b1246d038fd41b53e391b50fb15957507ff3c596
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_c
49  * Electrostatics interaction: ReactionField
50  * VdW interaction:            LennardJones
51  * Geometry:                   Particle-Particle
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0;
73     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
75     real             velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81
82     x                = xx[0];
83     f                = ff[0];
84
85     nri              = nlist->nri;
86     iinr             = nlist->iinr;
87     jindex           = nlist->jindex;
88     jjnr             = nlist->jjnr;
89     shiftidx         = nlist->shift;
90     gid              = nlist->gid;
91     shiftvec         = fr->shift_vec[0];
92     fshift           = fr->fshift[0];
93     facel            = fr->epsfac;
94     charge           = mdatoms->chargeA;
95     krf              = fr->ic->k_rf;
96     krf2             = krf*2.0;
97     crf              = fr->ic->c_rf;
98     nvdwtype         = fr->ntype;
99     vdwparam         = fr->nbfp;
100     vdwtype          = mdatoms->typeA;
101
102     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
103     rcutoff          = fr->rcoulomb;
104     rcutoff2         = rcutoff*rcutoff;
105
106     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
107     rvdw             = fr->rvdw;
108
109     outeriter        = 0;
110     inneriter        = 0;
111
112     /* Start outer loop over neighborlists */
113     for(iidx=0; iidx<nri; iidx++)
114     {
115         /* Load shift vector for this list */
116         i_shift_offset   = DIM*shiftidx[iidx];
117         shX              = shiftvec[i_shift_offset+XX];
118         shY              = shiftvec[i_shift_offset+YY];
119         shZ              = shiftvec[i_shift_offset+ZZ];
120
121         /* Load limits for loop over neighbors */
122         j_index_start    = jindex[iidx];
123         j_index_end      = jindex[iidx+1];
124
125         /* Get outer coordinate index */
126         inr              = iinr[iidx];
127         i_coord_offset   = DIM*inr;
128
129         /* Load i particle coords and add shift vector */
130         ix0              = shX + x[i_coord_offset+DIM*0+XX];
131         iy0              = shY + x[i_coord_offset+DIM*0+YY];
132         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
133
134         fix0             = 0.0;
135         fiy0             = 0.0;
136         fiz0             = 0.0;
137
138         /* Load parameters for i particles */
139         iq0              = facel*charge[inr+0];
140         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142         /* Reset potential sums */
143         velecsum         = 0.0;
144         vvdwsum          = 0.0;
145
146         /* Start inner kernel loop */
147         for(jidx=j_index_start; jidx<j_index_end; jidx++)
148         {
149             /* Get j neighbor index, and coordinate index */
150             jnr              = jjnr[jidx];
151             j_coord_offset   = DIM*jnr;
152
153             /* load j atom coordinates */
154             jx0              = x[j_coord_offset+DIM*0+XX];
155             jy0              = x[j_coord_offset+DIM*0+YY];
156             jz0              = x[j_coord_offset+DIM*0+ZZ];
157
158             /* Calculate displacement vector */
159             dx00             = ix0 - jx0;
160             dy00             = iy0 - jy0;
161             dz00             = iz0 - jz0;
162
163             /* Calculate squared distance and things based on it */
164             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
165
166             rinv00           = gmx_invsqrt(rsq00);
167
168             rinvsq00         = rinv00*rinv00;
169
170             /* Load parameters for j particles */
171             jq0              = charge[jnr+0];
172             vdwjidx0         = 2*vdwtype[jnr+0];
173
174             /**************************
175              * CALCULATE INTERACTIONS *
176              **************************/
177
178             if (rsq00<rcutoff2)
179             {
180
181             qq00             = iq0*jq0;
182             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
183             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
184
185             /* REACTION-FIELD ELECTROSTATICS */
186             velec            = qq00*(rinv00+krf*rsq00-crf);
187             felec            = qq00*(rinv00*rinvsq00-krf2);
188
189             /* LENNARD-JONES DISPERSION/REPULSION */
190
191             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
192             vvdw6            = c6_00*rinvsix;
193             vvdw12           = c12_00*rinvsix*rinvsix;
194             vvdw             = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
195             fvdw             = (vvdw12-vvdw6)*rinvsq00;
196
197             /* Update potential sums from outer loop */
198             velecsum        += velec;
199             vvdwsum         += vvdw;
200
201             fscal            = felec+fvdw;
202
203             /* Calculate temporary vectorial force */
204             tx               = fscal*dx00;
205             ty               = fscal*dy00;
206             tz               = fscal*dz00;
207
208             /* Update vectorial force */
209             fix0            += tx;
210             fiy0            += ty;
211             fiz0            += tz;
212             f[j_coord_offset+DIM*0+XX] -= tx;
213             f[j_coord_offset+DIM*0+YY] -= ty;
214             f[j_coord_offset+DIM*0+ZZ] -= tz;
215
216             }
217
218             /* Inner loop uses 49 flops */
219         }
220         /* End of innermost loop */
221
222         tx = ty = tz = 0;
223         f[i_coord_offset+DIM*0+XX] += fix0;
224         f[i_coord_offset+DIM*0+YY] += fiy0;
225         f[i_coord_offset+DIM*0+ZZ] += fiz0;
226         tx                         += fix0;
227         ty                         += fiy0;
228         tz                         += fiz0;
229         fshift[i_shift_offset+XX]  += tx;
230         fshift[i_shift_offset+YY]  += ty;
231         fshift[i_shift_offset+ZZ]  += tz;
232
233         ggid                        = gid[iidx];
234         /* Update potential energies */
235         kernel_data->energygrp_elec[ggid] += velecsum;
236         kernel_data->energygrp_vdw[ggid] += vvdwsum;
237
238         /* Increment number of inner iterations */
239         inneriter                  += j_index_end - j_index_start;
240
241         /* Outer loop uses 15 flops */
242     }
243
244     /* Increment number of outer iterations */
245     outeriter        += nri;
246
247     /* Update outer/inner flops */
248
249     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*49);
250 }
251 /*
252  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_c
253  * Electrostatics interaction: ReactionField
254  * VdW interaction:            LennardJones
255  * Geometry:                   Particle-Particle
256  * Calculate force/pot:        Force
257  */
258 void
259 nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_c
260                     (t_nblist                    * gmx_restrict       nlist,
261                      rvec                        * gmx_restrict          xx,
262                      rvec                        * gmx_restrict          ff,
263                      t_forcerec                  * gmx_restrict          fr,
264                      t_mdatoms                   * gmx_restrict     mdatoms,
265                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
266                      t_nrnb                      * gmx_restrict        nrnb)
267 {
268     int              i_shift_offset,i_coord_offset,j_coord_offset;
269     int              j_index_start,j_index_end;
270     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
271     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
272     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
273     real             *shiftvec,*fshift,*x,*f;
274     int              vdwioffset0;
275     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
276     int              vdwjidx0;
277     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
278     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
279     real             velec,felec,velecsum,facel,crf,krf,krf2;
280     real             *charge;
281     int              nvdwtype;
282     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
283     int              *vdwtype;
284     real             *vdwparam;
285
286     x                = xx[0];
287     f                = ff[0];
288
289     nri              = nlist->nri;
290     iinr             = nlist->iinr;
291     jindex           = nlist->jindex;
292     jjnr             = nlist->jjnr;
293     shiftidx         = nlist->shift;
294     gid              = nlist->gid;
295     shiftvec         = fr->shift_vec[0];
296     fshift           = fr->fshift[0];
297     facel            = fr->epsfac;
298     charge           = mdatoms->chargeA;
299     krf              = fr->ic->k_rf;
300     krf2             = krf*2.0;
301     crf              = fr->ic->c_rf;
302     nvdwtype         = fr->ntype;
303     vdwparam         = fr->nbfp;
304     vdwtype          = mdatoms->typeA;
305
306     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
307     rcutoff          = fr->rcoulomb;
308     rcutoff2         = rcutoff*rcutoff;
309
310     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
311     rvdw             = fr->rvdw;
312
313     outeriter        = 0;
314     inneriter        = 0;
315
316     /* Start outer loop over neighborlists */
317     for(iidx=0; iidx<nri; iidx++)
318     {
319         /* Load shift vector for this list */
320         i_shift_offset   = DIM*shiftidx[iidx];
321         shX              = shiftvec[i_shift_offset+XX];
322         shY              = shiftvec[i_shift_offset+YY];
323         shZ              = shiftvec[i_shift_offset+ZZ];
324
325         /* Load limits for loop over neighbors */
326         j_index_start    = jindex[iidx];
327         j_index_end      = jindex[iidx+1];
328
329         /* Get outer coordinate index */
330         inr              = iinr[iidx];
331         i_coord_offset   = DIM*inr;
332
333         /* Load i particle coords and add shift vector */
334         ix0              = shX + x[i_coord_offset+DIM*0+XX];
335         iy0              = shY + x[i_coord_offset+DIM*0+YY];
336         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
337
338         fix0             = 0.0;
339         fiy0             = 0.0;
340         fiz0             = 0.0;
341
342         /* Load parameters for i particles */
343         iq0              = facel*charge[inr+0];
344         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
345
346         /* Start inner kernel loop */
347         for(jidx=j_index_start; jidx<j_index_end; jidx++)
348         {
349             /* Get j neighbor index, and coordinate index */
350             jnr              = jjnr[jidx];
351             j_coord_offset   = DIM*jnr;
352
353             /* load j atom coordinates */
354             jx0              = x[j_coord_offset+DIM*0+XX];
355             jy0              = x[j_coord_offset+DIM*0+YY];
356             jz0              = x[j_coord_offset+DIM*0+ZZ];
357
358             /* Calculate displacement vector */
359             dx00             = ix0 - jx0;
360             dy00             = iy0 - jy0;
361             dz00             = iz0 - jz0;
362
363             /* Calculate squared distance and things based on it */
364             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
365
366             rinv00           = gmx_invsqrt(rsq00);
367
368             rinvsq00         = rinv00*rinv00;
369
370             /* Load parameters for j particles */
371             jq0              = charge[jnr+0];
372             vdwjidx0         = 2*vdwtype[jnr+0];
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             if (rsq00<rcutoff2)
379             {
380
381             qq00             = iq0*jq0;
382             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
383             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
384
385             /* REACTION-FIELD ELECTROSTATICS */
386             felec            = qq00*(rinv00*rinvsq00-krf2);
387
388             /* LENNARD-JONES DISPERSION/REPULSION */
389
390             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
391             fvdw             = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
392
393             fscal            = felec+fvdw;
394
395             /* Calculate temporary vectorial force */
396             tx               = fscal*dx00;
397             ty               = fscal*dy00;
398             tz               = fscal*dz00;
399
400             /* Update vectorial force */
401             fix0            += tx;
402             fiy0            += ty;
403             fiz0            += tz;
404             f[j_coord_offset+DIM*0+XX] -= tx;
405             f[j_coord_offset+DIM*0+YY] -= ty;
406             f[j_coord_offset+DIM*0+ZZ] -= tz;
407
408             }
409
410             /* Inner loop uses 34 flops */
411         }
412         /* End of innermost loop */
413
414         tx = ty = tz = 0;
415         f[i_coord_offset+DIM*0+XX] += fix0;
416         f[i_coord_offset+DIM*0+YY] += fiy0;
417         f[i_coord_offset+DIM*0+ZZ] += fiz0;
418         tx                         += fix0;
419         ty                         += fiy0;
420         tz                         += fiz0;
421         fshift[i_shift_offset+XX]  += tx;
422         fshift[i_shift_offset+YY]  += ty;
423         fshift[i_shift_offset+ZZ]  += tz;
424
425         /* Increment number of inner iterations */
426         inneriter                  += j_index_end - j_index_start;
427
428         /* Outer loop uses 13 flops */
429     }
430
431     /* Increment number of outer iterations */
432     outeriter        += nri;
433
434     /* Update outer/inner flops */
435
436     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*34);
437 }