal            = fvdw;
266
267             /* Calculate temporary vectorial force */
268             tx               = fscal*dx00;
269             ty               = fscal*dy00;
270             tz               = fscal*dz00;
271
272             /* Update vectorial force */
273             fix0            += tx;
274             fiy0            += ty;
275             fiz0            += tz;
276             f[j_coord_offset+DIM*0+XX] -= tx;
277             f[j_coord_offset+DIM*0+YY] -= ty;
278             f[j_coord_offset+DIM*0+ZZ] -= tz;
279
280             }
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             if (rsq10<rcutoff2)
287             {
288
289             qq10             = iq1*jq0;
290
291             /* REACTION-FIELD ELECTROSTATICS */
292             velec            = qq10*(rinv10+krf*rsq10-crf);
293             felec            = qq10*(rinv10*rinvsq10-krf2);
294
295             /* Update potential sums from outer loop */
296             velecsum        += velec;
297
298             fscal            = felec;
299
300             /* Calculate temporary vectorial force */
301             tx               = fscal*dx10;
302             ty               = fscal*dy10;
303             tz               = fscal*dz10;
304
305             /* Update vectorial force */
306             fix1            += tx;
307             fiy1            += ty;
308             fiz1            += tz;
309             f[j_coord_offset+DIM*0+XX] -= tx;
310             f[j_coord_offset+DIM*0+YY] -= ty;
311             f[j_coord_offset+DIM*0+ZZ] -= tz;
312
313             }
314
315             /**************************
316              * CALCULATE INTERACTIONS *
317              **************************/
318
319             if (rsq20<rcutoff2)
320             {
321
322             qq20             = iq2*jq0;
323
324             /* REACTION-FIELD ELECTROSTATICS */
325             velec            = qq20*(rinv20+krf*rsq20-crf);
326             felec            = qq20*(rinv20*rinvsq20-krf2);
327
328             /* Update potential sums from outer loop */
329             velecsum        += velec;
330
331             fscal            = felec;
332
333             /* Calculate temporary vectorial force */
334             tx               = fscal*dx20;
335             ty               = fscal*dy20;
336             tz               = fscal*dz20;
337
338             /* Update vectorial force */
339             fix2            += tx;
340             fiy2            += ty;
341             fiz2            += tz;
342             f[j_coord_offset+DIM*0+XX] -= tx;
343             f[j_coord_offset+DIM*0+YY] -= ty;
344             f[j_coord_offset+DIM*0+ZZ] -= tz;
345
346             }
347
348             /**************************
349              * CALCULATE INTERACTIONS *
350              **************************/
351
352             if (rsq30<rcutoff2)
353             {
354
355             qq30             = iq3*jq0;
356
357             /* REACTION-FIELD ELECTROSTATICS */
358             velec            = qq30*(rinv30+krf*rsq30-crf);
359             felec            = qq30*(rinv30*rinvsq30-krf2);
360
361             /* Update potential sums from outer loop */
362             velecsum        += velec;
363
364             fscal            = felec;
365
366             /* Calculate temporary vectorial force */
367             tx               = fscal*dx30;
368             ty               = fscal*dy30;
369             tz               = fscal*dz30;
370
371             /* Update vectorial force */
372             fix3            += tx;
373             fiy3            += ty;
374             fiz3            += tz;
375             f[j_coord_offset+DIM*0+XX] -= tx;
376             f[j_coord_offset+DIM*0+YY] -= ty;
377             f[j_coord_offset+DIM*0+ZZ] -= tz;
378
379             }
380
381             /* Inner loop uses 149 flops */
382         }
383         /* End of innermost loop */
384
385         tx = ty = tz = 0;
386         f[i_coord_offset+DIM*0+XX] += fix0;
387         f[i_coord_offset+DIM*0+YY] += fiy0;
388         f[i_coord_offset+DIM*0+ZZ] += fiz0;
389         tx                         += fix0;
390         ty                         += fiy0;
391         tz                         += fiz0;
392         f[i_coord_offset+DIM*1+XX] += fix1;
393         f[i_coord_offset+DIM*1+YY] += fiy1;
394         f[i_coord_offset+DIM*1+ZZ] += fiz1;
395         tx                         += fix1;
396         ty                         += fiy1;
397         tz                         += fiz1;
398         f[i_coord_offset+DIM*2+XX] += fix2;
399         f[i_coord_offset+DIM*2+YY] += fiy2;
400         f[i_coord_offset+DIM*2+ZZ] += fiz2;
401         tx                         += fix2;
402         ty                         += fiy2;
403         tz                         += fiz2;
404         f[i_coord_offset+DIM*3+XX] += fix3;
405         f[i_coord_offset+DIM*3+YY] += fiy3;
406         f[i_coord_offset+DIM*3+ZZ] += fiz3;
407         tx                         += fix3;
408         ty                         += fiy3;
409         tz                         += fiz3;
410         fshift[i_shift_offset+XX]  += tx;
411         fshift[i_shift_offset+YY]  += ty;
412         fshift[i_shift_offset+ZZ]  += tz;
413
414         ggid                        = gid[iidx];
415         /* Update potential energies */
416         kernel_data->energygrp_elec[ggid] += velecsum;
417         kernel_data->energygrp_vdw[ggid] += vvdwsum;
418
419         /* Increment number of inner iterations */
420         inneriter                  += j_index_end - j_index_start;
421
422         /* Outer loop uses 41 flops */
423     }
424
425     /* Increment number of outer iterations */
426     outeriter        += nri;
427
428     /* Update outer/inner flops */
429
430     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*149);
431 }
432 /*
433  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_c
434  * Electrostatics interaction: ReactionField
435  * VdW interaction:            LennardJones
436  * Geometry:                   Water4-Particle
437  * Calculate force/pot:        Force
438  */
439 void
440 nb_kernel_ElecRFCut_VdwLJSw_GeomW4P1_F_c
441                     (t_nblist                    * gmx_restrict       nlist,
442                      rvec                        * gmx_restrict          xx,
443                      rvec                        * gmx_restrict          ff,
444                      t_forcerec                  * gmx_restrict          fr,
445                      t_mdatoms                   * gmx_restrict     mdatoms,
446                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
447                      t_nrnb                      * gmx_restrict        nrnb)
448 {
449     int              i_shift_offset,i_coord_offset,j_coord_offset;
450     int              j_index_start,j_index_end;
451     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
452     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
453     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
454     real             *shiftvec,*fshift,*x,*f;
455     int              vdwioffset0;
456     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
457     int              vdwioffset1;
458     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
459     int              vdwioffset2;
460     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
461     int              vdwioffset3;
462     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
463     int              vdwjidx0;
464     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
465     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
466     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
467     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
468     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
469     real             velec,felec,velecsum,facel,crf,krf,krf2;
470     real             *charge;
471     int              nvdwtype;
472     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
473     int              *vdwtype;
474     real             *vdwparam;
475     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
476
477     x                = xx[0];
478     f                = ff[0];
479
480     nri              = nlist->nri;
481     iinr             = nlist->iinr;
482     jindex           = nlist->jindex;
483     jjnr             = nlist->jjnr;
484     shiftidx         = nlist->shift;
485     gid              = nlist->gid;
486     shiftvec         = fr->shift_vec[0];
487     fshift           = fr->fshift[0];
488     facel            = fr->epsfac;
489     charge           = mdatoms->chargeA;
490     krf              = fr->ic->k_rf;
491     krf2             = krf*2.0;
492     crf              = fr->ic->c_rf;
493     nvdwtype         = fr->ntype;
494     vdwparam         = fr->nbfp;
495     vdwtype          = mdatoms->typeA;
496
497     /* Setup water-specific parameters */
498     inr              = nlist->iinr[0];
499     iq1              = facel*charge[inr+1];
500     iq2              = facel*charge[inr+2];
501     iq3              = facel*charge[inr+3];
502     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
503
504     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
505     rcutoff          = fr->rcoulomb;
506     rcutoff2         = rcutoff*rcutoff;
507
508     rswitch          = fr->rvdw_switch;
509     /* Setup switch parameters */
510     d                = rcutoff-rswitch;
511     swV3             = -10.0/(d*d*d);
512     swV4             =  15.0/(d*d*d*d);
513     swV5             =  -6.0/(d*d*d*d*d);
514     swF2             = -30.0/(d*d*d);
515     swF3             =  60.0/(d*d*d*d);
516     swF4             = -30.0/(d*d*d*d*d);
517
518     outeriter        = 0;
519     inneriter        = 0;
520
521     /* Start outer loop over neighborlists */
522     for(iidx=0; iidx<nri; iidx++)
523     {
524         /* Load shift vector for this list */
525         i_shift_offset   = DIM*shiftidx[iidx];
526         shX              = shiftvec[i_shift_offset+XX];
527         shY              = shiftvec[i_shift_offset+YY];
528         shZ              = shiftvec[i_shift_offset+ZZ];
529
530         /* Load limits for loop over neighbors */
531         j_index_start    = jindex[iidx];
532         j_index_end      = jindex[iidx+1];
533
534         /* Get outer coordinate index */
535         inr              = iinr[iidx];
536         i_coord_offset   = DIM*inr;
537
538         /* Load i particle coords and add shift vector */
539         ix0              = shX + x[i_coord_offset+DIM*0+XX];
540         iy0              = shY + x[i_coord_offset+DIM*0+YY];
541         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
542         ix1              = shX + x[i_coord_offset+DIM*1+XX];
543         iy1              = shY + x[i_coord_offset+DIM*1+YY];
544         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
545         ix2              = shX + x[i_coord_offset+DIM*2+XX];
546         iy2              = shY + x[i_coord_offset+DIM*2+YY];
547         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
548         ix3              = shX + x[i_coord_offset+DIM*3+XX];
549         iy3              = shY + x[i_coord_offset+DIM*3+YY];
550         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
551
552         fix0             = 0.0;
553         fiy0             = 0.0;
554         fiz0             = 0.0;
555         fix1             = 0.0;
556         fiy1             = 0.0;
557         fiz1             = 0.0;
558         fix2             = 0.0;
559         fiy2             = 0.0;
560         fiz2             = 0.0;
561         fix3             = 0.0;
562         fiy3             = 0.0;
563         fiz3             = 0.0;
564
565         /* Start inner kernel loop */
566         for(jidx=j_index_start; jidx<j_index_end; jidx++)
567         {
568             /* Get j neighbor index, and coordinate index */
569             jnr              = jjnr[jidx];
570             j_coord_offset   = DIM*jnr;
571
572             /* load j atom coordinates */
573             jx0              = x[j_coord_offset+DIM*0+XX];
574             jy0              = x[j_coord_offset+DIM*0+YY];
575             jz0              = x[j_coord_offset+DIM*0+ZZ];
576
577             /* Calculate displacement vector */
578             dx00             = ix0 - jx0;
579             dy00             = iy0 - jy0;
580             dz00             = iz0 - jz0;
581             dx10             = ix1 - jx0;
582             dy10             = iy1 - jy0;
583             dz10             = iz1 - jz0;
584             dx20             = ix2 - jx0;
585             dy20             = iy2 - jy0;
586             dz20             = iz2 - jz0;
587             dx30             = ix3 - jx0;
588             dy30             = iy3 - jy0;
589             dz30             = iz3 - jz0;
590
591             /* Calculate squared distance and things based on it */
592             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
593             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
594             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
595             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
596
597             rinv00           = gmx_invsqrt(rsq00);
598             rinv10           = gmx_invsqrt(rsq10);
599             rinv20           = gmx_invsqrt(rsq20);
600             rinv30           = gmx_invsqrt(rsq30);
601
602             rinvsq00         = rinv00*rinv00;
603             rinvsq10         = rinv10*rinv10;
604             rinvsq20         = rinv20*rinv20;
605             rinvsq30         = rinv30*rinv30;
606
607             /* Load parameters for j particles */
608             jq0              = charge[jnr+0];
609             vdwjidx0         = 2*vdwtype[jnr+0];
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             if (rsq00<rcutoff2)
616             {
617
618             r00              = rsq00*rinv00;
619
620             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
621             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
622
623             /* LENNARD-JONES DISPERSION/REPULSION */
624
625             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
626             vvdw6            = c6_00*rinvsix;
627             vvdw12           = c12_00*rinvsix*rinvsix;
628             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
629             fvdw             = (vvdw12-vvdw6)*rinvsq00;
630
631             d                = r00-rswitch;
632             d                = (d>0.0) ? d : 0.0;
633             d2               = d*d;
634             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
635
636             dsw              = d2*(swF2+d*(swF3+d*swF4));
637
638             /* Evaluate switch function */
639             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
640             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
641
642             fscal            = fvdw;
643
644             /* Calculate temporary vectorial force */
645             tx               = fscal*dx00;
646             ty               = fscal*dy00;
647             tz               = fscal*dz00;
648
649             /* Update vectorial force */
650             fix0            += tx;
651             fiy0            += ty;
652             fiz0            += tz;
653             f[j_coord_offset+DIM*0+XX] -= tx;
654             f[j_coord_offset+DIM*0+YY] -= ty;
655             f[j_coord_offset+DIM*0+ZZ] -= tz;
656
657             }
658
659             /**************************
660              * CALCULATE INTERACTIONS *
661              **************************/
662
663             if (rsq10<rcutoff2)
664             {
665
666             qq10             = iq1*jq0;
667
668             /* REACTION-FIELD ELECTROSTATICS */
669             felec            = qq10*(rinv10*rinvsq10-krf2);
670
671             fscal            = felec;
672
673             /* Calculate temporary vectorial force */
674             tx               = fscal*dx10;
675             ty               = fscal*dy10;
676             tz               = fscal*dz10;
677
678             /* Update vectorial force */
679             fix1            += tx;
680             fiy1            += ty;
681             fiz1            += tz;
682             f[j_coord_offset+DIM*0+XX] -= tx;
683             f[j_coord_offset+DIM*0+YY] -= ty;
684             f[j_coord_offset+DIM*0+ZZ] -= tz;
685
686             }
687
688             /**************************
689              * CALCULATE INTERACTIONS *
690              **************************/
691
692             if (rsq20<rcutoff2)
693             {
694
695             qq20             = iq2*jq0;
696
697             /* REACTION-FIELD ELECTROSTATICS */
698             felec            = qq20*(rinv20*rinvsq20-krf2);
699
700             fscal            = felec;
701
702             /* Calculate temporary vectorial force */
703             tx               = fscal*dx20;
704             ty               = fscal*dy20;
705             tz               = fscal*dz20;
706
707             /* Update vectorial force */
708             fix2            += tx;
709             fiy2            += ty;
710             fiz2            += tz;
711             f[j_coord_offset+DIM*0+XX] -= tx;
712             f[j_coord_offset+DIM*0+YY] -= ty;
713             f[j_coord_offset+DIM*0+ZZ] -= tz;
714
715             }
716
717             /**************************
718              * CALCULATE INTERACTIONS *
719              **************************/
720
721             if (rsq30<rcutoff2)
722             {
723
724             qq30             = iq3*jq0;
725
726             /* REACTION-FIELD ELECTROSTATICS */
727             felec            = qq30*(rinv30*rinvsq30-krf2);
728
729             fscal            = felec;
730
731             /* Calculate temporary vectorial force */
732             tx               = fscal*dx30;
733             ty               = fscal*dy30;
734             tz               = fscal*dz30;
735
736             /* Update vectorial force */
737             fix3            += tx;
738             fiy3            += ty;
739             fiz3            += tz;
740             f[j_coord_offset+DIM*0+XX] -= tx;
741             f[j_coord_offset+DIM*0+YY] -= ty;
742             f[j_coord_offset+DIM*0+ZZ] -= tz;
743
744             }
745
746             /* Inner loop uses 132 flops */
747         }
748         /* End of innermost loop */
749
750         tx = ty = tz = 0;
751         f[i_coord_offset+DIM*0+XX] += fix0;
752         f[i_coord_offset+DIM*0+YY] += fiy0;
753         f[i_coord_offset+DIM*0+ZZ] += fiz0;
754         tx                         += fix0;
755         ty                         += fiy0;
756         tz                         += fiz0;
757         f[i_coord_offset+DIM*1+XX] += fix1;
758         f[i_coord_offset+DIM*1+YY] += fiy1;
759         f[i_coord_offset+DIM*1+ZZ] += fiz1;
760         tx                         += fix1;
761         ty                         += fiy1;
762         tz                         += fiz1;
763         f[i_coord_offset+DIM*2+XX] += fix2;
764         f[i_coord_offset+DIM*2+YY] += fiy2;
765         f[i_coord_offset+DIM*2+ZZ] += fiz2;
766         tx                         += fix2;
767         ty                         += fiy2;
768         tz                         += fiz2;
769         f[i_coord_offset+DIM*3+XX] += fix3;
770         f[i_coord_offset+DIM*3+YY] += fiy3;
771         f[i_coord_offset+DIM*3+ZZ] += fiz3;
772         tx                         += fix3;
773         ty                         += fiy3;
774         tz                         += fiz3;
775         fshift[i_shift_offset+XX]  += tx;
776         fshift[i_shift_offset+YY]  += ty;
777         fshift[i_shift_offset+ZZ]  += tz;
778
779         /* Increment number of inner iterations */
780         inneriter                  += j_index_end - j_index_start;
781
782         /* Outer loop uses 39 flops */
783     }
784
785     /* Increment number of outer iterations */
786     outeriter        += nri;
787
788     /* Update outer/inner flops */
789
790     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*132);
791 }