36ffdc2917ea3d1c6d0302283aa3d39328abd5e8
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_c
49  * Electrostatics interaction: ReactionField
50  * VdW interaction:            LennardJones
51  * Geometry:                   Water3-Particle
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwioffset1;
73     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     int              vdwioffset2;
75     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0;
77     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
79     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
80     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
81     real             velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
88
89     x                = xx[0];
90     f                = ff[0];
91
92     nri              = nlist->nri;
93     iinr             = nlist->iinr;
94     jindex           = nlist->jindex;
95     jjnr             = nlist->jjnr;
96     shiftidx         = nlist->shift;
97     gid              = nlist->gid;
98     shiftvec         = fr->shift_vec[0];
99     fshift           = fr->fshift[0];
100     facel            = fr->epsfac;
101     charge           = mdatoms->chargeA;
102     krf              = fr->ic->k_rf;
103     krf2             = krf*2.0;
104     crf              = fr->ic->c_rf;
105     nvdwtype         = fr->ntype;
106     vdwparam         = fr->nbfp;
107     vdwtype          = mdatoms->typeA;
108
109     /* Setup water-specific parameters */
110     inr              = nlist->iinr[0];
111     iq0              = facel*charge[inr+0];
112     iq1              = facel*charge[inr+1];
113     iq2              = facel*charge[inr+2];
114     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
115
116     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
117     rcutoff          = fr->rcoulomb;
118     rcutoff2         = rcutoff*rcutoff;
119
120     rswitch          = fr->rvdw_switch;
121     /* Setup switch parameters */
122     d                = rcutoff-rswitch;
123     swV3             = -10.0/(d*d*d);
124     swV4             =  15.0/(d*d*d*d);
125     swV5             =  -6.0/(d*d*d*d*d);
126     swF2             = -30.0/(d*d*d);
127     swF3             =  60.0/(d*d*d*d);
128     swF4             = -30.0/(d*d*d*d*d);
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138         shX              = shiftvec[i_shift_offset+XX];
139         shY              = shiftvec[i_shift_offset+YY];
140         shZ              = shiftvec[i_shift_offset+ZZ];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         ix0              = shX + x[i_coord_offset+DIM*0+XX];
152         iy0              = shY + x[i_coord_offset+DIM*0+YY];
153         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
154         ix1              = shX + x[i_coord_offset+DIM*1+XX];
155         iy1              = shY + x[i_coord_offset+DIM*1+YY];
156         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
157         ix2              = shX + x[i_coord_offset+DIM*2+XX];
158         iy2              = shY + x[i_coord_offset+DIM*2+YY];
159         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
160
161         fix0             = 0.0;
162         fiy0             = 0.0;
163         fiz0             = 0.0;
164         fix1             = 0.0;
165         fiy1             = 0.0;
166         fiz1             = 0.0;
167         fix2             = 0.0;
168         fiy2             = 0.0;
169         fiz2             = 0.0;
170
171         /* Reset potential sums */
172         velecsum         = 0.0;
173         vvdwsum          = 0.0;
174
175         /* Start inner kernel loop */
176         for(jidx=j_index_start; jidx<j_index_end; jidx++)
177         {
178             /* Get j neighbor index, and coordinate index */
179             jnr              = jjnr[jidx];
180             j_coord_offset   = DIM*jnr;
181
182             /* load j atom coordinates */
183             jx0              = x[j_coord_offset+DIM*0+XX];
184             jy0              = x[j_coord_offset+DIM*0+YY];
185             jz0              = x[j_coord_offset+DIM*0+ZZ];
186
187             /* Calculate displacement vector */
188             dx00             = ix0 - jx0;
189             dy00             = iy0 - jy0;
190             dz00             = iz0 - jz0;
191             dx10             = ix1 - jx0;
192             dy10             = iy1 - jy0;
193             dz10             = iz1 - jz0;
194             dx20             = ix2 - jx0;
195             dy20             = iy2 - jy0;
196             dz20             = iz2 - jz0;
197
198             /* Calculate squared distance and things based on it */
199             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
200             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
201             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
202
203             rinv00           = gmx_invsqrt(rsq00);
204             rinv10           = gmx_invsqrt(rsq10);
205             rinv20           = gmx_invsqrt(rsq20);
206
207             rinvsq00         = rinv00*rinv00;
208             rinvsq10         = rinv10*rinv10;
209             rinvsq20         = rinv20*rinv20;
210
211             /* Load parameters for j particles */
212             jq0              = charge[jnr+0];
213             vdwjidx0         = 2*vdwtype[jnr+0];
214
215             /**************************
216              * CALCULATE INTERACTIONS *
217              **************************/
218
219             if (rsq00<rcutoff2)
220             {
221
222             r00              = rsq00*rinv00;
223
224             qq00             = iq0*jq0;
225             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
226             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
227
228             /* REACTION-FIELD ELECTROSTATICS */
229             velec            = qq00*(rinv00+krf*rsq00-crf);
230             felec            = qq00*(rinv00*rinvsq00-krf2);
231
232             /* LENNARD-JONES DISPERSION/REPULSION */
233
234             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
235             vvdw6            = c6_00*rinvsix;
236             vvdw12           = c12_00*rinvsix*rinvsix;
237             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
238             fvdw             = (vvdw12-vvdw6)*rinvsq00;
239
240             d                = r00-rswitch;
241             d                = (d>0.0) ? d : 0.0;
242             d2               = d*d;
243             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
244
245             dsw              = d2*(swF2+d*(swF3+d*swF4));
246
247             /* Evaluate switch function */
248             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
249             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
250             vvdw            *= sw;
251
252             /* Update potential sums from outer loop */
253             velecsum        += velec;
254             vvdwsum         += vvdw;
255
256             fscal            = felec+fvdw;
257
258             /* Calculate temporary vectorial force */
259             tx               = fscal*dx00;
260             ty               = fscal*dy00;
261             tz               = fscal*dz00;
262
263             /* Update vectorial force */
264             fix0            += tx;
265             fiy0            += ty;
266             fiz0            += tz;
267             f[j_coord_offset+DIM*0+XX] -= tx;
268             f[j_coord_offset+DIM*0+YY] -= ty;
269             f[j_coord_offset+DIM*0+ZZ] -= tz;
270
271             }
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             if (rsq10<rcutoff2)
278             {
279
280             qq10             = iq1*jq0;
281
282             /* REACTION-FIELD ELECTROSTATICS */
283             velec            = qq10*(rinv10+krf*rsq10-crf);
284             felec            = qq10*(rinv10*rinvsq10-krf2);
285
286             /* Update potential sums from outer loop */
287             velecsum        += velec;
288
289             fscal            = felec;
290
291             /* Calculate temporary vectorial force */
292             tx               = fscal*dx10;
293             ty               = fscal*dy10;
294             tz               = fscal*dz10;
295
296             /* Update vectorial force */
297             fix1            += tx;
298             fiy1            += ty;
299             fiz1            += tz;
300             f[j_coord_offset+DIM*0+XX] -= tx;
301             f[j_coord_offset+DIM*0+YY] -= ty;
302             f[j_coord_offset+DIM*0+ZZ] -= tz;
303
304             }
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             if (rsq20<rcutoff2)
311             {
312
313             qq20             = iq2*jq0;
314
315             /* REACTION-FIELD ELECTROSTATICS */
316             velec            = qq20*(rinv20+krf*rsq20-crf);
317             felec            = qq20*(rinv20*rinvsq20-krf2);
318
319             /* Update potential sums from outer loop */
320             velecsum        += velec;
321
322             fscal            = felec;
323
324             /* Calculate temporary vectorial force */
325             tx               = fscal*dx20;
326             ty               = fscal*dy20;
327             tz               = fscal*dz20;
328
329             /* Update vectorial force */
330             fix2            += tx;
331             fiy2            += ty;
332             fiz2            += tz;
333             f[j_coord_offset+DIM*0+XX] -= tx;
334             f[j_coord_offset+DIM*0+YY] -= ty;
335             f[j_coord_offset+DIM*0+ZZ] -= tz;
336
337             }
338
339             /* Inner loop uses 127 flops */
340         }
341         /* End of innermost loop */
342
343         tx = ty = tz = 0;
344         f[i_coord_offset+DIM*0+XX] += fix0;
345         f[i_coord_offset+DIM*0+YY] += fiy0;
346         f[i_coord_offset+DIM*0+ZZ] += fiz0;
347         tx                         += fix0;
348         ty                         += fiy0;
349         tz                         += fiz0;
350         f[i_coord_offset+DIM*1+XX] += fix1;
351         f[i_coord_offset+DIM*1+YY] += fiy1;
352         f[i_coord_offset+DIM*1+ZZ] += fiz1;
353         tx                         += fix1;
354         ty                         += fiy1;
355         tz                         += fiz1;
356         f[i_coord_offset+DIM*2+XX] += fix2;
357         f[i_coord_offset+DIM*2+YY] += fiy2;
358         f[i_coord_offset+DIM*2+ZZ] += fiz2;
359         tx                         += fix2;
360         ty                         += fiy2;
361         tz                         += fiz2;
362         fshift[i_shift_offset+XX]  += tx;
363         fshift[i_shift_offset+YY]  += ty;
364         fshift[i_shift_offset+ZZ]  += tz;
365
366         ggid                        = gid[iidx];
367         /* Update potential energies */
368         kernel_data->energygrp_elec[ggid] += velecsum;
369         kernel_data->energygrp_vdw[ggid] += vvdwsum;
370
371         /* Increment number of inner iterations */
372         inneriter                  += j_index_end - j_index_start;
373
374         /* Outer loop uses 32 flops */
375     }
376
377     /* Increment number of outer iterations */
378     outeriter        += nri;
379
380     /* Update outer/inner flops */
381
382     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*127);
383 }
384 /*
385  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_c
386  * Electrostatics interaction: ReactionField
387  * VdW interaction:            LennardJones
388  * Geometry:                   Water3-Particle
389  * Calculate force/pot:        Force
390  */
391 void
392 nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_c
393                     (t_nblist                    * gmx_restrict       nlist,
394                      rvec                        * gmx_restrict          xx,
395                      rvec                        * gmx_restrict          ff,
396                      t_forcerec                  * gmx_restrict          fr,
397                      t_mdatoms                   * gmx_restrict     mdatoms,
398                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
399                      t_nrnb                      * gmx_restrict        nrnb)
400 {
401     int              i_shift_offset,i_coord_offset,j_coord_offset;
402     int              j_index_start,j_index_end;
403     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
404     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
405     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
406     real             *shiftvec,*fshift,*x,*f;
407     int              vdwioffset0;
408     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
409     int              vdwioffset1;
410     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
411     int              vdwioffset2;
412     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
413     int              vdwjidx0;
414     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
415     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
416     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
417     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
418     real             velec,felec,velecsum,facel,crf,krf,krf2;
419     real             *charge;
420     int              nvdwtype;
421     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
422     int              *vdwtype;
423     real             *vdwparam;
424     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
425
426     x                = xx[0];
427     f                = ff[0];
428
429     nri              = nlist->nri;
430     iinr             = nlist->iinr;
431     jindex           = nlist->jindex;
432     jjnr             = nlist->jjnr;
433     shiftidx         = nlist->shift;
434     gid              = nlist->gid;
435     shiftvec         = fr->shift_vec[0];
436     fshift           = fr->fshift[0];
437     facel            = fr->epsfac;
438     charge           = mdatoms->chargeA;
439     krf              = fr->ic->k_rf;
440     krf2             = krf*2.0;
441     crf              = fr->ic->c_rf;
442     nvdwtype         = fr->ntype;
443     vdwparam         = fr->nbfp;
444     vdwtype          = mdatoms->typeA;
445
446     /* Setup water-specific parameters */
447     inr              = nlist->iinr[0];
448     iq0              = facel*charge[inr+0];
449     iq1              = facel*charge[inr+1];
450     iq2              = facel*charge[inr+2];
451     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
452
453     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
454     rcutoff          = fr->rcoulomb;
455     rcutoff2         = rcutoff*rcutoff;
456
457     rswitch          = fr->rvdw_switch;
458     /* Setup switch parameters */
459     d                = rcutoff-rswitch;
460     swV3             = -10.0/(d*d*d);
461     swV4             =  15.0/(d*d*d*d);
462     swV5             =  -6.0/(d*d*d*d*d);
463     swF2             = -30.0/(d*d*d);
464     swF3             =  60.0/(d*d*d*d);
465     swF4             = -30.0/(d*d*d*d*d);
466
467     outeriter        = 0;
468     inneriter        = 0;
469
470     /* Start outer loop over neighborlists */
471     for(iidx=0; iidx<nri; iidx++)
472     {
473         /* Load shift vector for this list */
474         i_shift_offset   = DIM*shiftidx[iidx];
475         shX              = shiftvec[i_shift_offset+XX];
476         shY              = shiftvec[i_shift_offset+YY];
477         shZ              = shiftvec[i_shift_offset+ZZ];
478
479         /* Load limits for loop over neighbors */
480         j_index_start    = jindex[iidx];
481         j_index_end      = jindex[iidx+1];
482
483         /* Get outer coordinate index */
484         inr              = iinr[iidx];
485         i_coord_offset   = DIM*inr;
486
487         /* Load i particle coords and add shift vector */
488         ix0              = shX + x[i_coord_offset+DIM*0+XX];
489         iy0              = shY + x[i_coord_offset+DIM*0+YY];
490         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
491         ix1              = shX + x[i_coord_offset+DIM*1+XX];
492         iy1              = shY + x[i_coord_offset+DIM*1+YY];
493         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
494         ix2              = shX + x[i_coord_offset+DIM*2+XX];
495         iy2              = shY + x[i_coord_offset+DIM*2+YY];
496         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
497
498         fix0             = 0.0;
499         fiy0             = 0.0;
500         fiz0             = 0.0;
501         fix1             = 0.0;
502         fiy1             = 0.0;
503         fiz1             = 0.0;
504         fix2             = 0.0;
505         fiy2             = 0.0;
506         fiz2             = 0.0;
507
508         /* Start inner kernel loop */
509         for(jidx=j_index_start; jidx<j_index_end; jidx++)
510         {
511             /* Get j neighbor index, and coordinate index */
512             jnr              = jjnr[jidx];
513             j_coord_offset   = DIM*jnr;
514
515             /* load j atom coordinates */
516             jx0              = x[j_coord_offset+DIM*0+XX];
517             jy0              = x[j_coord_offset+DIM*0+YY];
518             jz0              = x[j_coord_offset+DIM*0+ZZ];
519
520             /* Calculate displacement vector */
521             dx00             = ix0 - jx0;
522             dy00             = iy0 - jy0;
523             dz00             = iz0 - jz0;
524             dx10             = ix1 - jx0;
525             dy10             = iy1 - jy0;
526             dz10             = iz1 - jz0;
527             dx20             = ix2 - jx0;
528             dy20             = iy2 - jy0;
529             dz20             = iz2 - jz0;
530
531             /* Calculate squared distance and things based on it */
532             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
533             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
534             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
535
536             rinv00           = gmx_invsqrt(rsq00);
537             rinv10           = gmx_invsqrt(rsq10);
538             rinv20           = gmx_invsqrt(rsq20);
539
540             rinvsq00         = rinv00*rinv00;
541             rinvsq10         = rinv10*rinv10;
542             rinvsq20         = rinv20*rinv20;
543
544             /* Load parameters for j particles */
545             jq0              = charge[jnr+0];
546             vdwjidx0         = 2*vdwtype[jnr+0];
547
548             /**************************
549              * CALCULATE INTERACTIONS *
550              **************************/
551
552             if (rsq00<rcutoff2)
553             {
554
555             r00              = rsq00*rinv00;
556
557             qq00             = iq0*jq0;
558             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
559             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
560
561             /* REACTION-FIELD ELECTROSTATICS */
562             felec            = qq00*(rinv00*rinvsq00-krf2);
563
564             /* LENNARD-JONES DISPERSION/REPULSION */
565
566             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
567             vvdw6            = c6_00*rinvsix;
568             vvdw12           = c12_00*rinvsix*rinvsix;
569             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
570             fvdw             = (vvdw12-vvdw6)*rinvsq00;
571
572             d                = r00-rswitch;
573             d                = (d>0.0) ? d : 0.0;
574             d2               = d*d;
575             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
576
577             dsw              = d2*(swF2+d*(swF3+d*swF4));
578
579             /* Evaluate switch function */
580             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
581             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
582
583             fscal            = felec+fvdw;
584
585             /* Calculate temporary vectorial force */
586             tx               = fscal*dx00;
587             ty               = fscal*dy00;
588             tz               = fscal*dz00;
589
590             /* Update vectorial force */
591             fix0            += tx;
592             fiy0            += ty;
593             fiz0            += tz;
594             f[j_coord_offset+DIM*0+XX] -= tx;
595             f[j_coord_offset+DIM*0+YY] -= ty;
596             f[j_coord_offset+DIM*0+ZZ] -= tz;
597
598             }
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             if (rsq10<rcutoff2)
605             {
606
607             qq10             = iq1*jq0;
608
609             /* REACTION-FIELD ELECTROSTATICS */
610             felec            = qq10*(rinv10*rinvsq10-krf2);
611
612             fscal            = felec;
613
614             /* Calculate temporary vectorial force */
615             tx               = fscal*dx10;
616             ty               = fscal*dy10;
617             tz               = fscal*dz10;
618
619             /* Update vectorial force */
620             fix1            += tx;
621             fiy1            += ty;
622             fiz1            += tz;
623             f[j_coord_offset+DIM*0+XX] -= tx;
624             f[j_coord_offset+DIM*0+YY] -= ty;
625             f[j_coord_offset+DIM*0+ZZ] -= tz;
626
627             }
628
629             /**************************
630              * CALCULATE INTERACTIONS *
631              **************************/
632
633             if (rsq20<rcutoff2)
634             {
635
636             qq20             = iq2*jq0;
637
638             /* REACTION-FIELD ELECTROSTATICS */
639             felec            = qq20*(rinv20*rinvsq20-krf2);
640
641             fscal            = felec;
642
643             /* Calculate temporary vectorial force */
644             tx               = fscal*dx20;
645             ty               = fscal*dy20;
646             tz               = fscal*dz20;
647
648             /* Update vectorial force */
649             fix2            += tx;
650             fiy2            += ty;
651             fiz2            += tz;
652             f[j_coord_offset+DIM*0+XX] -= tx;
653             f[j_coord_offset+DIM*0+YY] -= ty;
654             f[j_coord_offset+DIM*0+ZZ] -= tz;
655
656             }
657
658             /* Inner loop uses 110 flops */
659         }
660         /* End of innermost loop */
661
662         tx = ty = tz = 0;
663         f[i_coord_offset+DIM*0+XX] += fix0;
664         f[i_coord_offset+DIM*0+YY] += fiy0;
665         f[i_coord_offset+DIM*0+ZZ] += fiz0;
666         tx                         += fix0;
667         ty                         += fiy0;
668         tz                         += fiz0;
669         f[i_coord_offset+DIM*1+XX] += fix1;
670         f[i_coord_offset+DIM*1+YY] += fiy1;
671         f[i_coord_offset+DIM*1+ZZ] += fiz1;
672         tx                         += fix1;
673         ty                         += fiy1;
674         tz                         += fiz1;
675         f[i_coord_offset+DIM*2+XX] += fix2;
676         f[i_coord_offset+DIM*2+YY] += fiy2;
677         f[i_coord_offset+DIM*2+ZZ] += fiz2;
678         tx                         += fix2;
679         ty                         += fiy2;
680         tz                         += fiz2;
681         fshift[i_shift_offset+XX]  += tx;
682         fshift[i_shift_offset+YY]  += ty;
683         fshift[i_shift_offset+ZZ]  += tz;
684
685         /* Increment number of inner iterations */
686         inneriter                  += j_index_end - j_index_start;
687
688         /* Outer loop uses 30 flops */
689     }
690
691     /* Increment number of outer iterations */
692     outeriter        += nri;
693
694     /* Update outer/inner flops */
695
696     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*110);
697 }