Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_c
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwioffset3;
79     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0;
81     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86     real             velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     int              vfitab;
93     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
94     real             *vftab;
95
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = fr->epsfac;
108     charge           = mdatoms->chargeA;
109     krf              = fr->ic->k_rf;
110     krf2             = krf*2.0;
111     crf              = fr->ic->c_rf;
112     nvdwtype         = fr->ntype;
113     vdwparam         = fr->nbfp;
114     vdwtype          = mdatoms->typeA;
115
116     vftab            = kernel_data->table_vdw->data;
117     vftabscale       = kernel_data->table_vdw->scale;
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = facel*charge[inr+1];
122     iq2              = facel*charge[inr+2];
123     iq3              = facel*charge[inr+3];
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff          = fr->rcoulomb;
128     rcutoff2         = rcutoff*rcutoff;
129
130     outeriter        = 0;
131     inneriter        = 0;
132
133     /* Start outer loop over neighborlists */
134     for(iidx=0; iidx<nri; iidx++)
135     {
136         /* Load shift vector for this list */
137         i_shift_offset   = DIM*shiftidx[iidx];
138         shX              = shiftvec[i_shift_offset+XX];
139         shY              = shiftvec[i_shift_offset+YY];
140         shZ              = shiftvec[i_shift_offset+ZZ];
141
142         /* Load limits for loop over neighbors */
143         j_index_start    = jindex[iidx];
144         j_index_end      = jindex[iidx+1];
145
146         /* Get outer coordinate index */
147         inr              = iinr[iidx];
148         i_coord_offset   = DIM*inr;
149
150         /* Load i particle coords and add shift vector */
151         ix0              = shX + x[i_coord_offset+DIM*0+XX];
152         iy0              = shY + x[i_coord_offset+DIM*0+YY];
153         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
154         ix1              = shX + x[i_coord_offset+DIM*1+XX];
155         iy1              = shY + x[i_coord_offset+DIM*1+YY];
156         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
157         ix2              = shX + x[i_coord_offset+DIM*2+XX];
158         iy2              = shY + x[i_coord_offset+DIM*2+YY];
159         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
160         ix3              = shX + x[i_coord_offset+DIM*3+XX];
161         iy3              = shY + x[i_coord_offset+DIM*3+YY];
162         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
163
164         fix0             = 0.0;
165         fiy0             = 0.0;
166         fiz0             = 0.0;
167         fix1             = 0.0;
168         fiy1             = 0.0;
169         fiz1             = 0.0;
170         fix2             = 0.0;
171         fiy2             = 0.0;
172         fiz2             = 0.0;
173         fix3             = 0.0;
174         fiy3             = 0.0;
175         fiz3             = 0.0;
176
177         /* Reset potential sums */
178         velecsum         = 0.0;
179         vvdwsum          = 0.0;
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end; jidx++)
183         {
184             /* Get j neighbor index, and coordinate index */
185             jnr              = jjnr[jidx];
186             j_coord_offset   = DIM*jnr;
187
188             /* load j atom coordinates */
189             jx0              = x[j_coord_offset+DIM*0+XX];
190             jy0              = x[j_coord_offset+DIM*0+YY];
191             jz0              = x[j_coord_offset+DIM*0+ZZ];
192
193             /* Calculate displacement vector */
194             dx00             = ix0 - jx0;
195             dy00             = iy0 - jy0;
196             dz00             = iz0 - jz0;
197             dx10             = ix1 - jx0;
198             dy10             = iy1 - jy0;
199             dz10             = iz1 - jz0;
200             dx20             = ix2 - jx0;
201             dy20             = iy2 - jy0;
202             dz20             = iz2 - jz0;
203             dx30             = ix3 - jx0;
204             dy30             = iy3 - jy0;
205             dz30             = iz3 - jz0;
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
209             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
210             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
211             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
212
213             rinv00           = gmx_invsqrt(rsq00);
214             rinv10           = gmx_invsqrt(rsq10);
215             rinv20           = gmx_invsqrt(rsq20);
216             rinv30           = gmx_invsqrt(rsq30);
217
218             rinvsq10         = rinv10*rinv10;
219             rinvsq20         = rinv20*rinv20;
220             rinvsq30         = rinv30*rinv30;
221
222             /* Load parameters for j particles */
223             jq0              = charge[jnr+0];
224             vdwjidx0         = 2*vdwtype[jnr+0];
225
226             /**************************
227              * CALCULATE INTERACTIONS *
228              **************************/
229
230             r00              = rsq00*rinv00;
231
232             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
233             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
234
235             /* Calculate table index by multiplying r with table scale and truncate to integer */
236             rt               = r00*vftabscale;
237             vfitab           = rt;
238             vfeps            = rt-vfitab;
239             vfitab           = 2*4*vfitab;
240
241             /* CUBIC SPLINE TABLE DISPERSION */
242             vfitab          += 0;
243             Y                = vftab[vfitab];
244             F                = vftab[vfitab+1];
245             Geps             = vfeps*vftab[vfitab+2];
246             Heps2            = vfeps*vfeps*vftab[vfitab+3];
247             Fp               = F+Geps+Heps2;
248             VV               = Y+vfeps*Fp;
249             vvdw6            = c6_00*VV;
250             FF               = Fp+Geps+2.0*Heps2;
251             fvdw6            = c6_00*FF;
252
253             /* CUBIC SPLINE TABLE REPULSION */
254             Y                = vftab[vfitab+4];
255             F                = vftab[vfitab+5];
256             Geps             = vfeps*vftab[vfitab+6];
257             Heps2            = vfeps*vfeps*vftab[vfitab+7];
258             Fp               = F+Geps+Heps2;
259             VV               = Y+vfeps*Fp;
260             vvdw12           = c12_00*VV;
261             FF               = Fp+Geps+2.0*Heps2;
262             fvdw12           = c12_00*FF;
263             vvdw             = vvdw12+vvdw6;
264             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
265
266             /* Update potential sums from outer loop */
267             vvdwsum         += vvdw;
268
269             fscal            = fvdw;
270
271             /* Calculate temporary vectorial force */
272             tx               = fscal*dx00;
273             ty               = fscal*dy00;
274             tz               = fscal*dz00;
275
276             /* Update vectorial force */
277             fix0            += tx;
278             fiy0            += ty;
279             fiz0            += tz;
280             f[j_coord_offset+DIM*0+XX] -= tx;
281             f[j_coord_offset+DIM*0+YY] -= ty;
282             f[j_coord_offset+DIM*0+ZZ] -= tz;
283
284             /**************************
285              * CALCULATE INTERACTIONS *
286              **************************/
287
288             if (rsq10<rcutoff2)
289             {
290
291             qq10             = iq1*jq0;
292
293             /* REACTION-FIELD ELECTROSTATICS */
294             velec            = qq10*(rinv10+krf*rsq10-crf);
295             felec            = qq10*(rinv10*rinvsq10-krf2);
296
297             /* Update potential sums from outer loop */
298             velecsum        += velec;
299
300             fscal            = felec;
301
302             /* Calculate temporary vectorial force */
303             tx               = fscal*dx10;
304             ty               = fscal*dy10;
305             tz               = fscal*dz10;
306
307             /* Update vectorial force */
308             fix1            += tx;
309             fiy1            += ty;
310             fiz1            += tz;
311             f[j_coord_offset+DIM*0+XX] -= tx;
312             f[j_coord_offset+DIM*0+YY] -= ty;
313             f[j_coord_offset+DIM*0+ZZ] -= tz;
314
315             }
316
317             /**************************
318              * CALCULATE INTERACTIONS *
319              **************************/
320
321             if (rsq20<rcutoff2)
322             {
323
324             qq20             = iq2*jq0;
325
326             /* REACTION-FIELD ELECTROSTATICS */
327             velec            = qq20*(rinv20+krf*rsq20-crf);
328             felec            = qq20*(rinv20*rinvsq20-krf2);
329
330             /* Update potential sums from outer loop */
331             velecsum        += velec;
332
333             fscal            = felec;
334
335             /* Calculate temporary vectorial force */
336             tx               = fscal*dx20;
337             ty               = fscal*dy20;
338             tz               = fscal*dz20;
339
340             /* Update vectorial force */
341             fix2            += tx;
342             fiy2            += ty;
343             fiz2            += tz;
344             f[j_coord_offset+DIM*0+XX] -= tx;
345             f[j_coord_offset+DIM*0+YY] -= ty;
346             f[j_coord_offset+DIM*0+ZZ] -= tz;
347
348             }
349
350             /**************************
351              * CALCULATE INTERACTIONS *
352              **************************/
353
354             if (rsq30<rcutoff2)
355             {
356
357             qq30             = iq3*jq0;
358
359             /* REACTION-FIELD ELECTROSTATICS */
360             velec            = qq30*(rinv30+krf*rsq30-crf);
361             felec            = qq30*(rinv30*rinvsq30-krf2);
362
363             /* Update potential sums from outer loop */
364             velecsum        += velec;
365
366             fscal            = felec;
367
368             /* Calculate temporary vectorial force */
369             tx               = fscal*dx30;
370             ty               = fscal*dy30;
371             tz               = fscal*dz30;
372
373             /* Update vectorial force */
374             fix3            += tx;
375             fiy3            += ty;
376             fiz3            += tz;
377             f[j_coord_offset+DIM*0+XX] -= tx;
378             f[j_coord_offset+DIM*0+YY] -= ty;
379             f[j_coord_offset+DIM*0+ZZ] -= tz;
380
381             }
382
383             /* Inner loop uses 151 flops */
384         }
385         /* End of innermost loop */
386
387         tx = ty = tz = 0;
388         f[i_coord_offset+DIM*0+XX] += fix0;
389         f[i_coord_offset+DIM*0+YY] += fiy0;
390         f[i_coord_offset+DIM*0+ZZ] += fiz0;
391         tx                         += fix0;
392         ty                         += fiy0;
393         tz                         += fiz0;
394         f[i_coord_offset+DIM*1+XX] += fix1;
395         f[i_coord_offset+DIM*1+YY] += fiy1;
396         f[i_coord_offset+DIM*1+ZZ] += fiz1;
397         tx                         += fix1;
398         ty                         += fiy1;
399         tz                         += fiz1;
400         f[i_coord_offset+DIM*2+XX] += fix2;
401         f[i_coord_offset+DIM*2+YY] += fiy2;
402         f[i_coord_offset+DIM*2+ZZ] += fiz2;
403         tx                         += fix2;
404         ty                         += fiy2;
405         tz                         += fiz2;
406         f[i_coord_offset+DIM*3+XX] += fix3;
407         f[i_coord_offset+DIM*3+YY] += fiy3;
408         f[i_coord_offset+DIM*3+ZZ] += fiz3;
409         tx                         += fix3;
410         ty                         += fiy3;
411         tz                         += fiz3;
412         fshift[i_shift_offset+XX]  += tx;
413         fshift[i_shift_offset+YY]  += ty;
414         fshift[i_shift_offset+ZZ]  += tz;
415
416         ggid                        = gid[iidx];
417         /* Update potential energies */
418         kernel_data->energygrp_elec[ggid] += velecsum;
419         kernel_data->energygrp_vdw[ggid] += vvdwsum;
420
421         /* Increment number of inner iterations */
422         inneriter                  += j_index_end - j_index_start;
423
424         /* Outer loop uses 41 flops */
425     }
426
427     /* Increment number of outer iterations */
428     outeriter        += nri;
429
430     /* Update outer/inner flops */
431
432     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*151);
433 }
434 /*
435  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_c
436  * Electrostatics interaction: ReactionField
437  * VdW interaction:            CubicSplineTable
438  * Geometry:                   Water4-Particle
439  * Calculate force/pot:        Force
440  */
441 void
442 nb_kernel_ElecRFCut_VdwCSTab_GeomW4P1_F_c
443                     (t_nblist                    * gmx_restrict       nlist,
444                      rvec                        * gmx_restrict          xx,
445                      rvec                        * gmx_restrict          ff,
446                      t_forcerec                  * gmx_restrict          fr,
447                      t_mdatoms                   * gmx_restrict     mdatoms,
448                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
449                      t_nrnb                      * gmx_restrict        nrnb)
450 {
451     int              i_shift_offset,i_coord_offset,j_coord_offset;
452     int              j_index_start,j_index_end;
453     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
454     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
455     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
456     real             *shiftvec,*fshift,*x,*f;
457     int              vdwioffset0;
458     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
459     int              vdwioffset1;
460     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
461     int              vdwioffset2;
462     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
463     int              vdwioffset3;
464     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
465     int              vdwjidx0;
466     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
467     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
468     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
469     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
470     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
471     real             velec,felec,velecsum,facel,crf,krf,krf2;
472     real             *charge;
473     int              nvdwtype;
474     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
475     int              *vdwtype;
476     real             *vdwparam;
477     int              vfitab;
478     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
479     real             *vftab;
480
481     x                = xx[0];
482     f                = ff[0];
483
484     nri              = nlist->nri;
485     iinr             = nlist->iinr;
486     jindex           = nlist->jindex;
487     jjnr             = nlist->jjnr;
488     shiftidx         = nlist->shift;
489     gid              = nlist->gid;
490     shiftvec         = fr->shift_vec[0];
491     fshift           = fr->fshift[0];
492     facel            = fr->epsfac;
493     charge           = mdatoms->chargeA;
494     krf              = fr->ic->k_rf;
495     krf2             = krf*2.0;
496     crf              = fr->ic->c_rf;
497     nvdwtype         = fr->ntype;
498     vdwparam         = fr->nbfp;
499     vdwtype          = mdatoms->typeA;
500
501     vftab            = kernel_data->table_vdw->data;
502     vftabscale       = kernel_data->table_vdw->scale;
503
504     /* Setup water-specific parameters */
505     inr              = nlist->iinr[0];
506     iq1              = facel*charge[inr+1];
507     iq2              = facel*charge[inr+2];
508     iq3              = facel*charge[inr+3];
509     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
510
511     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
512     rcutoff          = fr->rcoulomb;
513     rcutoff2         = rcutoff*rcutoff;
514
515     outeriter        = 0;
516     inneriter        = 0;
517
518     /* Start outer loop over neighborlists */
519     for(iidx=0; iidx<nri; iidx++)
520     {
521         /* Load shift vector for this list */
522         i_shift_offset   = DIM*shiftidx[iidx];
523         shX              = shiftvec[i_shift_offset+XX];
524         shY              = shiftvec[i_shift_offset+YY];
525         shZ              = shiftvec[i_shift_offset+ZZ];
526
527         /* Load limits for loop over neighbors */
528         j_index_start    = jindex[iidx];
529         j_index_end      = jindex[iidx+1];
530
531         /* Get outer coordinate index */
532         inr              = iinr[iidx];
533         i_coord_offset   = DIM*inr;
534
535         /* Load i particle coords and add shift vector */
536         ix0              = shX + x[i_coord_offset+DIM*0+XX];
537         iy0              = shY + x[i_coord_offset+DIM*0+YY];
538         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
539         ix1              = shX + x[i_coord_offset+DIM*1+XX];
540         iy1              = shY + x[i_coord_offset+DIM*1+YY];
541         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
542         ix2              = shX + x[i_coord_offset+DIM*2+XX];
543         iy2              = shY + x[i_coord_offset+DIM*2+YY];
544         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
545         ix3              = shX + x[i_coord_offset+DIM*3+XX];
546         iy3              = shY + x[i_coord_offset+DIM*3+YY];
547         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
548
549         fix0             = 0.0;
550         fiy0             = 0.0;
551         fiz0             = 0.0;
552         fix1             = 0.0;
553         fiy1             = 0.0;
554         fiz1             = 0.0;
555         fix2             = 0.0;
556         fiy2             = 0.0;
557         fiz2             = 0.0;
558         fix3             = 0.0;
559         fiy3             = 0.0;
560         fiz3             = 0.0;
561
562         /* Start inner kernel loop */
563         for(jidx=j_index_start; jidx<j_index_end; jidx++)
564         {
565             /* Get j neighbor index, and coordinate index */
566             jnr              = jjnr[jidx];
567             j_coord_offset   = DIM*jnr;
568
569             /* load j atom coordinates */
570             jx0              = x[j_coord_offset+DIM*0+XX];
571             jy0              = x[j_coord_offset+DIM*0+YY];
572             jz0              = x[j_coord_offset+DIM*0+ZZ];
573
574             /* Calculate displacement vector */
575             dx00             = ix0 - jx0;
576             dy00             = iy0 - jy0;
577             dz00             = iz0 - jz0;
578             dx10             = ix1 - jx0;
579             dy10             = iy1 - jy0;
580             dz10             = iz1 - jz0;
581             dx20             = ix2 - jx0;
582             dy20             = iy2 - jy0;
583             dz20             = iz2 - jz0;
584             dx30             = ix3 - jx0;
585             dy30             = iy3 - jy0;
586             dz30             = iz3 - jz0;
587
588             /* Calculate squared distance and things based on it */
589             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
590             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
591             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
592             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
593
594             rinv00           = gmx_invsqrt(rsq00);
595             rinv10           = gmx_invsqrt(rsq10);
596             rinv20           = gmx_invsqrt(rsq20);
597             rinv30           = gmx_invsqrt(rsq30);
598
599             rinvsq10         = rinv10*rinv10;
600             rinvsq20         = rinv20*rinv20;
601             rinvsq30         = rinv30*rinv30;
602
603             /* Load parameters for j particles */
604             jq0              = charge[jnr+0];
605             vdwjidx0         = 2*vdwtype[jnr+0];
606
607             /**************************
608              * CALCULATE INTERACTIONS *
609              **************************/
610
611             r00              = rsq00*rinv00;
612
613             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
614             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
615
616             /* Calculate table index by multiplying r with table scale and truncate to integer */
617             rt               = r00*vftabscale;
618             vfitab           = rt;
619             vfeps            = rt-vfitab;
620             vfitab           = 2*4*vfitab;
621
622             /* CUBIC SPLINE TABLE DISPERSION */
623             vfitab          += 0;
624             F                = vftab[vfitab+1];
625             Geps             = vfeps*vftab[vfitab+2];
626             Heps2            = vfeps*vfeps*vftab[vfitab+3];
627             Fp               = F+Geps+Heps2;
628             FF               = Fp+Geps+2.0*Heps2;
629             fvdw6            = c6_00*FF;
630
631             /* CUBIC SPLINE TABLE REPULSION */
632             F                = vftab[vfitab+5];
633             Geps             = vfeps*vftab[vfitab+6];
634             Heps2            = vfeps*vfeps*vftab[vfitab+7];
635             Fp               = F+Geps+Heps2;
636             FF               = Fp+Geps+2.0*Heps2;
637             fvdw12           = c12_00*FF;
638             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
639
640             fscal            = fvdw;
641
642             /* Calculate temporary vectorial force */
643             tx               = fscal*dx00;
644             ty               = fscal*dy00;
645             tz               = fscal*dz00;
646
647             /* Update vectorial force */
648             fix0            += tx;
649             fiy0            += ty;
650             fiz0            += tz;
651             f[j_coord_offset+DIM*0+XX] -= tx;
652             f[j_coord_offset+DIM*0+YY] -= ty;
653             f[j_coord_offset+DIM*0+ZZ] -= tz;
654
655             /**************************
656              * CALCULATE INTERACTIONS *
657              **************************/
658
659             if (rsq10<rcutoff2)
660             {
661
662             qq10             = iq1*jq0;
663
664             /* REACTION-FIELD ELECTROSTATICS */
665             felec            = qq10*(rinv10*rinvsq10-krf2);
666
667             fscal            = felec;
668
669             /* Calculate temporary vectorial force */
670             tx               = fscal*dx10;
671             ty               = fscal*dy10;
672             tz               = fscal*dz10;
673
674             /* Update vectorial force */
675             fix1            += tx;
676             fiy1            += ty;
677             fiz1            += tz;
678             f[j_coord_offset+DIM*0+XX] -= tx;
679             f[j_coord_offset+DIM*0+YY] -= ty;
680             f[j_coord_offset+DIM*0+ZZ] -= tz;
681
682             }
683
684             /**************************
685              * CALCULATE INTERACTIONS *
686              **************************/
687
688             if (rsq20<rcutoff2)
689             {
690
691             qq20             = iq2*jq0;
692
693             /* REACTION-FIELD ELECTROSTATICS */
694             felec            = qq20*(rinv20*rinvsq20-krf2);
695
696             fscal            = felec;
697
698             /* Calculate temporary vectorial force */
699             tx               = fscal*dx20;
700             ty               = fscal*dy20;
701             tz               = fscal*dz20;
702
703             /* Update vectorial force */
704             fix2            += tx;
705             fiy2            += ty;
706             fiz2            += tz;
707             f[j_coord_offset+DIM*0+XX] -= tx;
708             f[j_coord_offset+DIM*0+YY] -= ty;
709             f[j_coord_offset+DIM*0+ZZ] -= tz;
710
711             }
712
713             /**************************
714              * CALCULATE INTERACTIONS *
715              **************************/
716
717             if (rsq30<rcutoff2)
718             {
719
720             qq30             = iq3*jq0;
721
722             /* REACTION-FIELD ELECTROSTATICS */
723             felec            = qq30*(rinv30*rinvsq30-krf2);
724
725             fscal            = felec;
726
727             /* Calculate temporary vectorial force */
728             tx               = fscal*dx30;
729             ty               = fscal*dy30;
730             tz               = fscal*dz30;
731
732             /* Update vectorial force */
733             fix3            += tx;
734             fiy3            += ty;
735             fiz3            += tz;
736             f[j_coord_offset+DIM*0+XX] -= tx;
737             f[j_coord_offset+DIM*0+YY] -= ty;
738             f[j_coord_offset+DIM*0+ZZ] -= tz;
739
740             }
741
742             /* Inner loop uses 128 flops */
743         }
744         /* End of innermost loop */
745
746         tx = ty = tz = 0;
747         f[i_coord_offset+DIM*0+XX] += fix0;
748         f[i_coord_offset+DIM*0+YY] += fiy0;
749         f[i_coord_offset+DIM*0+ZZ] += fiz0;
750         tx                         += fix0;
751         ty                         += fiy0;
752         tz                         += fiz0;
753         f[i_coord_offset+DIM*1+XX] += fix1;
754         f[i_coord_offset+DIM*1+YY] += fiy1;
755         f[i_coord_offset+DIM*1+ZZ] += fiz1;
756         tx                         += fix1;
757         ty                         += fiy1;
758         tz                         += fiz1;
759         f[i_coord_offset+DIM*2+XX] += fix2;
760         f[i_coord_offset+DIM*2+YY] += fiy2;
761         f[i_coord_offset+DIM*2+ZZ] += fiz2;
762         tx                         += fix2;
763         ty                         += fiy2;
764         tz                         += fiz2;
765         f[i_coord_offset+DIM*3+XX] += fix3;
766         f[i_coord_offset+DIM*3+YY] += fiy3;
767         f[i_coord_offset+DIM*3+ZZ] += fiz3;
768         tx                         += fix3;
769         ty                         += fiy3;
770         tz                         += fiz3;
771         fshift[i_shift_offset+XX]  += tx;
772         fshift[i_shift_offset+YY]  += ty;
773         fshift[i_shift_offset+ZZ]  += tz;
774
775         /* Increment number of inner iterations */
776         inneriter                  += j_index_end - j_index_start;
777
778         /* Outer loop uses 39 flops */
779     }
780
781     /* Increment number of outer iterations */
782     outeriter        += nri;
783
784     /* Update outer/inner flops */
785
786     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*128);
787 }