Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwBhamSw_GeomW4W4_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwBhamSw_GeomW4W4_VF_c
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            Buckingham
53  * Geometry:                   Water4-Water4
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwBhamSw_GeomW4W4_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwioffset3;
79     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0;
81     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     int              vdwjidx1;
83     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84     int              vdwjidx2;
85     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86     int              vdwjidx3;
87     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98     real             velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
105
106     x                = xx[0];
107     f                = ff[0];
108
109     nri              = nlist->nri;
110     iinr             = nlist->iinr;
111     jindex           = nlist->jindex;
112     jjnr             = nlist->jjnr;
113     shiftidx         = nlist->shift;
114     gid              = nlist->gid;
115     shiftvec         = fr->shift_vec[0];
116     fshift           = fr->fshift[0];
117     facel            = fr->epsfac;
118     charge           = mdatoms->chargeA;
119     krf              = fr->ic->k_rf;
120     krf2             = krf*2.0;
121     crf              = fr->ic->c_rf;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     /* Setup water-specific parameters */
127     inr              = nlist->iinr[0];
128     iq1              = facel*charge[inr+1];
129     iq2              = facel*charge[inr+2];
130     iq3              = facel*charge[inr+3];
131     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
132
133     jq1              = charge[inr+1];
134     jq2              = charge[inr+2];
135     jq3              = charge[inr+3];
136     vdwjidx0         = 3*vdwtype[inr+0];
137     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
138     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
139     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
140     qq11             = iq1*jq1;
141     qq12             = iq1*jq2;
142     qq13             = iq1*jq3;
143     qq21             = iq2*jq1;
144     qq22             = iq2*jq2;
145     qq23             = iq2*jq3;
146     qq31             = iq3*jq1;
147     qq32             = iq3*jq2;
148     qq33             = iq3*jq3;
149
150     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
151     rcutoff          = fr->rcoulomb;
152     rcutoff2         = rcutoff*rcutoff;
153
154     rswitch          = fr->rvdw_switch;
155     /* Setup switch parameters */
156     d                = rcutoff-rswitch;
157     swV3             = -10.0/(d*d*d);
158     swV4             =  15.0/(d*d*d*d);
159     swV5             =  -6.0/(d*d*d*d*d);
160     swF2             = -30.0/(d*d*d);
161     swF3             =  60.0/(d*d*d*d);
162     swF4             = -30.0/(d*d*d*d*d);
163
164     outeriter        = 0;
165     inneriter        = 0;
166
167     /* Start outer loop over neighborlists */
168     for(iidx=0; iidx<nri; iidx++)
169     {
170         /* Load shift vector for this list */
171         i_shift_offset   = DIM*shiftidx[iidx];
172         shX              = shiftvec[i_shift_offset+XX];
173         shY              = shiftvec[i_shift_offset+YY];
174         shZ              = shiftvec[i_shift_offset+ZZ];
175
176         /* Load limits for loop over neighbors */
177         j_index_start    = jindex[iidx];
178         j_index_end      = jindex[iidx+1];
179
180         /* Get outer coordinate index */
181         inr              = iinr[iidx];
182         i_coord_offset   = DIM*inr;
183
184         /* Load i particle coords and add shift vector */
185         ix0              = shX + x[i_coord_offset+DIM*0+XX];
186         iy0              = shY + x[i_coord_offset+DIM*0+YY];
187         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
188         ix1              = shX + x[i_coord_offset+DIM*1+XX];
189         iy1              = shY + x[i_coord_offset+DIM*1+YY];
190         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
191         ix2              = shX + x[i_coord_offset+DIM*2+XX];
192         iy2              = shY + x[i_coord_offset+DIM*2+YY];
193         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
194         ix3              = shX + x[i_coord_offset+DIM*3+XX];
195         iy3              = shY + x[i_coord_offset+DIM*3+YY];
196         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
197
198         fix0             = 0.0;
199         fiy0             = 0.0;
200         fiz0             = 0.0;
201         fix1             = 0.0;
202         fiy1             = 0.0;
203         fiz1             = 0.0;
204         fix2             = 0.0;
205         fiy2             = 0.0;
206         fiz2             = 0.0;
207         fix3             = 0.0;
208         fiy3             = 0.0;
209         fiz3             = 0.0;
210
211         /* Reset potential sums */
212         velecsum         = 0.0;
213         vvdwsum          = 0.0;
214
215         /* Start inner kernel loop */
216         for(jidx=j_index_start; jidx<j_index_end; jidx++)
217         {
218             /* Get j neighbor index, and coordinate index */
219             jnr              = jjnr[jidx];
220             j_coord_offset   = DIM*jnr;
221
222             /* load j atom coordinates */
223             jx0              = x[j_coord_offset+DIM*0+XX];
224             jy0              = x[j_coord_offset+DIM*0+YY];
225             jz0              = x[j_coord_offset+DIM*0+ZZ];
226             jx1              = x[j_coord_offset+DIM*1+XX];
227             jy1              = x[j_coord_offset+DIM*1+YY];
228             jz1              = x[j_coord_offset+DIM*1+ZZ];
229             jx2              = x[j_coord_offset+DIM*2+XX];
230             jy2              = x[j_coord_offset+DIM*2+YY];
231             jz2              = x[j_coord_offset+DIM*2+ZZ];
232             jx3              = x[j_coord_offset+DIM*3+XX];
233             jy3              = x[j_coord_offset+DIM*3+YY];
234             jz3              = x[j_coord_offset+DIM*3+ZZ];
235
236             /* Calculate displacement vector */
237             dx00             = ix0 - jx0;
238             dy00             = iy0 - jy0;
239             dz00             = iz0 - jz0;
240             dx11             = ix1 - jx1;
241             dy11             = iy1 - jy1;
242             dz11             = iz1 - jz1;
243             dx12             = ix1 - jx2;
244             dy12             = iy1 - jy2;
245             dz12             = iz1 - jz2;
246             dx13             = ix1 - jx3;
247             dy13             = iy1 - jy3;
248             dz13             = iz1 - jz3;
249             dx21             = ix2 - jx1;
250             dy21             = iy2 - jy1;
251             dz21             = iz2 - jz1;
252             dx22             = ix2 - jx2;
253             dy22             = iy2 - jy2;
254             dz22             = iz2 - jz2;
255             dx23             = ix2 - jx3;
256             dy23             = iy2 - jy3;
257             dz23             = iz2 - jz3;
258             dx31             = ix3 - jx1;
259             dy31             = iy3 - jy1;
260             dz31             = iz3 - jz1;
261             dx32             = ix3 - jx2;
262             dy32             = iy3 - jy2;
263             dz32             = iz3 - jz2;
264             dx33             = ix3 - jx3;
265             dy33             = iy3 - jy3;
266             dz33             = iz3 - jz3;
267
268             /* Calculate squared distance and things based on it */
269             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
270             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
271             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
272             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
273             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
274             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
275             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
276             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
277             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
278             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
279
280             rinv00           = gmx_invsqrt(rsq00);
281             rinv11           = gmx_invsqrt(rsq11);
282             rinv12           = gmx_invsqrt(rsq12);
283             rinv13           = gmx_invsqrt(rsq13);
284             rinv21           = gmx_invsqrt(rsq21);
285             rinv22           = gmx_invsqrt(rsq22);
286             rinv23           = gmx_invsqrt(rsq23);
287             rinv31           = gmx_invsqrt(rsq31);
288             rinv32           = gmx_invsqrt(rsq32);
289             rinv33           = gmx_invsqrt(rsq33);
290
291             rinvsq00         = rinv00*rinv00;
292             rinvsq11         = rinv11*rinv11;
293             rinvsq12         = rinv12*rinv12;
294             rinvsq13         = rinv13*rinv13;
295             rinvsq21         = rinv21*rinv21;
296             rinvsq22         = rinv22*rinv22;
297             rinvsq23         = rinv23*rinv23;
298             rinvsq31         = rinv31*rinv31;
299             rinvsq32         = rinv32*rinv32;
300             rinvsq33         = rinv33*rinv33;
301
302             /**************************
303              * CALCULATE INTERACTIONS *
304              **************************/
305
306             if (rsq00<rcutoff2)
307             {
308
309             r00              = rsq00*rinv00;
310
311             /* BUCKINGHAM DISPERSION/REPULSION */
312             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
313             vvdw6            = c6_00*rinvsix;
314             br               = cexp2_00*r00;
315             vvdwexp          = cexp1_00*exp(-br);
316             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
317             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
318
319             d                = r00-rswitch;
320             d                = (d>0.0) ? d : 0.0;
321             d2               = d*d;
322             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
323
324             dsw              = d2*(swF2+d*(swF3+d*swF4));
325
326             /* Evaluate switch function */
327             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
328             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
329             vvdw            *= sw;
330
331             /* Update potential sums from outer loop */
332             vvdwsum         += vvdw;
333
334             fscal            = fvdw;
335
336             /* Calculate temporary vectorial force */
337             tx               = fscal*dx00;
338             ty               = fscal*dy00;
339             tz               = fscal*dz00;
340
341             /* Update vectorial force */
342             fix0            += tx;
343             fiy0            += ty;
344             fiz0            += tz;
345             f[j_coord_offset+DIM*0+XX] -= tx;
346             f[j_coord_offset+DIM*0+YY] -= ty;
347             f[j_coord_offset+DIM*0+ZZ] -= tz;
348
349             }
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             if (rsq11<rcutoff2)
356             {
357
358             /* REACTION-FIELD ELECTROSTATICS */
359             velec            = qq11*(rinv11+krf*rsq11-crf);
360             felec            = qq11*(rinv11*rinvsq11-krf2);
361
362             /* Update potential sums from outer loop */
363             velecsum        += velec;
364
365             fscal            = felec;
366
367             /* Calculate temporary vectorial force */
368             tx               = fscal*dx11;
369             ty               = fscal*dy11;
370             tz               = fscal*dz11;
371
372             /* Update vectorial force */
373             fix1            += tx;
374             fiy1            += ty;
375             fiz1            += tz;
376             f[j_coord_offset+DIM*1+XX] -= tx;
377             f[j_coord_offset+DIM*1+YY] -= ty;
378             f[j_coord_offset+DIM*1+ZZ] -= tz;
379
380             }
381
382             /**************************
383              * CALCULATE INTERACTIONS *
384              **************************/
385
386             if (rsq12<rcutoff2)
387             {
388
389             /* REACTION-FIELD ELECTROSTATICS */
390             velec            = qq12*(rinv12+krf*rsq12-crf);
391             felec            = qq12*(rinv12*rinvsq12-krf2);
392
393             /* Update potential sums from outer loop */
394             velecsum        += velec;
395
396             fscal            = felec;
397
398             /* Calculate temporary vectorial force */
399             tx               = fscal*dx12;
400             ty               = fscal*dy12;
401             tz               = fscal*dz12;
402
403             /* Update vectorial force */
404             fix1            += tx;
405             fiy1            += ty;
406             fiz1            += tz;
407             f[j_coord_offset+DIM*2+XX] -= tx;
408             f[j_coord_offset+DIM*2+YY] -= ty;
409             f[j_coord_offset+DIM*2+ZZ] -= tz;
410
411             }
412
413             /**************************
414              * CALCULATE INTERACTIONS *
415              **************************/
416
417             if (rsq13<rcutoff2)
418             {
419
420             /* REACTION-FIELD ELECTROSTATICS */
421             velec            = qq13*(rinv13+krf*rsq13-crf);
422             felec            = qq13*(rinv13*rinvsq13-krf2);
423
424             /* Update potential sums from outer loop */
425             velecsum        += velec;
426
427             fscal            = felec;
428
429             /* Calculate temporary vectorial force */
430             tx               = fscal*dx13;
431             ty               = fscal*dy13;
432             tz               = fscal*dz13;
433
434             /* Update vectorial force */
435             fix1            += tx;
436             fiy1            += ty;
437             fiz1            += tz;
438             f[j_coord_offset+DIM*3+XX] -= tx;
439             f[j_coord_offset+DIM*3+YY] -= ty;
440             f[j_coord_offset+DIM*3+ZZ] -= tz;
441
442             }
443
444             /**************************
445              * CALCULATE INTERACTIONS *
446              **************************/
447
448             if (rsq21<rcutoff2)
449             {
450
451             /* REACTION-FIELD ELECTROSTATICS */
452             velec            = qq21*(rinv21+krf*rsq21-crf);
453             felec            = qq21*(rinv21*rinvsq21-krf2);
454
455             /* Update potential sums from outer loop */
456             velecsum        += velec;
457
458             fscal            = felec;
459
460             /* Calculate temporary vectorial force */
461             tx               = fscal*dx21;
462             ty               = fscal*dy21;
463             tz               = fscal*dz21;
464
465             /* Update vectorial force */
466             fix2            += tx;
467             fiy2            += ty;
468             fiz2            += tz;
469             f[j_coord_offset+DIM*1+XX] -= tx;
470             f[j_coord_offset+DIM*1+YY] -= ty;
471             f[j_coord_offset+DIM*1+ZZ] -= tz;
472
473             }
474
475             /**************************
476              * CALCULATE INTERACTIONS *
477              **************************/
478
479             if (rsq22<rcutoff2)
480             {
481
482             /* REACTION-FIELD ELECTROSTATICS */
483             velec            = qq22*(rinv22+krf*rsq22-crf);
484             felec            = qq22*(rinv22*rinvsq22-krf2);
485
486             /* Update potential sums from outer loop */
487             velecsum        += velec;
488
489             fscal            = felec;
490
491             /* Calculate temporary vectorial force */
492             tx               = fscal*dx22;
493             ty               = fscal*dy22;
494             tz               = fscal*dz22;
495
496             /* Update vectorial force */
497             fix2            += tx;
498             fiy2            += ty;
499             fiz2            += tz;
500             f[j_coord_offset+DIM*2+XX] -= tx;
501             f[j_coord_offset+DIM*2+YY] -= ty;
502             f[j_coord_offset+DIM*2+ZZ] -= tz;
503
504             }
505
506             /**************************
507              * CALCULATE INTERACTIONS *
508              **************************/
509
510             if (rsq23<rcutoff2)
511             {
512
513             /* REACTION-FIELD ELECTROSTATICS */
514             velec            = qq23*(rinv23+krf*rsq23-crf);
515             felec            = qq23*(rinv23*rinvsq23-krf2);
516
517             /* Update potential sums from outer loop */
518             velecsum        += velec;
519
520             fscal            = felec;
521
522             /* Calculate temporary vectorial force */
523             tx               = fscal*dx23;
524             ty               = fscal*dy23;
525             tz               = fscal*dz23;
526
527             /* Update vectorial force */
528             fix2            += tx;
529             fiy2            += ty;
530             fiz2            += tz;
531             f[j_coord_offset+DIM*3+XX] -= tx;
532             f[j_coord_offset+DIM*3+YY] -= ty;
533             f[j_coord_offset+DIM*3+ZZ] -= tz;
534
535             }
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             if (rsq31<rcutoff2)
542             {
543
544             /* REACTION-FIELD ELECTROSTATICS */
545             velec            = qq31*(rinv31+krf*rsq31-crf);
546             felec            = qq31*(rinv31*rinvsq31-krf2);
547
548             /* Update potential sums from outer loop */
549             velecsum        += velec;
550
551             fscal            = felec;
552
553             /* Calculate temporary vectorial force */
554             tx               = fscal*dx31;
555             ty               = fscal*dy31;
556             tz               = fscal*dz31;
557
558             /* Update vectorial force */
559             fix3            += tx;
560             fiy3            += ty;
561             fiz3            += tz;
562             f[j_coord_offset+DIM*1+XX] -= tx;
563             f[j_coord_offset+DIM*1+YY] -= ty;
564             f[j_coord_offset+DIM*1+ZZ] -= tz;
565
566             }
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             if (rsq32<rcutoff2)
573             {
574
575             /* REACTION-FIELD ELECTROSTATICS */
576             velec            = qq32*(rinv32+krf*rsq32-crf);
577             felec            = qq32*(rinv32*rinvsq32-krf2);
578
579             /* Update potential sums from outer loop */
580             velecsum        += velec;
581
582             fscal            = felec;
583
584             /* Calculate temporary vectorial force */
585             tx               = fscal*dx32;
586             ty               = fscal*dy32;
587             tz               = fscal*dz32;
588
589             /* Update vectorial force */
590             fix3            += tx;
591             fiy3            += ty;
592             fiz3            += tz;
593             f[j_coord_offset+DIM*2+XX] -= tx;
594             f[j_coord_offset+DIM*2+YY] -= ty;
595             f[j_coord_offset+DIM*2+ZZ] -= tz;
596
597             }
598
599             /**************************
600              * CALCULATE INTERACTIONS *
601              **************************/
602
603             if (rsq33<rcutoff2)
604             {
605
606             /* REACTION-FIELD ELECTROSTATICS */
607             velec            = qq33*(rinv33+krf*rsq33-crf);
608             felec            = qq33*(rinv33*rinvsq33-krf2);
609
610             /* Update potential sums from outer loop */
611             velecsum        += velec;
612
613             fscal            = felec;
614
615             /* Calculate temporary vectorial force */
616             tx               = fscal*dx33;
617             ty               = fscal*dy33;
618             tz               = fscal*dz33;
619
620             /* Update vectorial force */
621             fix3            += tx;
622             fiy3            += ty;
623             fiz3            += tz;
624             f[j_coord_offset+DIM*3+XX] -= tx;
625             f[j_coord_offset+DIM*3+YY] -= ty;
626             f[j_coord_offset+DIM*3+ZZ] -= tz;
627
628             }
629
630             /* Inner loop uses 358 flops */
631         }
632         /* End of innermost loop */
633
634         tx = ty = tz = 0;
635         f[i_coord_offset+DIM*0+XX] += fix0;
636         f[i_coord_offset+DIM*0+YY] += fiy0;
637         f[i_coord_offset+DIM*0+ZZ] += fiz0;
638         tx                         += fix0;
639         ty                         += fiy0;
640         tz                         += fiz0;
641         f[i_coord_offset+DIM*1+XX] += fix1;
642         f[i_coord_offset+DIM*1+YY] += fiy1;
643         f[i_coord_offset+DIM*1+ZZ] += fiz1;
644         tx                         += fix1;
645         ty                         += fiy1;
646         tz                         += fiz1;
647         f[i_coord_offset+DIM*2+XX] += fix2;
648         f[i_coord_offset+DIM*2+YY] += fiy2;
649         f[i_coord_offset+DIM*2+ZZ] += fiz2;
650         tx                         += fix2;
651         ty                         += fiy2;
652         tz                         += fiz2;
653         f[i_coord_offset+DIM*3+XX] += fix3;
654         f[i_coord_offset+DIM*3+YY] += fiy3;
655         f[i_coord_offset+DIM*3+ZZ] += fiz3;
656         tx                         += fix3;
657         ty                         += fiy3;
658         tz                         += fiz3;
659         fshift[i_shift_offset+XX]  += tx;
660         fshift[i_shift_offset+YY]  += ty;
661         fshift[i_shift_offset+ZZ]  += tz;
662
663         ggid                        = gid[iidx];
664         /* Update potential energies */
665         kernel_data->energygrp_elec[ggid] += velecsum;
666         kernel_data->energygrp_vdw[ggid] += vvdwsum;
667
668         /* Increment number of inner iterations */
669         inneriter                  += j_index_end - j_index_start;
670
671         /* Outer loop uses 41 flops */
672     }
673
674     /* Increment number of outer iterations */
675     outeriter        += nri;
676
677     /* Update outer/inner flops */
678
679     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*358);
680 }
681 /*
682  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwBhamSw_GeomW4W4_F_c
683  * Electrostatics interaction: ReactionField
684  * VdW interaction:            Buckingham
685  * Geometry:                   Water4-Water4
686  * Calculate force/pot:        Force
687  */
688 void
689 nb_kernel_ElecRFCut_VdwBhamSw_GeomW4W4_F_c
690                     (t_nblist                    * gmx_restrict       nlist,
691                      rvec                        * gmx_restrict          xx,
692                      rvec                        * gmx_restrict          ff,
693                      t_forcerec                  * gmx_restrict          fr,
694                      t_mdatoms                   * gmx_restrict     mdatoms,
695                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
696                      t_nrnb                      * gmx_restrict        nrnb)
697 {
698     int              i_shift_offset,i_coord_offset,j_coord_offset;
699     int              j_index_start,j_index_end;
700     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
701     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
702     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
703     real             *shiftvec,*fshift,*x,*f;
704     int              vdwioffset0;
705     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
706     int              vdwioffset1;
707     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
708     int              vdwioffset2;
709     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
710     int              vdwioffset3;
711     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
712     int              vdwjidx0;
713     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
714     int              vdwjidx1;
715     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
716     int              vdwjidx2;
717     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
718     int              vdwjidx3;
719     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
720     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
721     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
722     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
723     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
724     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
725     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
726     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
727     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
728     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
729     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
730     real             velec,felec,velecsum,facel,crf,krf,krf2;
731     real             *charge;
732     int              nvdwtype;
733     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
734     int              *vdwtype;
735     real             *vdwparam;
736     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
737
738     x                = xx[0];
739     f                = ff[0];
740
741     nri              = nlist->nri;
742     iinr             = nlist->iinr;
743     jindex           = nlist->jindex;
744     jjnr             = nlist->jjnr;
745     shiftidx         = nlist->shift;
746     gid              = nlist->gid;
747     shiftvec         = fr->shift_vec[0];
748     fshift           = fr->fshift[0];
749     facel            = fr->epsfac;
750     charge           = mdatoms->chargeA;
751     krf              = fr->ic->k_rf;
752     krf2             = krf*2.0;
753     crf              = fr->ic->c_rf;
754     nvdwtype         = fr->ntype;
755     vdwparam         = fr->nbfp;
756     vdwtype          = mdatoms->typeA;
757
758     /* Setup water-specific parameters */
759     inr              = nlist->iinr[0];
760     iq1              = facel*charge[inr+1];
761     iq2              = facel*charge[inr+2];
762     iq3              = facel*charge[inr+3];
763     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
764
765     jq1              = charge[inr+1];
766     jq2              = charge[inr+2];
767     jq3              = charge[inr+3];
768     vdwjidx0         = 3*vdwtype[inr+0];
769     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
770     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
771     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
772     qq11             = iq1*jq1;
773     qq12             = iq1*jq2;
774     qq13             = iq1*jq3;
775     qq21             = iq2*jq1;
776     qq22             = iq2*jq2;
777     qq23             = iq2*jq3;
778     qq31             = iq3*jq1;
779     qq32             = iq3*jq2;
780     qq33             = iq3*jq3;
781
782     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
783     rcutoff          = fr->rcoulomb;
784     rcutoff2         = rcutoff*rcutoff;
785
786     rswitch          = fr->rvdw_switch;
787     /* Setup switch parameters */
788     d                = rcutoff-rswitch;
789     swV3             = -10.0/(d*d*d);
790     swV4             =  15.0/(d*d*d*d);
791     swV5             =  -6.0/(d*d*d*d*d);
792     swF2             = -30.0/(d*d*d);
793     swF3             =  60.0/(d*d*d*d);
794     swF4             = -30.0/(d*d*d*d*d);
795
796     outeriter        = 0;
797     inneriter        = 0;
798
799     /* Start outer loop over neighborlists */
800     for(iidx=0; iidx<nri; iidx++)
801     {
802         /* Load shift vector for this list */
803         i_shift_offset   = DIM*shiftidx[iidx];
804         shX              = shiftvec[i_shift_offset+XX];
805         shY              = shiftvec[i_shift_offset+YY];
806         shZ              = shiftvec[i_shift_offset+ZZ];
807
808         /* Load limits for loop over neighbors */
809         j_index_start    = jindex[iidx];
810         j_index_end      = jindex[iidx+1];
811
812         /* Get outer coordinate index */
813         inr              = iinr[iidx];
814         i_coord_offset   = DIM*inr;
815
816         /* Load i particle coords and add shift vector */
817         ix0              = shX + x[i_coord_offset+DIM*0+XX];
818         iy0              = shY + x[i_coord_offset+DIM*0+YY];
819         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
820         ix1              = shX + x[i_coord_offset+DIM*1+XX];
821         iy1              = shY + x[i_coord_offset+DIM*1+YY];
822         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
823         ix2              = shX + x[i_coord_offset+DIM*2+XX];
824         iy2              = shY + x[i_coord_offset+DIM*2+YY];
825         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
826         ix3              = shX + x[i_coord_offset+DIM*3+XX];
827         iy3              = shY + x[i_coord_offset+DIM*3+YY];
828         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
829
830         fix0             = 0.0;
831         fiy0             = 0.0;
832         fiz0             = 0.0;
833         fix1             = 0.0;
834         fiy1             = 0.0;
835         fiz1             = 0.0;
836         fix2             = 0.0;
837         fiy2             = 0.0;
838         fiz2             = 0.0;
839         fix3             = 0.0;
840         fiy3             = 0.0;
841         fiz3             = 0.0;
842
843         /* Start inner kernel loop */
844         for(jidx=j_index_start; jidx<j_index_end; jidx++)
845         {
846             /* Get j neighbor index, and coordinate index */
847             jnr              = jjnr[jidx];
848             j_coord_offset   = DIM*jnr;
849
850             /* load j atom coordinates */
851             jx0              = x[j_coord_offset+DIM*0+XX];
852             jy0              = x[j_coord_offset+DIM*0+YY];
853             jz0              = x[j_coord_offset+DIM*0+ZZ];
854             jx1              = x[j_coord_offset+DIM*1+XX];
855             jy1              = x[j_coord_offset+DIM*1+YY];
856             jz1              = x[j_coord_offset+DIM*1+ZZ];
857             jx2              = x[j_coord_offset+DIM*2+XX];
858             jy2              = x[j_coord_offset+DIM*2+YY];
859             jz2              = x[j_coord_offset+DIM*2+ZZ];
860             jx3              = x[j_coord_offset+DIM*3+XX];
861             jy3              = x[j_coord_offset+DIM*3+YY];
862             jz3              = x[j_coord_offset+DIM*3+ZZ];
863
864             /* Calculate displacement vector */
865             dx00             = ix0 - jx0;
866             dy00             = iy0 - jy0;
867             dz00             = iz0 - jz0;
868             dx11             = ix1 - jx1;
869             dy11             = iy1 - jy1;
870             dz11             = iz1 - jz1;
871             dx12             = ix1 - jx2;
872             dy12             = iy1 - jy2;
873             dz12             = iz1 - jz2;
874             dx13             = ix1 - jx3;
875             dy13             = iy1 - jy3;
876             dz13             = iz1 - jz3;
877             dx21             = ix2 - jx1;
878             dy21             = iy2 - jy1;
879             dz21             = iz2 - jz1;
880             dx22             = ix2 - jx2;
881             dy22             = iy2 - jy2;
882             dz22             = iz2 - jz2;
883             dx23             = ix2 - jx3;
884             dy23             = iy2 - jy3;
885             dz23             = iz2 - jz3;
886             dx31             = ix3 - jx1;
887             dy31             = iy3 - jy1;
888             dz31             = iz3 - jz1;
889             dx32             = ix3 - jx2;
890             dy32             = iy3 - jy2;
891             dz32             = iz3 - jz2;
892             dx33             = ix3 - jx3;
893             dy33             = iy3 - jy3;
894             dz33             = iz3 - jz3;
895
896             /* Calculate squared distance and things based on it */
897             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
898             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
899             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
900             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
901             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
902             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
903             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
904             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
905             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
906             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
907
908             rinv00           = gmx_invsqrt(rsq00);
909             rinv11           = gmx_invsqrt(rsq11);
910             rinv12           = gmx_invsqrt(rsq12);
911             rinv13           = gmx_invsqrt(rsq13);
912             rinv21           = gmx_invsqrt(rsq21);
913             rinv22           = gmx_invsqrt(rsq22);
914             rinv23           = gmx_invsqrt(rsq23);
915             rinv31           = gmx_invsqrt(rsq31);
916             rinv32           = gmx_invsqrt(rsq32);
917             rinv33           = gmx_invsqrt(rsq33);
918
919             rinvsq00         = rinv00*rinv00;
920             rinvsq11         = rinv11*rinv11;
921             rinvsq12         = rinv12*rinv12;
922             rinvsq13         = rinv13*rinv13;
923             rinvsq21         = rinv21*rinv21;
924             rinvsq22         = rinv22*rinv22;
925             rinvsq23         = rinv23*rinv23;
926             rinvsq31         = rinv31*rinv31;
927             rinvsq32         = rinv32*rinv32;
928             rinvsq33         = rinv33*rinv33;
929
930             /**************************
931              * CALCULATE INTERACTIONS *
932              **************************/
933
934             if (rsq00<rcutoff2)
935             {
936
937             r00              = rsq00*rinv00;
938
939             /* BUCKINGHAM DISPERSION/REPULSION */
940             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
941             vvdw6            = c6_00*rinvsix;
942             br               = cexp2_00*r00;
943             vvdwexp          = cexp1_00*exp(-br);
944             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
945             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
946
947             d                = r00-rswitch;
948             d                = (d>0.0) ? d : 0.0;
949             d2               = d*d;
950             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
951
952             dsw              = d2*(swF2+d*(swF3+d*swF4));
953
954             /* Evaluate switch function */
955             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
956             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
957
958             fscal            = fvdw;
959
960             /* Calculate temporary vectorial force */
961             tx               = fscal*dx00;
962             ty               = fscal*dy00;
963             tz               = fscal*dz00;
964
965             /* Update vectorial force */
966             fix0            += tx;
967             fiy0            += ty;
968             fiz0            += tz;
969             f[j_coord_offset+DIM*0+XX] -= tx;
970             f[j_coord_offset+DIM*0+YY] -= ty;
971             f[j_coord_offset+DIM*0+ZZ] -= tz;
972
973             }
974
975             /**************************
976              * CALCULATE INTERACTIONS *
977              **************************/
978
979             if (rsq11<rcutoff2)
980             {
981
982             /* REACTION-FIELD ELECTROSTATICS */
983             felec            = qq11*(rinv11*rinvsq11-krf2);
984
985             fscal            = felec;
986
987             /* Calculate temporary vectorial force */
988             tx               = fscal*dx11;
989             ty               = fscal*dy11;
990             tz               = fscal*dz11;
991
992             /* Update vectorial force */
993             fix1            += tx;
994             fiy1            += ty;
995             fiz1            += tz;
996             f[j_coord_offset+DIM*1+XX] -= tx;
997             f[j_coord_offset+DIM*1+YY] -= ty;
998             f[j_coord_offset+DIM*1+ZZ] -= tz;
999
1000             }
1001
1002             /**************************
1003              * CALCULATE INTERACTIONS *
1004              **************************/
1005
1006             if (rsq12<rcutoff2)
1007             {
1008
1009             /* REACTION-FIELD ELECTROSTATICS */
1010             felec            = qq12*(rinv12*rinvsq12-krf2);
1011
1012             fscal            = felec;
1013
1014             /* Calculate temporary vectorial force */
1015             tx               = fscal*dx12;
1016             ty               = fscal*dy12;
1017             tz               = fscal*dz12;
1018
1019             /* Update vectorial force */
1020             fix1            += tx;
1021             fiy1            += ty;
1022             fiz1            += tz;
1023             f[j_coord_offset+DIM*2+XX] -= tx;
1024             f[j_coord_offset+DIM*2+YY] -= ty;
1025             f[j_coord_offset+DIM*2+ZZ] -= tz;
1026
1027             }
1028
1029             /**************************
1030              * CALCULATE INTERACTIONS *
1031              **************************/
1032
1033             if (rsq13<rcutoff2)
1034             {
1035
1036             /* REACTION-FIELD ELECTROSTATICS */
1037             felec            = qq13*(rinv13*rinvsq13-krf2);
1038
1039             fscal            = felec;
1040
1041             /* Calculate temporary vectorial force */
1042             tx               = fscal*dx13;
1043             ty               = fscal*dy13;
1044             tz               = fscal*dz13;
1045
1046             /* Update vectorial force */
1047             fix1            += tx;
1048             fiy1            += ty;
1049             fiz1            += tz;
1050             f[j_coord_offset+DIM*3+XX] -= tx;
1051             f[j_coord_offset+DIM*3+YY] -= ty;
1052             f[j_coord_offset+DIM*3+ZZ] -= tz;
1053
1054             }
1055
1056             /**************************
1057              * CALCULATE INTERACTIONS *
1058              **************************/
1059
1060             if (rsq21<rcutoff2)
1061             {
1062
1063             /* REACTION-FIELD ELECTROSTATICS */
1064             felec            = qq21*(rinv21*rinvsq21-krf2);
1065
1066             fscal            = felec;
1067
1068             /* Calculate temporary vectorial force */
1069             tx               = fscal*dx21;
1070             ty               = fscal*dy21;
1071             tz               = fscal*dz21;
1072
1073             /* Update vectorial force */
1074             fix2            += tx;
1075             fiy2            += ty;
1076             fiz2            += tz;
1077             f[j_coord_offset+DIM*1+XX] -= tx;
1078             f[j_coord_offset+DIM*1+YY] -= ty;
1079             f[j_coord_offset+DIM*1+ZZ] -= tz;
1080
1081             }
1082
1083             /**************************
1084              * CALCULATE INTERACTIONS *
1085              **************************/
1086
1087             if (rsq22<rcutoff2)
1088             {
1089
1090             /* REACTION-FIELD ELECTROSTATICS */
1091             felec            = qq22*(rinv22*rinvsq22-krf2);
1092
1093             fscal            = felec;
1094
1095             /* Calculate temporary vectorial force */
1096             tx               = fscal*dx22;
1097             ty               = fscal*dy22;
1098             tz               = fscal*dz22;
1099
1100             /* Update vectorial force */
1101             fix2            += tx;
1102             fiy2            += ty;
1103             fiz2            += tz;
1104             f[j_coord_offset+DIM*2+XX] -= tx;
1105             f[j_coord_offset+DIM*2+YY] -= ty;
1106             f[j_coord_offset+DIM*2+ZZ] -= tz;
1107
1108             }
1109
1110             /**************************
1111              * CALCULATE INTERACTIONS *
1112              **************************/
1113
1114             if (rsq23<rcutoff2)
1115             {
1116
1117             /* REACTION-FIELD ELECTROSTATICS */
1118             felec            = qq23*(rinv23*rinvsq23-krf2);
1119
1120             fscal            = felec;
1121
1122             /* Calculate temporary vectorial force */
1123             tx               = fscal*dx23;
1124             ty               = fscal*dy23;
1125             tz               = fscal*dz23;
1126
1127             /* Update vectorial force */
1128             fix2            += tx;
1129             fiy2            += ty;
1130             fiz2            += tz;
1131             f[j_coord_offset+DIM*3+XX] -= tx;
1132             f[j_coord_offset+DIM*3+YY] -= ty;
1133             f[j_coord_offset+DIM*3+ZZ] -= tz;
1134
1135             }
1136
1137             /**************************
1138              * CALCULATE INTERACTIONS *
1139              **************************/
1140
1141             if (rsq31<rcutoff2)
1142             {
1143
1144             /* REACTION-FIELD ELECTROSTATICS */
1145             felec            = qq31*(rinv31*rinvsq31-krf2);
1146
1147             fscal            = felec;
1148
1149             /* Calculate temporary vectorial force */
1150             tx               = fscal*dx31;
1151             ty               = fscal*dy31;
1152             tz               = fscal*dz31;
1153
1154             /* Update vectorial force */
1155             fix3            += tx;
1156             fiy3            += ty;
1157             fiz3            += tz;
1158             f[j_coord_offset+DIM*1+XX] -= tx;
1159             f[j_coord_offset+DIM*1+YY] -= ty;
1160             f[j_coord_offset+DIM*1+ZZ] -= tz;
1161
1162             }
1163
1164             /**************************
1165              * CALCULATE INTERACTIONS *
1166              **************************/
1167
1168             if (rsq32<rcutoff2)
1169             {
1170
1171             /* REACTION-FIELD ELECTROSTATICS */
1172             felec            = qq32*(rinv32*rinvsq32-krf2);
1173
1174             fscal            = felec;
1175
1176             /* Calculate temporary vectorial force */
1177             tx               = fscal*dx32;
1178             ty               = fscal*dy32;
1179             tz               = fscal*dz32;
1180
1181             /* Update vectorial force */
1182             fix3            += tx;
1183             fiy3            += ty;
1184             fiz3            += tz;
1185             f[j_coord_offset+DIM*2+XX] -= tx;
1186             f[j_coord_offset+DIM*2+YY] -= ty;
1187             f[j_coord_offset+DIM*2+ZZ] -= tz;
1188
1189             }
1190
1191             /**************************
1192              * CALCULATE INTERACTIONS *
1193              **************************/
1194
1195             if (rsq33<rcutoff2)
1196             {
1197
1198             /* REACTION-FIELD ELECTROSTATICS */
1199             felec            = qq33*(rinv33*rinvsq33-krf2);
1200
1201             fscal            = felec;
1202
1203             /* Calculate temporary vectorial force */
1204             tx               = fscal*dx33;
1205             ty               = fscal*dy33;
1206             tz               = fscal*dz33;
1207
1208             /* Update vectorial force */
1209             fix3            += tx;
1210             fiy3            += ty;
1211             fiz3            += tz;
1212             f[j_coord_offset+DIM*3+XX] -= tx;
1213             f[j_coord_offset+DIM*3+YY] -= ty;
1214             f[j_coord_offset+DIM*3+ZZ] -= tz;
1215
1216             }
1217
1218             /* Inner loop uses 311 flops */
1219         }
1220         /* End of innermost loop */
1221
1222         tx = ty = tz = 0;
1223         f[i_coord_offset+DIM*0+XX] += fix0;
1224         f[i_coord_offset+DIM*0+YY] += fiy0;
1225         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1226         tx                         += fix0;
1227         ty                         += fiy0;
1228         tz                         += fiz0;
1229         f[i_coord_offset+DIM*1+XX] += fix1;
1230         f[i_coord_offset+DIM*1+YY] += fiy1;
1231         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1232         tx                         += fix1;
1233         ty                         += fiy1;
1234         tz                         += fiz1;
1235         f[i_coord_offset+DIM*2+XX] += fix2;
1236         f[i_coord_offset+DIM*2+YY] += fiy2;
1237         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1238         tx                         += fix2;
1239         ty                         += fiy2;
1240         tz                         += fiz2;
1241         f[i_coord_offset+DIM*3+XX] += fix3;
1242         f[i_coord_offset+DIM*3+YY] += fiy3;
1243         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1244         tx                         += fix3;
1245         ty                         += fiy3;
1246         tz                         += fiz3;
1247         fshift[i_shift_offset+XX]  += tx;
1248         fshift[i_shift_offset+YY]  += ty;
1249         fshift[i_shift_offset+ZZ]  += tz;
1250
1251         /* Increment number of inner iterations */
1252         inneriter                  += j_index_end - j_index_start;
1253
1254         /* Outer loop uses 39 flops */
1255     }
1256
1257     /* Increment number of outer iterations */
1258     outeriter        += nri;
1259
1260     /* Update outer/inner flops */
1261
1262     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*311);
1263 }