Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_c
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83     real             velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
90
91     x                = xx[0];
92     f                = ff[0];
93
94     nri              = nlist->nri;
95     iinr             = nlist->iinr;
96     jindex           = nlist->jindex;
97     jjnr             = nlist->jjnr;
98     shiftidx         = nlist->shift;
99     gid              = nlist->gid;
100     shiftvec         = fr->shift_vec[0];
101     fshift           = fr->fshift[0];
102     facel            = fr->epsfac;
103     charge           = mdatoms->chargeA;
104     krf              = fr->ic->k_rf;
105     krf2             = krf*2.0;
106     crf              = fr->ic->c_rf;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     /* Setup water-specific parameters */
112     inr              = nlist->iinr[0];
113     iq0              = facel*charge[inr+0];
114     iq1              = facel*charge[inr+1];
115     iq2              = facel*charge[inr+2];
116     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
117
118     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
119     rcutoff          = fr->rcoulomb;
120     rcutoff2         = rcutoff*rcutoff;
121
122     rswitch          = fr->rvdw_switch;
123     /* Setup switch parameters */
124     d                = rcutoff-rswitch;
125     swV3             = -10.0/(d*d*d);
126     swV4             =  15.0/(d*d*d*d);
127     swV5             =  -6.0/(d*d*d*d*d);
128     swF2             = -30.0/(d*d*d);
129     swF3             =  60.0/(d*d*d*d);
130     swF4             = -30.0/(d*d*d*d*d);
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140         shX              = shiftvec[i_shift_offset+XX];
141         shY              = shiftvec[i_shift_offset+YY];
142         shZ              = shiftvec[i_shift_offset+ZZ];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         ix0              = shX + x[i_coord_offset+DIM*0+XX];
154         iy0              = shY + x[i_coord_offset+DIM*0+YY];
155         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
156         ix1              = shX + x[i_coord_offset+DIM*1+XX];
157         iy1              = shY + x[i_coord_offset+DIM*1+YY];
158         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
159         ix2              = shX + x[i_coord_offset+DIM*2+XX];
160         iy2              = shY + x[i_coord_offset+DIM*2+YY];
161         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
162
163         fix0             = 0.0;
164         fiy0             = 0.0;
165         fiz0             = 0.0;
166         fix1             = 0.0;
167         fiy1             = 0.0;
168         fiz1             = 0.0;
169         fix2             = 0.0;
170         fiy2             = 0.0;
171         fiz2             = 0.0;
172
173         /* Reset potential sums */
174         velecsum         = 0.0;
175         vvdwsum          = 0.0;
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end; jidx++)
179         {
180             /* Get j neighbor index, and coordinate index */
181             jnr              = jjnr[jidx];
182             j_coord_offset   = DIM*jnr;
183
184             /* load j atom coordinates */
185             jx0              = x[j_coord_offset+DIM*0+XX];
186             jy0              = x[j_coord_offset+DIM*0+YY];
187             jz0              = x[j_coord_offset+DIM*0+ZZ];
188
189             /* Calculate displacement vector */
190             dx00             = ix0 - jx0;
191             dy00             = iy0 - jy0;
192             dz00             = iz0 - jz0;
193             dx10             = ix1 - jx0;
194             dy10             = iy1 - jy0;
195             dz10             = iz1 - jz0;
196             dx20             = ix2 - jx0;
197             dy20             = iy2 - jy0;
198             dz20             = iz2 - jz0;
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
202             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
203             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
204
205             rinv00           = gmx_invsqrt(rsq00);
206             rinv10           = gmx_invsqrt(rsq10);
207             rinv20           = gmx_invsqrt(rsq20);
208
209             rinvsq00         = rinv00*rinv00;
210             rinvsq10         = rinv10*rinv10;
211             rinvsq20         = rinv20*rinv20;
212
213             /* Load parameters for j particles */
214             jq0              = charge[jnr+0];
215             vdwjidx0         = 2*vdwtype[jnr+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             if (rsq00<rcutoff2)
222             {
223
224             r00              = rsq00*rinv00;
225
226             qq00             = iq0*jq0;
227             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
228             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
229
230             /* REACTION-FIELD ELECTROSTATICS */
231             velec            = qq00*(rinv00+krf*rsq00-crf);
232             felec            = qq00*(rinv00*rinvsq00-krf2);
233
234             /* LENNARD-JONES DISPERSION/REPULSION */
235
236             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
237             vvdw6            = c6_00*rinvsix;
238             vvdw12           = c12_00*rinvsix*rinvsix;
239             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
240             fvdw             = (vvdw12-vvdw6)*rinvsq00;
241
242             d                = r00-rswitch;
243             d                = (d>0.0) ? d : 0.0;
244             d2               = d*d;
245             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
246
247             dsw              = d2*(swF2+d*(swF3+d*swF4));
248
249             /* Evaluate switch function */
250             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
251             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
252             vvdw            *= sw;
253
254             /* Update potential sums from outer loop */
255             velecsum        += velec;
256             vvdwsum         += vvdw;
257
258             fscal            = felec+fvdw;
259
260             /* Calculate temporary vectorial force */
261             tx               = fscal*dx00;
262             ty               = fscal*dy00;
263             tz               = fscal*dz00;
264
265             /* Update vectorial force */
266             fix0            += tx;
267             fiy0            += ty;
268             fiz0            += tz;
269             f[j_coord_offset+DIM*0+XX] -= tx;
270             f[j_coord_offset+DIM*0+YY] -= ty;
271             f[j_coord_offset+DIM*0+ZZ] -= tz;
272
273             }
274
275             /**************************
276              * CALCULATE INTERACTIONS *
277              **************************/
278
279             if (rsq10<rcutoff2)
280             {
281
282             qq10             = iq1*jq0;
283
284             /* REACTION-FIELD ELECTROSTATICS */
285             velec            = qq10*(rinv10+krf*rsq10-crf);
286             felec            = qq10*(rinv10*rinvsq10-krf2);
287
288             /* Update potential sums from outer loop */
289             velecsum        += velec;
290
291             fscal            = felec;
292
293             /* Calculate temporary vectorial force */
294             tx               = fscal*dx10;
295             ty               = fscal*dy10;
296             tz               = fscal*dz10;
297
298             /* Update vectorial force */
299             fix1            += tx;
300             fiy1            += ty;
301             fiz1            += tz;
302             f[j_coord_offset+DIM*0+XX] -= tx;
303             f[j_coord_offset+DIM*0+YY] -= ty;
304             f[j_coord_offset+DIM*0+ZZ] -= tz;
305
306             }
307
308             /**************************
309              * CALCULATE INTERACTIONS *
310              **************************/
311
312             if (rsq20<rcutoff2)
313             {
314
315             qq20             = iq2*jq0;
316
317             /* REACTION-FIELD ELECTROSTATICS */
318             velec            = qq20*(rinv20+krf*rsq20-crf);
319             felec            = qq20*(rinv20*rinvsq20-krf2);
320
321             /* Update potential sums from outer loop */
322             velecsum        += velec;
323
324             fscal            = felec;
325
326             /* Calculate temporary vectorial force */
327             tx               = fscal*dx20;
328             ty               = fscal*dy20;
329             tz               = fscal*dz20;
330
331             /* Update vectorial force */
332             fix2            += tx;
333             fiy2            += ty;
334             fiz2            += tz;
335             f[j_coord_offset+DIM*0+XX] -= tx;
336             f[j_coord_offset+DIM*0+YY] -= ty;
337             f[j_coord_offset+DIM*0+ZZ] -= tz;
338
339             }
340
341             /* Inner loop uses 127 flops */
342         }
343         /* End of innermost loop */
344
345         tx = ty = tz = 0;
346         f[i_coord_offset+DIM*0+XX] += fix0;
347         f[i_coord_offset+DIM*0+YY] += fiy0;
348         f[i_coord_offset+DIM*0+ZZ] += fiz0;
349         tx                         += fix0;
350         ty                         += fiy0;
351         tz                         += fiz0;
352         f[i_coord_offset+DIM*1+XX] += fix1;
353         f[i_coord_offset+DIM*1+YY] += fiy1;
354         f[i_coord_offset+DIM*1+ZZ] += fiz1;
355         tx                         += fix1;
356         ty                         += fiy1;
357         tz                         += fiz1;
358         f[i_coord_offset+DIM*2+XX] += fix2;
359         f[i_coord_offset+DIM*2+YY] += fiy2;
360         f[i_coord_offset+DIM*2+ZZ] += fiz2;
361         tx                         += fix2;
362         ty                         += fiy2;
363         tz                         += fiz2;
364         fshift[i_shift_offset+XX]  += tx;
365         fshift[i_shift_offset+YY]  += ty;
366         fshift[i_shift_offset+ZZ]  += tz;
367
368         ggid                        = gid[iidx];
369         /* Update potential energies */
370         kernel_data->energygrp_elec[ggid] += velecsum;
371         kernel_data->energygrp_vdw[ggid] += vvdwsum;
372
373         /* Increment number of inner iterations */
374         inneriter                  += j_index_end - j_index_start;
375
376         /* Outer loop uses 32 flops */
377     }
378
379     /* Increment number of outer iterations */
380     outeriter        += nri;
381
382     /* Update outer/inner flops */
383
384     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*127);
385 }
386 /*
387  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_c
388  * Electrostatics interaction: ReactionField
389  * VdW interaction:            LennardJones
390  * Geometry:                   Water3-Particle
391  * Calculate force/pot:        Force
392  */
393 void
394 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_c
395                     (t_nblist                    * gmx_restrict       nlist,
396                      rvec                        * gmx_restrict          xx,
397                      rvec                        * gmx_restrict          ff,
398                      t_forcerec                  * gmx_restrict          fr,
399                      t_mdatoms                   * gmx_restrict     mdatoms,
400                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
401                      t_nrnb                      * gmx_restrict        nrnb)
402 {
403     int              i_shift_offset,i_coord_offset,j_coord_offset;
404     int              j_index_start,j_index_end;
405     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
406     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
407     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
408     real             *shiftvec,*fshift,*x,*f;
409     int              vdwioffset0;
410     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
411     int              vdwioffset1;
412     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
413     int              vdwioffset2;
414     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
415     int              vdwjidx0;
416     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
417     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
418     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
419     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
420     real             velec,felec,velecsum,facel,crf,krf,krf2;
421     real             *charge;
422     int              nvdwtype;
423     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
424     int              *vdwtype;
425     real             *vdwparam;
426     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
427
428     x                = xx[0];
429     f                = ff[0];
430
431     nri              = nlist->nri;
432     iinr             = nlist->iinr;
433     jindex           = nlist->jindex;
434     jjnr             = nlist->jjnr;
435     shiftidx         = nlist->shift;
436     gid              = nlist->gid;
437     shiftvec         = fr->shift_vec[0];
438     fshift           = fr->fshift[0];
439     facel            = fr->epsfac;
440     charge           = mdatoms->chargeA;
441     krf              = fr->ic->k_rf;
442     krf2             = krf*2.0;
443     crf              = fr->ic->c_rf;
444     nvdwtype         = fr->ntype;
445     vdwparam         = fr->nbfp;
446     vdwtype          = mdatoms->typeA;
447
448     /* Setup water-specific parameters */
449     inr              = nlist->iinr[0];
450     iq0              = facel*charge[inr+0];
451     iq1              = facel*charge[inr+1];
452     iq2              = facel*charge[inr+2];
453     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
454
455     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
456     rcutoff          = fr->rcoulomb;
457     rcutoff2         = rcutoff*rcutoff;
458
459     rswitch          = fr->rvdw_switch;
460     /* Setup switch parameters */
461     d                = rcutoff-rswitch;
462     swV3             = -10.0/(d*d*d);
463     swV4             =  15.0/(d*d*d*d);
464     swV5             =  -6.0/(d*d*d*d*d);
465     swF2             = -30.0/(d*d*d);
466     swF3             =  60.0/(d*d*d*d);
467     swF4             = -30.0/(d*d*d*d*d);
468
469     outeriter        = 0;
470     inneriter        = 0;
471
472     /* Start outer loop over neighborlists */
473     for(iidx=0; iidx<nri; iidx++)
474     {
475         /* Load shift vector for this list */
476         i_shift_offset   = DIM*shiftidx[iidx];
477         shX              = shiftvec[i_shift_offset+XX];
478         shY              = shiftvec[i_shift_offset+YY];
479         shZ              = shiftvec[i_shift_offset+ZZ];
480
481         /* Load limits for loop over neighbors */
482         j_index_start    = jindex[iidx];
483         j_index_end      = jindex[iidx+1];
484
485         /* Get outer coordinate index */
486         inr              = iinr[iidx];
487         i_coord_offset   = DIM*inr;
488
489         /* Load i particle coords and add shift vector */
490         ix0              = shX + x[i_coord_offset+DIM*0+XX];
491         iy0              = shY + x[i_coord_offset+DIM*0+YY];
492         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
493         ix1              = shX + x[i_coord_offset+DIM*1+XX];
494         iy1              = shY + x[i_coord_offset+DIM*1+YY];
495         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
496         ix2              = shX + x[i_coord_offset+DIM*2+XX];
497         iy2              = shY + x[i_coord_offset+DIM*2+YY];
498         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
499
500         fix0             = 0.0;
501         fiy0             = 0.0;
502         fiz0             = 0.0;
503         fix1             = 0.0;
504         fiy1             = 0.0;
505         fiz1             = 0.0;
506         fix2             = 0.0;
507         fiy2             = 0.0;
508         fiz2             = 0.0;
509
510         /* Start inner kernel loop */
511         for(jidx=j_index_start; jidx<j_index_end; jidx++)
512         {
513             /* Get j neighbor index, and coordinate index */
514             jnr              = jjnr[jidx];
515             j_coord_offset   = DIM*jnr;
516
517             /* load j atom coordinates */
518             jx0              = x[j_coord_offset+DIM*0+XX];
519             jy0              = x[j_coord_offset+DIM*0+YY];
520             jz0              = x[j_coord_offset+DIM*0+ZZ];
521
522             /* Calculate displacement vector */
523             dx00             = ix0 - jx0;
524             dy00             = iy0 - jy0;
525             dz00             = iz0 - jz0;
526             dx10             = ix1 - jx0;
527             dy10             = iy1 - jy0;
528             dz10             = iz1 - jz0;
529             dx20             = ix2 - jx0;
530             dy20             = iy2 - jy0;
531             dz20             = iz2 - jz0;
532
533             /* Calculate squared distance and things based on it */
534             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
535             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
536             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
537
538             rinv00           = gmx_invsqrt(rsq00);
539             rinv10           = gmx_invsqrt(rsq10);
540             rinv20           = gmx_invsqrt(rsq20);
541
542             rinvsq00         = rinv00*rinv00;
543             rinvsq10         = rinv10*rinv10;
544             rinvsq20         = rinv20*rinv20;
545
546             /* Load parameters for j particles */
547             jq0              = charge[jnr+0];
548             vdwjidx0         = 2*vdwtype[jnr+0];
549
550             /**************************
551              * CALCULATE INTERACTIONS *
552              **************************/
553
554             if (rsq00<rcutoff2)
555             {
556
557             r00              = rsq00*rinv00;
558
559             qq00             = iq0*jq0;
560             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
561             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
562
563             /* REACTION-FIELD ELECTROSTATICS */
564             felec            = qq00*(rinv00*rinvsq00-krf2);
565
566             /* LENNARD-JONES DISPERSION/REPULSION */
567
568             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
569             vvdw6            = c6_00*rinvsix;
570             vvdw12           = c12_00*rinvsix*rinvsix;
571             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
572             fvdw             = (vvdw12-vvdw6)*rinvsq00;
573
574             d                = r00-rswitch;
575             d                = (d>0.0) ? d : 0.0;
576             d2               = d*d;
577             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
578
579             dsw              = d2*(swF2+d*(swF3+d*swF4));
580
581             /* Evaluate switch function */
582             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
583             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
584
585             fscal            = felec+fvdw;
586
587             /* Calculate temporary vectorial force */
588             tx               = fscal*dx00;
589             ty               = fscal*dy00;
590             tz               = fscal*dz00;
591
592             /* Update vectorial force */
593             fix0            += tx;
594             fiy0            += ty;
595             fiz0            += tz;
596             f[j_coord_offset+DIM*0+XX] -= tx;
597             f[j_coord_offset+DIM*0+YY] -= ty;
598             f[j_coord_offset+DIM*0+ZZ] -= tz;
599
600             }
601
602             /**************************
603              * CALCULATE INTERACTIONS *
604              **************************/
605
606             if (rsq10<rcutoff2)
607             {
608
609             qq10             = iq1*jq0;
610
611             /* REACTION-FIELD ELECTROSTATICS */
612             felec            = qq10*(rinv10*rinvsq10-krf2);
613
614             fscal            = felec;
615
616             /* Calculate temporary vectorial force */
617             tx               = fscal*dx10;
618             ty               = fscal*dy10;
619             tz               = fscal*dz10;
620
621             /* Update vectorial force */
622             fix1            += tx;
623             fiy1            += ty;
624             fiz1            += tz;
625             f[j_coord_offset+DIM*0+XX] -= tx;
626             f[j_coord_offset+DIM*0+YY] -= ty;
627             f[j_coord_offset+DIM*0+ZZ] -= tz;
628
629             }
630
631             /**************************
632              * CALCULATE INTERACTIONS *
633              **************************/
634
635             if (rsq20<rcutoff2)
636             {
637
638             qq20             = iq2*jq0;
639
640             /* REACTION-FIELD ELECTROSTATICS */
641             felec            = qq20*(rinv20*rinvsq20-krf2);
642
643             fscal            = felec;
644
645             /* Calculate temporary vectorial force */
646             tx               = fscal*dx20;
647             ty               = fscal*dy20;
648             tz               = fscal*dz20;
649
650             /* Update vectorial force */
651             fix2            += tx;
652             fiy2            += ty;
653             fiz2            += tz;
654             f[j_coord_offset+DIM*0+XX] -= tx;
655             f[j_coord_offset+DIM*0+YY] -= ty;
656             f[j_coord_offset+DIM*0+ZZ] -= tz;
657
658             }
659
660             /* Inner loop uses 110 flops */
661         }
662         /* End of innermost loop */
663
664         tx = ty = tz = 0;
665         f[i_coord_offset+DIM*0+XX] += fix0;
666         f[i_coord_offset+DIM*0+YY] += fiy0;
667         f[i_coord_offset+DIM*0+ZZ] += fiz0;
668         tx                         += fix0;
669         ty                         += fiy0;
670         tz                         += fiz0;
671         f[i_coord_offset+DIM*1+XX] += fix1;
672         f[i_coord_offset+DIM*1+YY] += fiy1;
673         f[i_coord_offset+DIM*1+ZZ] += fiz1;
674         tx                         += fix1;
675         ty                         += fiy1;
676         tz                         += fiz1;
677         f[i_coord_offset+DIM*2+XX] += fix2;
678         f[i_coord_offset+DIM*2+YY] += fiy2;
679         f[i_coord_offset+DIM*2+ZZ] += fiz2;
680         tx                         += fix2;
681         ty                         += fiy2;
682         tz                         += fiz2;
683         fshift[i_shift_offset+XX]  += tx;
684         fshift[i_shift_offset+YY]  += ty;
685         fshift[i_shift_offset+ZZ]  += tz;
686
687         /* Increment number of inner iterations */
688         inneriter                  += j_index_end - j_index_start;
689
690         /* Outer loop uses 30 flops */
691     }
692
693     /* Increment number of outer iterations */
694     outeriter        += nri;
695
696     /* Update outer/inner flops */
697
698     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*110);
699 }