Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_c
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
84
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     facel            = fr->epsfac;
97     charge           = mdatoms->chargeA;
98     krf              = fr->ic->k_rf;
99     krf2             = krf*2.0;
100     crf              = fr->ic->c_rf;
101     nvdwtype         = fr->ntype;
102     vdwparam         = fr->nbfp;
103     vdwtype          = mdatoms->typeA;
104
105     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
106     rcutoff          = fr->rcoulomb;
107     rcutoff2         = rcutoff*rcutoff;
108
109     rswitch          = fr->rvdw_switch;
110     /* Setup switch parameters */
111     d                = rcutoff-rswitch;
112     swV3             = -10.0/(d*d*d);
113     swV4             =  15.0/(d*d*d*d);
114     swV5             =  -6.0/(d*d*d*d*d);
115     swF2             = -30.0/(d*d*d);
116     swF3             =  60.0/(d*d*d*d);
117     swF4             = -30.0/(d*d*d*d*d);
118
119     outeriter        = 0;
120     inneriter        = 0;
121
122     /* Start outer loop over neighborlists */
123     for(iidx=0; iidx<nri; iidx++)
124     {
125         /* Load shift vector for this list */
126         i_shift_offset   = DIM*shiftidx[iidx];
127         shX              = shiftvec[i_shift_offset+XX];
128         shY              = shiftvec[i_shift_offset+YY];
129         shZ              = shiftvec[i_shift_offset+ZZ];
130
131         /* Load limits for loop over neighbors */
132         j_index_start    = jindex[iidx];
133         j_index_end      = jindex[iidx+1];
134
135         /* Get outer coordinate index */
136         inr              = iinr[iidx];
137         i_coord_offset   = DIM*inr;
138
139         /* Load i particle coords and add shift vector */
140         ix0              = shX + x[i_coord_offset+DIM*0+XX];
141         iy0              = shY + x[i_coord_offset+DIM*0+YY];
142         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
143
144         fix0             = 0.0;
145         fiy0             = 0.0;
146         fiz0             = 0.0;
147
148         /* Load parameters for i particles */
149         iq0              = facel*charge[inr+0];
150         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
151
152         /* Reset potential sums */
153         velecsum         = 0.0;
154         vvdwsum          = 0.0;
155
156         /* Start inner kernel loop */
157         for(jidx=j_index_start; jidx<j_index_end; jidx++)
158         {
159             /* Get j neighbor index, and coordinate index */
160             jnr              = jjnr[jidx];
161             j_coord_offset   = DIM*jnr;
162
163             /* load j atom coordinates */
164             jx0              = x[j_coord_offset+DIM*0+XX];
165             jy0              = x[j_coord_offset+DIM*0+YY];
166             jz0              = x[j_coord_offset+DIM*0+ZZ];
167
168             /* Calculate displacement vector */
169             dx00             = ix0 - jx0;
170             dy00             = iy0 - jy0;
171             dz00             = iz0 - jz0;
172
173             /* Calculate squared distance and things based on it */
174             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
175
176             rinv00           = gmx_invsqrt(rsq00);
177
178             rinvsq00         = rinv00*rinv00;
179
180             /* Load parameters for j particles */
181             jq0              = charge[jnr+0];
182             vdwjidx0         = 2*vdwtype[jnr+0];
183
184             /**************************
185              * CALCULATE INTERACTIONS *
186              **************************/
187
188             if (rsq00<rcutoff2)
189             {
190
191             r00              = rsq00*rinv00;
192
193             qq00             = iq0*jq0;
194             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
195             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
196
197             /* REACTION-FIELD ELECTROSTATICS */
198             velec            = qq00*(rinv00+krf*rsq00-crf);
199             felec            = qq00*(rinv00*rinvsq00-krf2);
200
201             /* LENNARD-JONES DISPERSION/REPULSION */
202
203             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
204             vvdw6            = c6_00*rinvsix;
205             vvdw12           = c12_00*rinvsix*rinvsix;
206             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
207             fvdw             = (vvdw12-vvdw6)*rinvsq00;
208
209             d                = r00-rswitch;
210             d                = (d>0.0) ? d : 0.0;
211             d2               = d*d;
212             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
213
214             dsw              = d2*(swF2+d*(swF3+d*swF4));
215
216             /* Evaluate switch function */
217             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
218             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
219             vvdw            *= sw;
220
221             /* Update potential sums from outer loop */
222             velecsum        += velec;
223             vvdwsum         += vvdw;
224
225             fscal            = felec+fvdw;
226
227             /* Calculate temporary vectorial force */
228             tx               = fscal*dx00;
229             ty               = fscal*dy00;
230             tz               = fscal*dz00;
231
232             /* Update vectorial force */
233             fix0            += tx;
234             fiy0            += ty;
235             fiz0            += tz;
236             f[j_coord_offset+DIM*0+XX] -= tx;
237             f[j_coord_offset+DIM*0+YY] -= ty;
238             f[j_coord_offset+DIM*0+ZZ] -= tz;
239
240             }
241
242             /* Inner loop uses 63 flops */
243         }
244         /* End of innermost loop */
245
246         tx = ty = tz = 0;
247         f[i_coord_offset+DIM*0+XX] += fix0;
248         f[i_coord_offset+DIM*0+YY] += fiy0;
249         f[i_coord_offset+DIM*0+ZZ] += fiz0;
250         tx                         += fix0;
251         ty                         += fiy0;
252         tz                         += fiz0;
253         fshift[i_shift_offset+XX]  += tx;
254         fshift[i_shift_offset+YY]  += ty;
255         fshift[i_shift_offset+ZZ]  += tz;
256
257         ggid                        = gid[iidx];
258         /* Update potential energies */
259         kernel_data->energygrp_elec[ggid] += velecsum;
260         kernel_data->energygrp_vdw[ggid] += vvdwsum;
261
262         /* Increment number of inner iterations */
263         inneriter                  += j_index_end - j_index_start;
264
265         /* Outer loop uses 15 flops */
266     }
267
268     /* Increment number of outer iterations */
269     outeriter        += nri;
270
271     /* Update outer/inner flops */
272
273     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*63);
274 }
275 /*
276  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_c
277  * Electrostatics interaction: ReactionField
278  * VdW interaction:            LennardJones
279  * Geometry:                   Particle-Particle
280  * Calculate force/pot:        Force
281  */
282 void
283 nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_c
284                     (t_nblist                    * gmx_restrict       nlist,
285                      rvec                        * gmx_restrict          xx,
286                      rvec                        * gmx_restrict          ff,
287                      t_forcerec                  * gmx_restrict          fr,
288                      t_mdatoms                   * gmx_restrict     mdatoms,
289                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
290                      t_nrnb                      * gmx_restrict        nrnb)
291 {
292     int              i_shift_offset,i_coord_offset,j_coord_offset;
293     int              j_index_start,j_index_end;
294     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
295     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
296     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
297     real             *shiftvec,*fshift,*x,*f;
298     int              vdwioffset0;
299     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
300     int              vdwjidx0;
301     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
302     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
303     real             velec,felec,velecsum,facel,crf,krf,krf2;
304     real             *charge;
305     int              nvdwtype;
306     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
307     int              *vdwtype;
308     real             *vdwparam;
309     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
310
311     x                = xx[0];
312     f                = ff[0];
313
314     nri              = nlist->nri;
315     iinr             = nlist->iinr;
316     jindex           = nlist->jindex;
317     jjnr             = nlist->jjnr;
318     shiftidx         = nlist->shift;
319     gid              = nlist->gid;
320     shiftvec         = fr->shift_vec[0];
321     fshift           = fr->fshift[0];
322     facel            = fr->epsfac;
323     charge           = mdatoms->chargeA;
324     krf              = fr->ic->k_rf;
325     krf2             = krf*2.0;
326     crf              = fr->ic->c_rf;
327     nvdwtype         = fr->ntype;
328     vdwparam         = fr->nbfp;
329     vdwtype          = mdatoms->typeA;
330
331     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
332     rcutoff          = fr->rcoulomb;
333     rcutoff2         = rcutoff*rcutoff;
334
335     rswitch          = fr->rvdw_switch;
336     /* Setup switch parameters */
337     d                = rcutoff-rswitch;
338     swV3             = -10.0/(d*d*d);
339     swV4             =  15.0/(d*d*d*d);
340     swV5             =  -6.0/(d*d*d*d*d);
341     swF2             = -30.0/(d*d*d);
342     swF3             =  60.0/(d*d*d*d);
343     swF4             = -30.0/(d*d*d*d*d);
344
345     outeriter        = 0;
346     inneriter        = 0;
347
348     /* Start outer loop over neighborlists */
349     for(iidx=0; iidx<nri; iidx++)
350     {
351         /* Load shift vector for this list */
352         i_shift_offset   = DIM*shiftidx[iidx];
353         shX              = shiftvec[i_shift_offset+XX];
354         shY              = shiftvec[i_shift_offset+YY];
355         shZ              = shiftvec[i_shift_offset+ZZ];
356
357         /* Load limits for loop over neighbors */
358         j_index_start    = jindex[iidx];
359         j_index_end      = jindex[iidx+1];
360
361         /* Get outer coordinate index */
362         inr              = iinr[iidx];
363         i_coord_offset   = DIM*inr;
364
365         /* Load i particle coords and add shift vector */
366         ix0              = shX + x[i_coord_offset+DIM*0+XX];
367         iy0              = shY + x[i_coord_offset+DIM*0+YY];
368         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
369
370         fix0             = 0.0;
371         fiy0             = 0.0;
372         fiz0             = 0.0;
373
374         /* Load parameters for i particles */
375         iq0              = facel*charge[inr+0];
376         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
377
378         /* Start inner kernel loop */
379         for(jidx=j_index_start; jidx<j_index_end; jidx++)
380         {
381             /* Get j neighbor index, and coordinate index */
382             jnr              = jjnr[jidx];
383             j_coord_offset   = DIM*jnr;
384
385             /* load j atom coordinates */
386             jx0              = x[j_coord_offset+DIM*0+XX];
387             jy0              = x[j_coord_offset+DIM*0+YY];
388             jz0              = x[j_coord_offset+DIM*0+ZZ];
389
390             /* Calculate displacement vector */
391             dx00             = ix0 - jx0;
392             dy00             = iy0 - jy0;
393             dz00             = iz0 - jz0;
394
395             /* Calculate squared distance and things based on it */
396             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
397
398             rinv00           = gmx_invsqrt(rsq00);
399
400             rinvsq00         = rinv00*rinv00;
401
402             /* Load parameters for j particles */
403             jq0              = charge[jnr+0];
404             vdwjidx0         = 2*vdwtype[jnr+0];
405
406             /**************************
407              * CALCULATE INTERACTIONS *
408              **************************/
409
410             if (rsq00<rcutoff2)
411             {
412
413             r00              = rsq00*rinv00;
414
415             qq00             = iq0*jq0;
416             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
417             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
418
419             /* REACTION-FIELD ELECTROSTATICS */
420             felec            = qq00*(rinv00*rinvsq00-krf2);
421
422             /* LENNARD-JONES DISPERSION/REPULSION */
423
424             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
425             vvdw6            = c6_00*rinvsix;
426             vvdw12           = c12_00*rinvsix*rinvsix;
427             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
428             fvdw             = (vvdw12-vvdw6)*rinvsq00;
429
430             d                = r00-rswitch;
431             d                = (d>0.0) ? d : 0.0;
432             d2               = d*d;
433             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
434
435             dsw              = d2*(swF2+d*(swF3+d*swF4));
436
437             /* Evaluate switch function */
438             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
439             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
440
441             fscal            = felec+fvdw;
442
443             /* Calculate temporary vectorial force */
444             tx               = fscal*dx00;
445             ty               = fscal*dy00;
446             tz               = fscal*dz00;
447
448             /* Update vectorial force */
449             fix0            += tx;
450             fiy0            += ty;
451             fiz0            += tz;
452             f[j_coord_offset+DIM*0+XX] -= tx;
453             f[j_coord_offset+DIM*0+YY] -= ty;
454             f[j_coord_offset+DIM*0+ZZ] -= tz;
455
456             }
457
458             /* Inner loop uses 56 flops */
459         }
460         /* End of innermost loop */
461
462         tx = ty = tz = 0;
463         f[i_coord_offset+DIM*0+XX] += fix0;
464         f[i_coord_offset+DIM*0+YY] += fiy0;
465         f[i_coord_offset+DIM*0+ZZ] += fiz0;
466         tx                         += fix0;
467         ty                         += fiy0;
468         tz                         += fiz0;
469         fshift[i_shift_offset+XX]  += tx;
470         fshift[i_shift_offset+YY]  += ty;
471         fshift[i_shift_offset+ZZ]  += tz;
472
473         /* Increment number of inner iterations */
474         inneriter                  += j_index_end - j_index_start;
475
476         /* Outer loop uses 13 flops */
477     }
478
479     /* Increment number of outer iterations */
480     outeriter        += nri;
481
482     /* Update outer/inner flops */
483
484     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*56);
485 }