Merge 'release-4-6' into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwCSTab_GeomW4W4_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4W4_VF_c
35  * Electrostatics interaction: ReactionField
36  * VdW interaction:            CubicSplineTable
37  * Geometry:                   Water4-Water4
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecRFCut_VdwCSTab_GeomW4W4_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwioffset1;
59     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
60     int              vdwioffset2;
61     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
62     int              vdwioffset3;
63     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
64     int              vdwjidx0;
65     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
66     int              vdwjidx1;
67     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
68     int              vdwjidx2;
69     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
70     int              vdwjidx3;
71     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
72     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
73     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
74     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
75     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
76     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
77     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
78     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
79     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
80     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
81     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
82     real             velec,felec,velecsum,facel,crf,krf,krf2;
83     real             *charge;
84     int              nvdwtype;
85     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
86     int              *vdwtype;
87     real             *vdwparam;
88     int              vfitab;
89     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
90     real             *vftab;
91
92     x                = xx[0];
93     f                = ff[0];
94
95     nri              = nlist->nri;
96     iinr             = nlist->iinr;
97     jindex           = nlist->jindex;
98     jjnr             = nlist->jjnr;
99     shiftidx         = nlist->shift;
100     gid              = nlist->gid;
101     shiftvec         = fr->shift_vec[0];
102     fshift           = fr->fshift[0];
103     facel            = fr->epsfac;
104     charge           = mdatoms->chargeA;
105     krf              = fr->ic->k_rf;
106     krf2             = krf*2.0;
107     crf              = fr->ic->c_rf;
108     nvdwtype         = fr->ntype;
109     vdwparam         = fr->nbfp;
110     vdwtype          = mdatoms->typeA;
111
112     vftab            = kernel_data->table_vdw->data;
113     vftabscale       = kernel_data->table_vdw->scale;
114
115     /* Setup water-specific parameters */
116     inr              = nlist->iinr[0];
117     iq1              = facel*charge[inr+1];
118     iq2              = facel*charge[inr+2];
119     iq3              = facel*charge[inr+3];
120     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
121
122     jq1              = charge[inr+1];
123     jq2              = charge[inr+2];
124     jq3              = charge[inr+3];
125     vdwjidx0         = 2*vdwtype[inr+0];
126     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
127     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
128     qq11             = iq1*jq1;
129     qq12             = iq1*jq2;
130     qq13             = iq1*jq3;
131     qq21             = iq2*jq1;
132     qq22             = iq2*jq2;
133     qq23             = iq2*jq3;
134     qq31             = iq3*jq1;
135     qq32             = iq3*jq2;
136     qq33             = iq3*jq3;
137
138     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
139     rcutoff          = fr->rcoulomb;
140     rcutoff2         = rcutoff*rcutoff;
141
142     outeriter        = 0;
143     inneriter        = 0;
144
145     /* Start outer loop over neighborlists */
146     for(iidx=0; iidx<nri; iidx++)
147     {
148         /* Load shift vector for this list */
149         i_shift_offset   = DIM*shiftidx[iidx];
150         shX              = shiftvec[i_shift_offset+XX];
151         shY              = shiftvec[i_shift_offset+YY];
152         shZ              = shiftvec[i_shift_offset+ZZ];
153
154         /* Load limits for loop over neighbors */
155         j_index_start    = jindex[iidx];
156         j_index_end      = jindex[iidx+1];
157
158         /* Get outer coordinate index */
159         inr              = iinr[iidx];
160         i_coord_offset   = DIM*inr;
161
162         /* Load i particle coords and add shift vector */
163         ix0              = shX + x[i_coord_offset+DIM*0+XX];
164         iy0              = shY + x[i_coord_offset+DIM*0+YY];
165         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
166         ix1              = shX + x[i_coord_offset+DIM*1+XX];
167         iy1              = shY + x[i_coord_offset+DIM*1+YY];
168         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
169         ix2              = shX + x[i_coord_offset+DIM*2+XX];
170         iy2              = shY + x[i_coord_offset+DIM*2+YY];
171         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
172         ix3              = shX + x[i_coord_offset+DIM*3+XX];
173         iy3              = shY + x[i_coord_offset+DIM*3+YY];
174         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
175
176         fix0             = 0.0;
177         fiy0             = 0.0;
178         fiz0             = 0.0;
179         fix1             = 0.0;
180         fiy1             = 0.0;
181         fiz1             = 0.0;
182         fix2             = 0.0;
183         fiy2             = 0.0;
184         fiz2             = 0.0;
185         fix3             = 0.0;
186         fiy3             = 0.0;
187         fiz3             = 0.0;
188
189         /* Reset potential sums */
190         velecsum         = 0.0;
191         vvdwsum          = 0.0;
192
193         /* Start inner kernel loop */
194         for(jidx=j_index_start; jidx<j_index_end; jidx++)
195         {
196             /* Get j neighbor index, and coordinate index */
197             jnr              = jjnr[jidx];
198             j_coord_offset   = DIM*jnr;
199
200             /* load j atom coordinates */
201             jx0              = x[j_coord_offset+DIM*0+XX];
202             jy0              = x[j_coord_offset+DIM*0+YY];
203             jz0              = x[j_coord_offset+DIM*0+ZZ];
204             jx1              = x[j_coord_offset+DIM*1+XX];
205             jy1              = x[j_coord_offset+DIM*1+YY];
206             jz1              = x[j_coord_offset+DIM*1+ZZ];
207             jx2              = x[j_coord_offset+DIM*2+XX];
208             jy2              = x[j_coord_offset+DIM*2+YY];
209             jz2              = x[j_coord_offset+DIM*2+ZZ];
210             jx3              = x[j_coord_offset+DIM*3+XX];
211             jy3              = x[j_coord_offset+DIM*3+YY];
212             jz3              = x[j_coord_offset+DIM*3+ZZ];
213
214             /* Calculate displacement vector */
215             dx00             = ix0 - jx0;
216             dy00             = iy0 - jy0;
217             dz00             = iz0 - jz0;
218             dx11             = ix1 - jx1;
219             dy11             = iy1 - jy1;
220             dz11             = iz1 - jz1;
221             dx12             = ix1 - jx2;
222             dy12             = iy1 - jy2;
223             dz12             = iz1 - jz2;
224             dx13             = ix1 - jx3;
225             dy13             = iy1 - jy3;
226             dz13             = iz1 - jz3;
227             dx21             = ix2 - jx1;
228             dy21             = iy2 - jy1;
229             dz21             = iz2 - jz1;
230             dx22             = ix2 - jx2;
231             dy22             = iy2 - jy2;
232             dz22             = iz2 - jz2;
233             dx23             = ix2 - jx3;
234             dy23             = iy2 - jy3;
235             dz23             = iz2 - jz3;
236             dx31             = ix3 - jx1;
237             dy31             = iy3 - jy1;
238             dz31             = iz3 - jz1;
239             dx32             = ix3 - jx2;
240             dy32             = iy3 - jy2;
241             dz32             = iz3 - jz2;
242             dx33             = ix3 - jx3;
243             dy33             = iy3 - jy3;
244             dz33             = iz3 - jz3;
245
246             /* Calculate squared distance and things based on it */
247             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
248             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
249             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
250             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
251             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
252             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
253             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
254             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
255             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
256             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
257
258             rinv00           = gmx_invsqrt(rsq00);
259             rinv11           = gmx_invsqrt(rsq11);
260             rinv12           = gmx_invsqrt(rsq12);
261             rinv13           = gmx_invsqrt(rsq13);
262             rinv21           = gmx_invsqrt(rsq21);
263             rinv22           = gmx_invsqrt(rsq22);
264             rinv23           = gmx_invsqrt(rsq23);
265             rinv31           = gmx_invsqrt(rsq31);
266             rinv32           = gmx_invsqrt(rsq32);
267             rinv33           = gmx_invsqrt(rsq33);
268
269             rinvsq11         = rinv11*rinv11;
270             rinvsq12         = rinv12*rinv12;
271             rinvsq13         = rinv13*rinv13;
272             rinvsq21         = rinv21*rinv21;
273             rinvsq22         = rinv22*rinv22;
274             rinvsq23         = rinv23*rinv23;
275             rinvsq31         = rinv31*rinv31;
276             rinvsq32         = rinv32*rinv32;
277             rinvsq33         = rinv33*rinv33;
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             r00              = rsq00*rinv00;
284
285             /* Calculate table index by multiplying r with table scale and truncate to integer */
286             rt               = r00*vftabscale;
287             vfitab           = rt;
288             vfeps            = rt-vfitab;
289             vfitab           = 2*4*vfitab;
290
291             /* CUBIC SPLINE TABLE DISPERSION */
292             vfitab          += 0;
293             Y                = vftab[vfitab];
294             F                = vftab[vfitab+1];
295             Geps             = vfeps*vftab[vfitab+2];
296             Heps2            = vfeps*vfeps*vftab[vfitab+3];
297             Fp               = F+Geps+Heps2;
298             VV               = Y+vfeps*Fp;
299             vvdw6            = c6_00*VV;
300             FF               = Fp+Geps+2.0*Heps2;
301             fvdw6            = c6_00*FF;
302
303             /* CUBIC SPLINE TABLE REPULSION */
304             Y                = vftab[vfitab+4];
305             F                = vftab[vfitab+5];
306             Geps             = vfeps*vftab[vfitab+6];
307             Heps2            = vfeps*vfeps*vftab[vfitab+7];
308             Fp               = F+Geps+Heps2;
309             VV               = Y+vfeps*Fp;
310             vvdw12           = c12_00*VV;
311             FF               = Fp+Geps+2.0*Heps2;
312             fvdw12           = c12_00*FF;
313             vvdw             = vvdw12+vvdw6;
314             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
315
316             /* Update potential sums from outer loop */
317             vvdwsum         += vvdw;
318
319             fscal            = fvdw;
320
321             /* Calculate temporary vectorial force */
322             tx               = fscal*dx00;
323             ty               = fscal*dy00;
324             tz               = fscal*dz00;
325
326             /* Update vectorial force */
327             fix0            += tx;
328             fiy0            += ty;
329             fiz0            += tz;
330             f[j_coord_offset+DIM*0+XX] -= tx;
331             f[j_coord_offset+DIM*0+YY] -= ty;
332             f[j_coord_offset+DIM*0+ZZ] -= tz;
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             if (rsq11<rcutoff2)
339             {
340
341             /* REACTION-FIELD ELECTROSTATICS */
342             velec            = qq11*(rinv11+krf*rsq11-crf);
343             felec            = qq11*(rinv11*rinvsq11-krf2);
344
345             /* Update potential sums from outer loop */
346             velecsum        += velec;
347
348             fscal            = felec;
349
350             /* Calculate temporary vectorial force */
351             tx               = fscal*dx11;
352             ty               = fscal*dy11;
353             tz               = fscal*dz11;
354
355             /* Update vectorial force */
356             fix1            += tx;
357             fiy1            += ty;
358             fiz1            += tz;
359             f[j_coord_offset+DIM*1+XX] -= tx;
360             f[j_coord_offset+DIM*1+YY] -= ty;
361             f[j_coord_offset+DIM*1+ZZ] -= tz;
362
363             }
364
365             /**************************
366              * CALCULATE INTERACTIONS *
367              **************************/
368
369             if (rsq12<rcutoff2)
370             {
371
372             /* REACTION-FIELD ELECTROSTATICS */
373             velec            = qq12*(rinv12+krf*rsq12-crf);
374             felec            = qq12*(rinv12*rinvsq12-krf2);
375
376             /* Update potential sums from outer loop */
377             velecsum        += velec;
378
379             fscal            = felec;
380
381             /* Calculate temporary vectorial force */
382             tx               = fscal*dx12;
383             ty               = fscal*dy12;
384             tz               = fscal*dz12;
385
386             /* Update vectorial force */
387             fix1            += tx;
388             fiy1            += ty;
389             fiz1            += tz;
390             f[j_coord_offset+DIM*2+XX] -= tx;
391             f[j_coord_offset+DIM*2+YY] -= ty;
392             f[j_coord_offset+DIM*2+ZZ] -= tz;
393
394             }
395
396             /**************************
397              * CALCULATE INTERACTIONS *
398              **************************/
399
400             if (rsq13<rcutoff2)
401             {
402
403             /* REACTION-FIELD ELECTROSTATICS */
404             velec            = qq13*(rinv13+krf*rsq13-crf);
405             felec            = qq13*(rinv13*rinvsq13-krf2);
406
407             /* Update potential sums from outer loop */
408             velecsum        += velec;
409
410             fscal            = felec;
411
412             /* Calculate temporary vectorial force */
413             tx               = fscal*dx13;
414             ty               = fscal*dy13;
415             tz               = fscal*dz13;
416
417             /* Update vectorial force */
418             fix1            += tx;
419             fiy1            += ty;
420             fiz1            += tz;
421             f[j_coord_offset+DIM*3+XX] -= tx;
422             f[j_coord_offset+DIM*3+YY] -= ty;
423             f[j_coord_offset+DIM*3+ZZ] -= tz;
424
425             }
426
427             /**************************
428              * CALCULATE INTERACTIONS *
429              **************************/
430
431             if (rsq21<rcutoff2)
432             {
433
434             /* REACTION-FIELD ELECTROSTATICS */
435             velec            = qq21*(rinv21+krf*rsq21-crf);
436             felec            = qq21*(rinv21*rinvsq21-krf2);
437
438             /* Update potential sums from outer loop */
439             velecsum        += velec;
440
441             fscal            = felec;
442
443             /* Calculate temporary vectorial force */
444             tx               = fscal*dx21;
445             ty               = fscal*dy21;
446             tz               = fscal*dz21;
447
448             /* Update vectorial force */
449             fix2            += tx;
450             fiy2            += ty;
451             fiz2            += tz;
452             f[j_coord_offset+DIM*1+XX] -= tx;
453             f[j_coord_offset+DIM*1+YY] -= ty;
454             f[j_coord_offset+DIM*1+ZZ] -= tz;
455
456             }
457
458             /**************************
459              * CALCULATE INTERACTIONS *
460              **************************/
461
462             if (rsq22<rcutoff2)
463             {
464
465             /* REACTION-FIELD ELECTROSTATICS */
466             velec            = qq22*(rinv22+krf*rsq22-crf);
467             felec            = qq22*(rinv22*rinvsq22-krf2);
468
469             /* Update potential sums from outer loop */
470             velecsum        += velec;
471
472             fscal            = felec;
473
474             /* Calculate temporary vectorial force */
475             tx               = fscal*dx22;
476             ty               = fscal*dy22;
477             tz               = fscal*dz22;
478
479             /* Update vectorial force */
480             fix2            += tx;
481             fiy2            += ty;
482             fiz2            += tz;
483             f[j_coord_offset+DIM*2+XX] -= tx;
484             f[j_coord_offset+DIM*2+YY] -= ty;
485             f[j_coord_offset+DIM*2+ZZ] -= tz;
486
487             }
488
489             /**************************
490              * CALCULATE INTERACTIONS *
491              **************************/
492
493             if (rsq23<rcutoff2)
494             {
495
496             /* REACTION-FIELD ELECTROSTATICS */
497             velec            = qq23*(rinv23+krf*rsq23-crf);
498             felec            = qq23*(rinv23*rinvsq23-krf2);
499
500             /* Update potential sums from outer loop */
501             velecsum        += velec;
502
503             fscal            = felec;
504
505             /* Calculate temporary vectorial force */
506             tx               = fscal*dx23;
507             ty               = fscal*dy23;
508             tz               = fscal*dz23;
509
510             /* Update vectorial force */
511             fix2            += tx;
512             fiy2            += ty;
513             fiz2            += tz;
514             f[j_coord_offset+DIM*3+XX] -= tx;
515             f[j_coord_offset+DIM*3+YY] -= ty;
516             f[j_coord_offset+DIM*3+ZZ] -= tz;
517
518             }
519
520             /**************************
521              * CALCULATE INTERACTIONS *
522              **************************/
523
524             if (rsq31<rcutoff2)
525             {
526
527             /* REACTION-FIELD ELECTROSTATICS */
528             velec            = qq31*(rinv31+krf*rsq31-crf);
529             felec            = qq31*(rinv31*rinvsq31-krf2);
530
531             /* Update potential sums from outer loop */
532             velecsum        += velec;
533
534             fscal            = felec;
535
536             /* Calculate temporary vectorial force */
537             tx               = fscal*dx31;
538             ty               = fscal*dy31;
539             tz               = fscal*dz31;
540
541             /* Update vectorial force */
542             fix3            += tx;
543             fiy3            += ty;
544             fiz3            += tz;
545             f[j_coord_offset+DIM*1+XX] -= tx;
546             f[j_coord_offset+DIM*1+YY] -= ty;
547             f[j_coord_offset+DIM*1+ZZ] -= tz;
548
549             }
550
551             /**************************
552              * CALCULATE INTERACTIONS *
553              **************************/
554
555             if (rsq32<rcutoff2)
556             {
557
558             /* REACTION-FIELD ELECTROSTATICS */
559             velec            = qq32*(rinv32+krf*rsq32-crf);
560             felec            = qq32*(rinv32*rinvsq32-krf2);
561
562             /* Update potential sums from outer loop */
563             velecsum        += velec;
564
565             fscal            = felec;
566
567             /* Calculate temporary vectorial force */
568             tx               = fscal*dx32;
569             ty               = fscal*dy32;
570             tz               = fscal*dz32;
571
572             /* Update vectorial force */
573             fix3            += tx;
574             fiy3            += ty;
575             fiz3            += tz;
576             f[j_coord_offset+DIM*2+XX] -= tx;
577             f[j_coord_offset+DIM*2+YY] -= ty;
578             f[j_coord_offset+DIM*2+ZZ] -= tz;
579
580             }
581
582             /**************************
583              * CALCULATE INTERACTIONS *
584              **************************/
585
586             if (rsq33<rcutoff2)
587             {
588
589             /* REACTION-FIELD ELECTROSTATICS */
590             velec            = qq33*(rinv33+krf*rsq33-crf);
591             felec            = qq33*(rinv33*rinvsq33-krf2);
592
593             /* Update potential sums from outer loop */
594             velecsum        += velec;
595
596             fscal            = felec;
597
598             /* Calculate temporary vectorial force */
599             tx               = fscal*dx33;
600             ty               = fscal*dy33;
601             tz               = fscal*dz33;
602
603             /* Update vectorial force */
604             fix3            += tx;
605             fiy3            += ty;
606             fiz3            += tz;
607             f[j_coord_offset+DIM*3+XX] -= tx;
608             f[j_coord_offset+DIM*3+YY] -= ty;
609             f[j_coord_offset+DIM*3+ZZ] -= tz;
610
611             }
612
613             /* Inner loop uses 334 flops */
614         }
615         /* End of innermost loop */
616
617         tx = ty = tz = 0;
618         f[i_coord_offset+DIM*0+XX] += fix0;
619         f[i_coord_offset+DIM*0+YY] += fiy0;
620         f[i_coord_offset+DIM*0+ZZ] += fiz0;
621         tx                         += fix0;
622         ty                         += fiy0;
623         tz                         += fiz0;
624         f[i_coord_offset+DIM*1+XX] += fix1;
625         f[i_coord_offset+DIM*1+YY] += fiy1;
626         f[i_coord_offset+DIM*1+ZZ] += fiz1;
627         tx                         += fix1;
628         ty                         += fiy1;
629         tz                         += fiz1;
630         f[i_coord_offset+DIM*2+XX] += fix2;
631         f[i_coord_offset+DIM*2+YY] += fiy2;
632         f[i_coord_offset+DIM*2+ZZ] += fiz2;
633         tx                         += fix2;
634         ty                         += fiy2;
635         tz                         += fiz2;
636         f[i_coord_offset+DIM*3+XX] += fix3;
637         f[i_coord_offset+DIM*3+YY] += fiy3;
638         f[i_coord_offset+DIM*3+ZZ] += fiz3;
639         tx                         += fix3;
640         ty                         += fiy3;
641         tz                         += fiz3;
642         fshift[i_shift_offset+XX]  += tx;
643         fshift[i_shift_offset+YY]  += ty;
644         fshift[i_shift_offset+ZZ]  += tz;
645
646         ggid                        = gid[iidx];
647         /* Update potential energies */
648         kernel_data->energygrp_elec[ggid] += velecsum;
649         kernel_data->energygrp_vdw[ggid] += vvdwsum;
650
651         /* Increment number of inner iterations */
652         inneriter                  += j_index_end - j_index_start;
653
654         /* Outer loop uses 41 flops */
655     }
656
657     /* Increment number of outer iterations */
658     outeriter        += nri;
659
660     /* Update outer/inner flops */
661
662     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*334);
663 }
664 /*
665  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4W4_F_c
666  * Electrostatics interaction: ReactionField
667  * VdW interaction:            CubicSplineTable
668  * Geometry:                   Water4-Water4
669  * Calculate force/pot:        Force
670  */
671 void
672 nb_kernel_ElecRFCut_VdwCSTab_GeomW4W4_F_c
673                     (t_nblist * gmx_restrict                nlist,
674                      rvec * gmx_restrict                    xx,
675                      rvec * gmx_restrict                    ff,
676                      t_forcerec * gmx_restrict              fr,
677                      t_mdatoms * gmx_restrict               mdatoms,
678                      nb_kernel_data_t * gmx_restrict        kernel_data,
679                      t_nrnb * gmx_restrict                  nrnb)
680 {
681     int              i_shift_offset,i_coord_offset,j_coord_offset;
682     int              j_index_start,j_index_end;
683     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
684     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
685     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
686     real             *shiftvec,*fshift,*x,*f;
687     int              vdwioffset0;
688     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
689     int              vdwioffset1;
690     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
691     int              vdwioffset2;
692     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
693     int              vdwioffset3;
694     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
695     int              vdwjidx0;
696     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
697     int              vdwjidx1;
698     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
699     int              vdwjidx2;
700     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
701     int              vdwjidx3;
702     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
703     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
704     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
705     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
706     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
707     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
708     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
709     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
710     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
711     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
712     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
713     real             velec,felec,velecsum,facel,crf,krf,krf2;
714     real             *charge;
715     int              nvdwtype;
716     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
717     int              *vdwtype;
718     real             *vdwparam;
719     int              vfitab;
720     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
721     real             *vftab;
722
723     x                = xx[0];
724     f                = ff[0];
725
726     nri              = nlist->nri;
727     iinr             = nlist->iinr;
728     jindex           = nlist->jindex;
729     jjnr             = nlist->jjnr;
730     shiftidx         = nlist->shift;
731     gid              = nlist->gid;
732     shiftvec         = fr->shift_vec[0];
733     fshift           = fr->fshift[0];
734     facel            = fr->epsfac;
735     charge           = mdatoms->chargeA;
736     krf              = fr->ic->k_rf;
737     krf2             = krf*2.0;
738     crf              = fr->ic->c_rf;
739     nvdwtype         = fr->ntype;
740     vdwparam         = fr->nbfp;
741     vdwtype          = mdatoms->typeA;
742
743     vftab            = kernel_data->table_vdw->data;
744     vftabscale       = kernel_data->table_vdw->scale;
745
746     /* Setup water-specific parameters */
747     inr              = nlist->iinr[0];
748     iq1              = facel*charge[inr+1];
749     iq2              = facel*charge[inr+2];
750     iq3              = facel*charge[inr+3];
751     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
752
753     jq1              = charge[inr+1];
754     jq2              = charge[inr+2];
755     jq3              = charge[inr+3];
756     vdwjidx0         = 2*vdwtype[inr+0];
757     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
758     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
759     qq11             = iq1*jq1;
760     qq12             = iq1*jq2;
761     qq13             = iq1*jq3;
762     qq21             = iq2*jq1;
763     qq22             = iq2*jq2;
764     qq23             = iq2*jq3;
765     qq31             = iq3*jq1;
766     qq32             = iq3*jq2;
767     qq33             = iq3*jq3;
768
769     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
770     rcutoff          = fr->rcoulomb;
771     rcutoff2         = rcutoff*rcutoff;
772
773     outeriter        = 0;
774     inneriter        = 0;
775
776     /* Start outer loop over neighborlists */
777     for(iidx=0; iidx<nri; iidx++)
778     {
779         /* Load shift vector for this list */
780         i_shift_offset   = DIM*shiftidx[iidx];
781         shX              = shiftvec[i_shift_offset+XX];
782         shY              = shiftvec[i_shift_offset+YY];
783         shZ              = shiftvec[i_shift_offset+ZZ];
784
785         /* Load limits for loop over neighbors */
786         j_index_start    = jindex[iidx];
787         j_index_end      = jindex[iidx+1];
788
789         /* Get outer coordinate index */
790         inr              = iinr[iidx];
791         i_coord_offset   = DIM*inr;
792
793         /* Load i particle coords and add shift vector */
794         ix0              = shX + x[i_coord_offset+DIM*0+XX];
795         iy0              = shY + x[i_coord_offset+DIM*0+YY];
796         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
797         ix1              = shX + x[i_coord_offset+DIM*1+XX];
798         iy1              = shY + x[i_coord_offset+DIM*1+YY];
799         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
800         ix2              = shX + x[i_coord_offset+DIM*2+XX];
801         iy2              = shY + x[i_coord_offset+DIM*2+YY];
802         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
803         ix3              = shX + x[i_coord_offset+DIM*3+XX];
804         iy3              = shY + x[i_coord_offset+DIM*3+YY];
805         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
806
807         fix0             = 0.0;
808         fiy0             = 0.0;
809         fiz0             = 0.0;
810         fix1             = 0.0;
811         fiy1             = 0.0;
812         fiz1             = 0.0;
813         fix2             = 0.0;
814         fiy2             = 0.0;
815         fiz2             = 0.0;
816         fix3             = 0.0;
817         fiy3             = 0.0;
818         fiz3             = 0.0;
819
820         /* Start inner kernel loop */
821         for(jidx=j_index_start; jidx<j_index_end; jidx++)
822         {
823             /* Get j neighbor index, and coordinate index */
824             jnr              = jjnr[jidx];
825             j_coord_offset   = DIM*jnr;
826
827             /* load j atom coordinates */
828             jx0              = x[j_coord_offset+DIM*0+XX];
829             jy0              = x[j_coord_offset+DIM*0+YY];
830             jz0              = x[j_coord_offset+DIM*0+ZZ];
831             jx1              = x[j_coord_offset+DIM*1+XX];
832             jy1              = x[j_coord_offset+DIM*1+YY];
833             jz1              = x[j_coord_offset+DIM*1+ZZ];
834             jx2              = x[j_coord_offset+DIM*2+XX];
835             jy2              = x[j_coord_offset+DIM*2+YY];
836             jz2              = x[j_coord_offset+DIM*2+ZZ];
837             jx3              = x[j_coord_offset+DIM*3+XX];
838             jy3              = x[j_coord_offset+DIM*3+YY];
839             jz3              = x[j_coord_offset+DIM*3+ZZ];
840
841             /* Calculate displacement vector */
842             dx00             = ix0 - jx0;
843             dy00             = iy0 - jy0;
844             dz00             = iz0 - jz0;
845             dx11             = ix1 - jx1;
846             dy11             = iy1 - jy1;
847             dz11             = iz1 - jz1;
848             dx12             = ix1 - jx2;
849             dy12             = iy1 - jy2;
850             dz12             = iz1 - jz2;
851             dx13             = ix1 - jx3;
852             dy13             = iy1 - jy3;
853             dz13             = iz1 - jz3;
854             dx21             = ix2 - jx1;
855             dy21             = iy2 - jy1;
856             dz21             = iz2 - jz1;
857             dx22             = ix2 - jx2;
858             dy22             = iy2 - jy2;
859             dz22             = iz2 - jz2;
860             dx23             = ix2 - jx3;
861             dy23             = iy2 - jy3;
862             dz23             = iz2 - jz3;
863             dx31             = ix3 - jx1;
864             dy31             = iy3 - jy1;
865             dz31             = iz3 - jz1;
866             dx32             = ix3 - jx2;
867             dy32             = iy3 - jy2;
868             dz32             = iz3 - jz2;
869             dx33             = ix3 - jx3;
870             dy33             = iy3 - jy3;
871             dz33             = iz3 - jz3;
872
873             /* Calculate squared distance and things based on it */
874             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
875             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
876             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
877             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
878             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
879             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
880             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
881             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
882             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
883             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
884
885             rinv00           = gmx_invsqrt(rsq00);
886             rinv11           = gmx_invsqrt(rsq11);
887             rinv12           = gmx_invsqrt(rsq12);
888             rinv13           = gmx_invsqrt(rsq13);
889             rinv21           = gmx_invsqrt(rsq21);
890             rinv22           = gmx_invsqrt(rsq22);
891             rinv23           = gmx_invsqrt(rsq23);
892             rinv31           = gmx_invsqrt(rsq31);
893             rinv32           = gmx_invsqrt(rsq32);
894             rinv33           = gmx_invsqrt(rsq33);
895
896             rinvsq11         = rinv11*rinv11;
897             rinvsq12         = rinv12*rinv12;
898             rinvsq13         = rinv13*rinv13;
899             rinvsq21         = rinv21*rinv21;
900             rinvsq22         = rinv22*rinv22;
901             rinvsq23         = rinv23*rinv23;
902             rinvsq31         = rinv31*rinv31;
903             rinvsq32         = rinv32*rinv32;
904             rinvsq33         = rinv33*rinv33;
905
906             /**************************
907              * CALCULATE INTERACTIONS *
908              **************************/
909
910             r00              = rsq00*rinv00;
911
912             /* Calculate table index by multiplying r with table scale and truncate to integer */
913             rt               = r00*vftabscale;
914             vfitab           = rt;
915             vfeps            = rt-vfitab;
916             vfitab           = 2*4*vfitab;
917
918             /* CUBIC SPLINE TABLE DISPERSION */
919             vfitab          += 0;
920             F                = vftab[vfitab+1];
921             Geps             = vfeps*vftab[vfitab+2];
922             Heps2            = vfeps*vfeps*vftab[vfitab+3];
923             Fp               = F+Geps+Heps2;
924             FF               = Fp+Geps+2.0*Heps2;
925             fvdw6            = c6_00*FF;
926
927             /* CUBIC SPLINE TABLE REPULSION */
928             F                = vftab[vfitab+5];
929             Geps             = vfeps*vftab[vfitab+6];
930             Heps2            = vfeps*vfeps*vftab[vfitab+7];
931             Fp               = F+Geps+Heps2;
932             FF               = Fp+Geps+2.0*Heps2;
933             fvdw12           = c12_00*FF;
934             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
935
936             fscal            = fvdw;
937
938             /* Calculate temporary vectorial force */
939             tx               = fscal*dx00;
940             ty               = fscal*dy00;
941             tz               = fscal*dz00;
942
943             /* Update vectorial force */
944             fix0            += tx;
945             fiy0            += ty;
946             fiz0            += tz;
947             f[j_coord_offset+DIM*0+XX] -= tx;
948             f[j_coord_offset+DIM*0+YY] -= ty;
949             f[j_coord_offset+DIM*0+ZZ] -= tz;
950
951             /**************************
952              * CALCULATE INTERACTIONS *
953              **************************/
954
955             if (rsq11<rcutoff2)
956             {
957
958             /* REACTION-FIELD ELECTROSTATICS */
959             felec            = qq11*(rinv11*rinvsq11-krf2);
960
961             fscal            = felec;
962
963             /* Calculate temporary vectorial force */
964             tx               = fscal*dx11;
965             ty               = fscal*dy11;
966             tz               = fscal*dz11;
967
968             /* Update vectorial force */
969             fix1            += tx;
970             fiy1            += ty;
971             fiz1            += tz;
972             f[j_coord_offset+DIM*1+XX] -= tx;
973             f[j_coord_offset+DIM*1+YY] -= ty;
974             f[j_coord_offset+DIM*1+ZZ] -= tz;
975
976             }
977
978             /**************************
979              * CALCULATE INTERACTIONS *
980              **************************/
981
982             if (rsq12<rcutoff2)
983             {
984
985             /* REACTION-FIELD ELECTROSTATICS */
986             felec            = qq12*(rinv12*rinvsq12-krf2);
987
988             fscal            = felec;
989
990             /* Calculate temporary vectorial force */
991             tx               = fscal*dx12;
992             ty               = fscal*dy12;
993             tz               = fscal*dz12;
994
995             /* Update vectorial force */
996             fix1            += tx;
997             fiy1            += ty;
998             fiz1            += tz;
999             f[j_coord_offset+DIM*2+XX] -= tx;
1000             f[j_coord_offset+DIM*2+YY] -= ty;
1001             f[j_coord_offset+DIM*2+ZZ] -= tz;
1002
1003             }
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             if (rsq13<rcutoff2)
1010             {
1011
1012             /* REACTION-FIELD ELECTROSTATICS */
1013             felec            = qq13*(rinv13*rinvsq13-krf2);
1014
1015             fscal            = felec;
1016
1017             /* Calculate temporary vectorial force */
1018             tx               = fscal*dx13;
1019             ty               = fscal*dy13;
1020             tz               = fscal*dz13;
1021
1022             /* Update vectorial force */
1023             fix1            += tx;
1024             fiy1            += ty;
1025             fiz1            += tz;
1026             f[j_coord_offset+DIM*3+XX] -= tx;
1027             f[j_coord_offset+DIM*3+YY] -= ty;
1028             f[j_coord_offset+DIM*3+ZZ] -= tz;
1029
1030             }
1031
1032             /**************************
1033              * CALCULATE INTERACTIONS *
1034              **************************/
1035
1036             if (rsq21<rcutoff2)
1037             {
1038
1039             /* REACTION-FIELD ELECTROSTATICS */
1040             felec            = qq21*(rinv21*rinvsq21-krf2);
1041
1042             fscal            = felec;
1043
1044             /* Calculate temporary vectorial force */
1045             tx               = fscal*dx21;
1046             ty               = fscal*dy21;
1047             tz               = fscal*dz21;
1048
1049             /* Update vectorial force */
1050             fix2            += tx;
1051             fiy2            += ty;
1052             fiz2            += tz;
1053             f[j_coord_offset+DIM*1+XX] -= tx;
1054             f[j_coord_offset+DIM*1+YY] -= ty;
1055             f[j_coord_offset+DIM*1+ZZ] -= tz;
1056
1057             }
1058
1059             /**************************
1060              * CALCULATE INTERACTIONS *
1061              **************************/
1062
1063             if (rsq22<rcutoff2)
1064             {
1065
1066             /* REACTION-FIELD ELECTROSTATICS */
1067             felec            = qq22*(rinv22*rinvsq22-krf2);
1068
1069             fscal            = felec;
1070
1071             /* Calculate temporary vectorial force */
1072             tx               = fscal*dx22;
1073             ty               = fscal*dy22;
1074             tz               = fscal*dz22;
1075
1076             /* Update vectorial force */
1077             fix2            += tx;
1078             fiy2            += ty;
1079             fiz2            += tz;
1080             f[j_coord_offset+DIM*2+XX] -= tx;
1081             f[j_coord_offset+DIM*2+YY] -= ty;
1082             f[j_coord_offset+DIM*2+ZZ] -= tz;
1083
1084             }
1085
1086             /**************************
1087              * CALCULATE INTERACTIONS *
1088              **************************/
1089
1090             if (rsq23<rcutoff2)
1091             {
1092
1093             /* REACTION-FIELD ELECTROSTATICS */
1094             felec            = qq23*(rinv23*rinvsq23-krf2);
1095
1096             fscal            = felec;
1097
1098             /* Calculate temporary vectorial force */
1099             tx               = fscal*dx23;
1100             ty               = fscal*dy23;
1101             tz               = fscal*dz23;
1102
1103             /* Update vectorial force */
1104             fix2            += tx;
1105             fiy2            += ty;
1106             fiz2            += tz;
1107             f[j_coord_offset+DIM*3+XX] -= tx;
1108             f[j_coord_offset+DIM*3+YY] -= ty;
1109             f[j_coord_offset+DIM*3+ZZ] -= tz;
1110
1111             }
1112
1113             /**************************
1114              * CALCULATE INTERACTIONS *
1115              **************************/
1116
1117             if (rsq31<rcutoff2)
1118             {
1119
1120             /* REACTION-FIELD ELECTROSTATICS */
1121             felec            = qq31*(rinv31*rinvsq31-krf2);
1122
1123             fscal            = felec;
1124
1125             /* Calculate temporary vectorial force */
1126             tx               = fscal*dx31;
1127             ty               = fscal*dy31;
1128             tz               = fscal*dz31;
1129
1130             /* Update vectorial force */
1131             fix3            += tx;
1132             fiy3            += ty;
1133             fiz3            += tz;
1134             f[j_coord_offset+DIM*1+XX] -= tx;
1135             f[j_coord_offset+DIM*1+YY] -= ty;
1136             f[j_coord_offset+DIM*1+ZZ] -= tz;
1137
1138             }
1139
1140             /**************************
1141              * CALCULATE INTERACTIONS *
1142              **************************/
1143
1144             if (rsq32<rcutoff2)
1145             {
1146
1147             /* REACTION-FIELD ELECTROSTATICS */
1148             felec            = qq32*(rinv32*rinvsq32-krf2);
1149
1150             fscal            = felec;
1151
1152             /* Calculate temporary vectorial force */
1153             tx               = fscal*dx32;
1154             ty               = fscal*dy32;
1155             tz               = fscal*dz32;
1156
1157             /* Update vectorial force */
1158             fix3            += tx;
1159             fiy3            += ty;
1160             fiz3            += tz;
1161             f[j_coord_offset+DIM*2+XX] -= tx;
1162             f[j_coord_offset+DIM*2+YY] -= ty;
1163             f[j_coord_offset+DIM*2+ZZ] -= tz;
1164
1165             }
1166
1167             /**************************
1168              * CALCULATE INTERACTIONS *
1169              **************************/
1170
1171             if (rsq33<rcutoff2)
1172             {
1173
1174             /* REACTION-FIELD ELECTROSTATICS */
1175             felec            = qq33*(rinv33*rinvsq33-krf2);
1176
1177             fscal            = felec;
1178
1179             /* Calculate temporary vectorial force */
1180             tx               = fscal*dx33;
1181             ty               = fscal*dy33;
1182             tz               = fscal*dz33;
1183
1184             /* Update vectorial force */
1185             fix3            += tx;
1186             fiy3            += ty;
1187             fiz3            += tz;
1188             f[j_coord_offset+DIM*3+XX] -= tx;
1189             f[j_coord_offset+DIM*3+YY] -= ty;
1190             f[j_coord_offset+DIM*3+ZZ] -= tz;
1191
1192             }
1193
1194             /* Inner loop uses 281 flops */
1195         }
1196         /* End of innermost loop */
1197
1198         tx = ty = tz = 0;
1199         f[i_coord_offset+DIM*0+XX] += fix0;
1200         f[i_coord_offset+DIM*0+YY] += fiy0;
1201         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1202         tx                         += fix0;
1203         ty                         += fiy0;
1204         tz                         += fiz0;
1205         f[i_coord_offset+DIM*1+XX] += fix1;
1206         f[i_coord_offset+DIM*1+YY] += fiy1;
1207         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1208         tx                         += fix1;
1209         ty                         += fiy1;
1210         tz                         += fiz1;
1211         f[i_coord_offset+DIM*2+XX] += fix2;
1212         f[i_coord_offset+DIM*2+YY] += fiy2;
1213         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1214         tx                         += fix2;
1215         ty                         += fiy2;
1216         tz                         += fiz2;
1217         f[i_coord_offset+DIM*3+XX] += fix3;
1218         f[i_coord_offset+DIM*3+YY] += fiy3;
1219         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1220         tx                         += fix3;
1221         ty                         += fiy3;
1222         tz                         += fiz3;
1223         fshift[i_shift_offset+XX]  += tx;
1224         fshift[i_shift_offset+YY]  += ty;
1225         fshift[i_shift_offset+ZZ]  += tz;
1226
1227         /* Increment number of inner iterations */
1228         inneriter                  += j_index_end - j_index_start;
1229
1230         /* Outer loop uses 39 flops */
1231     }
1232
1233     /* Increment number of outer iterations */
1234     outeriter        += nri;
1235
1236     /* Update outer/inner flops */
1237
1238     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*281);
1239 }