Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwBhamSw_GeomW3W3_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwBhamSw_GeomW3W3_VF_c
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            Buckingham
53  * Geometry:                   Water3-Water3
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwBhamSw_GeomW3W3_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     int              vdwjidx1;
81     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82     int              vdwjidx2;
83     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93     real             velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
100
101     x                = xx[0];
102     f                = ff[0];
103
104     nri              = nlist->nri;
105     iinr             = nlist->iinr;
106     jindex           = nlist->jindex;
107     jjnr             = nlist->jjnr;
108     shiftidx         = nlist->shift;
109     gid              = nlist->gid;
110     shiftvec         = fr->shift_vec[0];
111     fshift           = fr->fshift[0];
112     facel            = fr->epsfac;
113     charge           = mdatoms->chargeA;
114     krf              = fr->ic->k_rf;
115     krf2             = krf*2.0;
116     crf              = fr->ic->c_rf;
117     nvdwtype         = fr->ntype;
118     vdwparam         = fr->nbfp;
119     vdwtype          = mdatoms->typeA;
120
121     /* Setup water-specific parameters */
122     inr              = nlist->iinr[0];
123     iq0              = facel*charge[inr+0];
124     iq1              = facel*charge[inr+1];
125     iq2              = facel*charge[inr+2];
126     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
127
128     jq0              = charge[inr+0];
129     jq1              = charge[inr+1];
130     jq2              = charge[inr+2];
131     vdwjidx0         = 3*vdwtype[inr+0];
132     qq00             = iq0*jq0;
133     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
134     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
135     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
136     qq01             = iq0*jq1;
137     qq02             = iq0*jq2;
138     qq10             = iq1*jq0;
139     qq11             = iq1*jq1;
140     qq12             = iq1*jq2;
141     qq20             = iq2*jq0;
142     qq21             = iq2*jq1;
143     qq22             = iq2*jq2;
144
145     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
146     rcutoff          = fr->rcoulomb;
147     rcutoff2         = rcutoff*rcutoff;
148
149     rswitch          = fr->rvdw_switch;
150     /* Setup switch parameters */
151     d                = rcutoff-rswitch;
152     swV3             = -10.0/(d*d*d);
153     swV4             =  15.0/(d*d*d*d);
154     swV5             =  -6.0/(d*d*d*d*d);
155     swF2             = -30.0/(d*d*d);
156     swF3             =  60.0/(d*d*d*d);
157     swF4             = -30.0/(d*d*d*d*d);
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167         shX              = shiftvec[i_shift_offset+XX];
168         shY              = shiftvec[i_shift_offset+YY];
169         shZ              = shiftvec[i_shift_offset+ZZ];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         ix0              = shX + x[i_coord_offset+DIM*0+XX];
181         iy0              = shY + x[i_coord_offset+DIM*0+YY];
182         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
183         ix1              = shX + x[i_coord_offset+DIM*1+XX];
184         iy1              = shY + x[i_coord_offset+DIM*1+YY];
185         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
186         ix2              = shX + x[i_coord_offset+DIM*2+XX];
187         iy2              = shY + x[i_coord_offset+DIM*2+YY];
188         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
189
190         fix0             = 0.0;
191         fiy0             = 0.0;
192         fiz0             = 0.0;
193         fix1             = 0.0;
194         fiy1             = 0.0;
195         fiz1             = 0.0;
196         fix2             = 0.0;
197         fiy2             = 0.0;
198         fiz2             = 0.0;
199
200         /* Reset potential sums */
201         velecsum         = 0.0;
202         vvdwsum          = 0.0;
203
204         /* Start inner kernel loop */
205         for(jidx=j_index_start; jidx<j_index_end; jidx++)
206         {
207             /* Get j neighbor index, and coordinate index */
208             jnr              = jjnr[jidx];
209             j_coord_offset   = DIM*jnr;
210
211             /* load j atom coordinates */
212             jx0              = x[j_coord_offset+DIM*0+XX];
213             jy0              = x[j_coord_offset+DIM*0+YY];
214             jz0              = x[j_coord_offset+DIM*0+ZZ];
215             jx1              = x[j_coord_offset+DIM*1+XX];
216             jy1              = x[j_coord_offset+DIM*1+YY];
217             jz1              = x[j_coord_offset+DIM*1+ZZ];
218             jx2              = x[j_coord_offset+DIM*2+XX];
219             jy2              = x[j_coord_offset+DIM*2+YY];
220             jz2              = x[j_coord_offset+DIM*2+ZZ];
221
222             /* Calculate displacement vector */
223             dx00             = ix0 - jx0;
224             dy00             = iy0 - jy0;
225             dz00             = iz0 - jz0;
226             dx01             = ix0 - jx1;
227             dy01             = iy0 - jy1;
228             dz01             = iz0 - jz1;
229             dx02             = ix0 - jx2;
230             dy02             = iy0 - jy2;
231             dz02             = iz0 - jz2;
232             dx10             = ix1 - jx0;
233             dy10             = iy1 - jy0;
234             dz10             = iz1 - jz0;
235             dx11             = ix1 - jx1;
236             dy11             = iy1 - jy1;
237             dz11             = iz1 - jz1;
238             dx12             = ix1 - jx2;
239             dy12             = iy1 - jy2;
240             dz12             = iz1 - jz2;
241             dx20             = ix2 - jx0;
242             dy20             = iy2 - jy0;
243             dz20             = iz2 - jz0;
244             dx21             = ix2 - jx1;
245             dy21             = iy2 - jy1;
246             dz21             = iz2 - jz1;
247             dx22             = ix2 - jx2;
248             dy22             = iy2 - jy2;
249             dz22             = iz2 - jz2;
250
251             /* Calculate squared distance and things based on it */
252             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
253             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
254             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
255             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
256             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
257             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
258             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
259             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
260             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
261
262             rinv00           = gmx_invsqrt(rsq00);
263             rinv01           = gmx_invsqrt(rsq01);
264             rinv02           = gmx_invsqrt(rsq02);
265             rinv10           = gmx_invsqrt(rsq10);
266             rinv11           = gmx_invsqrt(rsq11);
267             rinv12           = gmx_invsqrt(rsq12);
268             rinv20           = gmx_invsqrt(rsq20);
269             rinv21           = gmx_invsqrt(rsq21);
270             rinv22           = gmx_invsqrt(rsq22);
271
272             rinvsq00         = rinv00*rinv00;
273             rinvsq01         = rinv01*rinv01;
274             rinvsq02         = rinv02*rinv02;
275             rinvsq10         = rinv10*rinv10;
276             rinvsq11         = rinv11*rinv11;
277             rinvsq12         = rinv12*rinv12;
278             rinvsq20         = rinv20*rinv20;
279             rinvsq21         = rinv21*rinv21;
280             rinvsq22         = rinv22*rinv22;
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             if (rsq00<rcutoff2)
287             {
288
289             r00              = rsq00*rinv00;
290
291             /* REACTION-FIELD ELECTROSTATICS */
292             velec            = qq00*(rinv00+krf*rsq00-crf);
293             felec            = qq00*(rinv00*rinvsq00-krf2);
294
295             /* BUCKINGHAM DISPERSION/REPULSION */
296             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
297             vvdw6            = c6_00*rinvsix;
298             br               = cexp2_00*r00;
299             vvdwexp          = cexp1_00*exp(-br);
300             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
301             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
302
303             d                = r00-rswitch;
304             d                = (d>0.0) ? d : 0.0;
305             d2               = d*d;
306             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
307
308             dsw              = d2*(swF2+d*(swF3+d*swF4));
309
310             /* Evaluate switch function */
311             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
312             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
313             vvdw            *= sw;
314
315             /* Update potential sums from outer loop */
316             velecsum        += velec;
317             vvdwsum         += vvdw;
318
319             fscal            = felec+fvdw;
320
321             /* Calculate temporary vectorial force */
322             tx               = fscal*dx00;
323             ty               = fscal*dy00;
324             tz               = fscal*dz00;
325
326             /* Update vectorial force */
327             fix0            += tx;
328             fiy0            += ty;
329             fiz0            += tz;
330             f[j_coord_offset+DIM*0+XX] -= tx;
331             f[j_coord_offset+DIM*0+YY] -= ty;
332             f[j_coord_offset+DIM*0+ZZ] -= tz;
333
334             }
335
336             /**************************
337              * CALCULATE INTERACTIONS *
338              **************************/
339
340             if (rsq01<rcutoff2)
341             {
342
343             /* REACTION-FIELD ELECTROSTATICS */
344             velec            = qq01*(rinv01+krf*rsq01-crf);
345             felec            = qq01*(rinv01*rinvsq01-krf2);
346
347             /* Update potential sums from outer loop */
348             velecsum        += velec;
349
350             fscal            = felec;
351
352             /* Calculate temporary vectorial force */
353             tx               = fscal*dx01;
354             ty               = fscal*dy01;
355             tz               = fscal*dz01;
356
357             /* Update vectorial force */
358             fix0            += tx;
359             fiy0            += ty;
360             fiz0            += tz;
361             f[j_coord_offset+DIM*1+XX] -= tx;
362             f[j_coord_offset+DIM*1+YY] -= ty;
363             f[j_coord_offset+DIM*1+ZZ] -= tz;
364
365             }
366
367             /**************************
368              * CALCULATE INTERACTIONS *
369              **************************/
370
371             if (rsq02<rcutoff2)
372             {
373
374             /* REACTION-FIELD ELECTROSTATICS */
375             velec            = qq02*(rinv02+krf*rsq02-crf);
376             felec            = qq02*(rinv02*rinvsq02-krf2);
377
378             /* Update potential sums from outer loop */
379             velecsum        += velec;
380
381             fscal            = felec;
382
383             /* Calculate temporary vectorial force */
384             tx               = fscal*dx02;
385             ty               = fscal*dy02;
386             tz               = fscal*dz02;
387
388             /* Update vectorial force */
389             fix0            += tx;
390             fiy0            += ty;
391             fiz0            += tz;
392             f[j_coord_offset+DIM*2+XX] -= tx;
393             f[j_coord_offset+DIM*2+YY] -= ty;
394             f[j_coord_offset+DIM*2+ZZ] -= tz;
395
396             }
397
398             /**************************
399              * CALCULATE INTERACTIONS *
400              **************************/
401
402             if (rsq10<rcutoff2)
403             {
404
405             /* REACTION-FIELD ELECTROSTATICS */
406             velec            = qq10*(rinv10+krf*rsq10-crf);
407             felec            = qq10*(rinv10*rinvsq10-krf2);
408
409             /* Update potential sums from outer loop */
410             velecsum        += velec;
411
412             fscal            = felec;
413
414             /* Calculate temporary vectorial force */
415             tx               = fscal*dx10;
416             ty               = fscal*dy10;
417             tz               = fscal*dz10;
418
419             /* Update vectorial force */
420             fix1            += tx;
421             fiy1            += ty;
422             fiz1            += tz;
423             f[j_coord_offset+DIM*0+XX] -= tx;
424             f[j_coord_offset+DIM*0+YY] -= ty;
425             f[j_coord_offset+DIM*0+ZZ] -= tz;
426
427             }
428
429             /**************************
430              * CALCULATE INTERACTIONS *
431              **************************/
432
433             if (rsq11<rcutoff2)
434             {
435
436             /* REACTION-FIELD ELECTROSTATICS */
437             velec            = qq11*(rinv11+krf*rsq11-crf);
438             felec            = qq11*(rinv11*rinvsq11-krf2);
439
440             /* Update potential sums from outer loop */
441             velecsum        += velec;
442
443             fscal            = felec;
444
445             /* Calculate temporary vectorial force */
446             tx               = fscal*dx11;
447             ty               = fscal*dy11;
448             tz               = fscal*dz11;
449
450             /* Update vectorial force */
451             fix1            += tx;
452             fiy1            += ty;
453             fiz1            += tz;
454             f[j_coord_offset+DIM*1+XX] -= tx;
455             f[j_coord_offset+DIM*1+YY] -= ty;
456             f[j_coord_offset+DIM*1+ZZ] -= tz;
457
458             }
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             if (rsq12<rcutoff2)
465             {
466
467             /* REACTION-FIELD ELECTROSTATICS */
468             velec            = qq12*(rinv12+krf*rsq12-crf);
469             felec            = qq12*(rinv12*rinvsq12-krf2);
470
471             /* Update potential sums from outer loop */
472             velecsum        += velec;
473
474             fscal            = felec;
475
476             /* Calculate temporary vectorial force */
477             tx               = fscal*dx12;
478             ty               = fscal*dy12;
479             tz               = fscal*dz12;
480
481             /* Update vectorial force */
482             fix1            += tx;
483             fiy1            += ty;
484             fiz1            += tz;
485             f[j_coord_offset+DIM*2+XX] -= tx;
486             f[j_coord_offset+DIM*2+YY] -= ty;
487             f[j_coord_offset+DIM*2+ZZ] -= tz;
488
489             }
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             if (rsq20<rcutoff2)
496             {
497
498             /* REACTION-FIELD ELECTROSTATICS */
499             velec            = qq20*(rinv20+krf*rsq20-crf);
500             felec            = qq20*(rinv20*rinvsq20-krf2);
501
502             /* Update potential sums from outer loop */
503             velecsum        += velec;
504
505             fscal            = felec;
506
507             /* Calculate temporary vectorial force */
508             tx               = fscal*dx20;
509             ty               = fscal*dy20;
510             tz               = fscal*dz20;
511
512             /* Update vectorial force */
513             fix2            += tx;
514             fiy2            += ty;
515             fiz2            += tz;
516             f[j_coord_offset+DIM*0+XX] -= tx;
517             f[j_coord_offset+DIM*0+YY] -= ty;
518             f[j_coord_offset+DIM*0+ZZ] -= tz;
519
520             }
521
522             /**************************
523              * CALCULATE INTERACTIONS *
524              **************************/
525
526             if (rsq21<rcutoff2)
527             {
528
529             /* REACTION-FIELD ELECTROSTATICS */
530             velec            = qq21*(rinv21+krf*rsq21-crf);
531             felec            = qq21*(rinv21*rinvsq21-krf2);
532
533             /* Update potential sums from outer loop */
534             velecsum        += velec;
535
536             fscal            = felec;
537
538             /* Calculate temporary vectorial force */
539             tx               = fscal*dx21;
540             ty               = fscal*dy21;
541             tz               = fscal*dz21;
542
543             /* Update vectorial force */
544             fix2            += tx;
545             fiy2            += ty;
546             fiz2            += tz;
547             f[j_coord_offset+DIM*1+XX] -= tx;
548             f[j_coord_offset+DIM*1+YY] -= ty;
549             f[j_coord_offset+DIM*1+ZZ] -= tz;
550
551             }
552
553             /**************************
554              * CALCULATE INTERACTIONS *
555              **************************/
556
557             if (rsq22<rcutoff2)
558             {
559
560             /* REACTION-FIELD ELECTROSTATICS */
561             velec            = qq22*(rinv22+krf*rsq22-crf);
562             felec            = qq22*(rinv22*rinvsq22-krf2);
563
564             /* Update potential sums from outer loop */
565             velecsum        += velec;
566
567             fscal            = felec;
568
569             /* Calculate temporary vectorial force */
570             tx               = fscal*dx22;
571             ty               = fscal*dy22;
572             tz               = fscal*dz22;
573
574             /* Update vectorial force */
575             fix2            += tx;
576             fiy2            += ty;
577             fiz2            += tz;
578             f[j_coord_offset+DIM*2+XX] -= tx;
579             f[j_coord_offset+DIM*2+YY] -= ty;
580             f[j_coord_offset+DIM*2+ZZ] -= tz;
581
582             }
583
584             /* Inner loop uses 336 flops */
585         }
586         /* End of innermost loop */
587
588         tx = ty = tz = 0;
589         f[i_coord_offset+DIM*0+XX] += fix0;
590         f[i_coord_offset+DIM*0+YY] += fiy0;
591         f[i_coord_offset+DIM*0+ZZ] += fiz0;
592         tx                         += fix0;
593         ty                         += fiy0;
594         tz                         += fiz0;
595         f[i_coord_offset+DIM*1+XX] += fix1;
596         f[i_coord_offset+DIM*1+YY] += fiy1;
597         f[i_coord_offset+DIM*1+ZZ] += fiz1;
598         tx                         += fix1;
599         ty                         += fiy1;
600         tz                         += fiz1;
601         f[i_coord_offset+DIM*2+XX] += fix2;
602         f[i_coord_offset+DIM*2+YY] += fiy2;
603         f[i_coord_offset+DIM*2+ZZ] += fiz2;
604         tx                         += fix2;
605         ty                         += fiy2;
606         tz                         += fiz2;
607         fshift[i_shift_offset+XX]  += tx;
608         fshift[i_shift_offset+YY]  += ty;
609         fshift[i_shift_offset+ZZ]  += tz;
610
611         ggid                        = gid[iidx];
612         /* Update potential energies */
613         kernel_data->energygrp_elec[ggid] += velecsum;
614         kernel_data->energygrp_vdw[ggid] += vvdwsum;
615
616         /* Increment number of inner iterations */
617         inneriter                  += j_index_end - j_index_start;
618
619         /* Outer loop uses 32 flops */
620     }
621
622     /* Increment number of outer iterations */
623     outeriter        += nri;
624
625     /* Update outer/inner flops */
626
627     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*336);
628 }
629 /*
630  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwBhamSw_GeomW3W3_F_c
631  * Electrostatics interaction: ReactionField
632  * VdW interaction:            Buckingham
633  * Geometry:                   Water3-Water3
634  * Calculate force/pot:        Force
635  */
636 void
637 nb_kernel_ElecRFCut_VdwBhamSw_GeomW3W3_F_c
638                     (t_nblist                    * gmx_restrict       nlist,
639                      rvec                        * gmx_restrict          xx,
640                      rvec                        * gmx_restrict          ff,
641                      t_forcerec                  * gmx_restrict          fr,
642                      t_mdatoms                   * gmx_restrict     mdatoms,
643                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
644                      t_nrnb                      * gmx_restrict        nrnb)
645 {
646     int              i_shift_offset,i_coord_offset,j_coord_offset;
647     int              j_index_start,j_index_end;
648     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
649     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
650     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
651     real             *shiftvec,*fshift,*x,*f;
652     int              vdwioffset0;
653     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
654     int              vdwioffset1;
655     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
656     int              vdwioffset2;
657     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
658     int              vdwjidx0;
659     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
660     int              vdwjidx1;
661     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
662     int              vdwjidx2;
663     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
664     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
665     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
666     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
667     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
668     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
669     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
670     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
671     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
672     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
673     real             velec,felec,velecsum,facel,crf,krf,krf2;
674     real             *charge;
675     int              nvdwtype;
676     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
677     int              *vdwtype;
678     real             *vdwparam;
679     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
680
681     x                = xx[0];
682     f                = ff[0];
683
684     nri              = nlist->nri;
685     iinr             = nlist->iinr;
686     jindex           = nlist->jindex;
687     jjnr             = nlist->jjnr;
688     shiftidx         = nlist->shift;
689     gid              = nlist->gid;
690     shiftvec         = fr->shift_vec[0];
691     fshift           = fr->fshift[0];
692     facel            = fr->epsfac;
693     charge           = mdatoms->chargeA;
694     krf              = fr->ic->k_rf;
695     krf2             = krf*2.0;
696     crf              = fr->ic->c_rf;
697     nvdwtype         = fr->ntype;
698     vdwparam         = fr->nbfp;
699     vdwtype          = mdatoms->typeA;
700
701     /* Setup water-specific parameters */
702     inr              = nlist->iinr[0];
703     iq0              = facel*charge[inr+0];
704     iq1              = facel*charge[inr+1];
705     iq2              = facel*charge[inr+2];
706     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
707
708     jq0              = charge[inr+0];
709     jq1              = charge[inr+1];
710     jq2              = charge[inr+2];
711     vdwjidx0         = 3*vdwtype[inr+0];
712     qq00             = iq0*jq0;
713     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
714     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
715     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
716     qq01             = iq0*jq1;
717     qq02             = iq0*jq2;
718     qq10             = iq1*jq0;
719     qq11             = iq1*jq1;
720     qq12             = iq1*jq2;
721     qq20             = iq2*jq0;
722     qq21             = iq2*jq1;
723     qq22             = iq2*jq2;
724
725     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
726     rcutoff          = fr->rcoulomb;
727     rcutoff2         = rcutoff*rcutoff;
728
729     rswitch          = fr->rvdw_switch;
730     /* Setup switch parameters */
731     d                = rcutoff-rswitch;
732     swV3             = -10.0/(d*d*d);
733     swV4             =  15.0/(d*d*d*d);
734     swV5             =  -6.0/(d*d*d*d*d);
735     swF2             = -30.0/(d*d*d);
736     swF3             =  60.0/(d*d*d*d);
737     swF4             = -30.0/(d*d*d*d*d);
738
739     outeriter        = 0;
740     inneriter        = 0;
741
742     /* Start outer loop over neighborlists */
743     for(iidx=0; iidx<nri; iidx++)
744     {
745         /* Load shift vector for this list */
746         i_shift_offset   = DIM*shiftidx[iidx];
747         shX              = shiftvec[i_shift_offset+XX];
748         shY              = shiftvec[i_shift_offset+YY];
749         shZ              = shiftvec[i_shift_offset+ZZ];
750
751         /* Load limits for loop over neighbors */
752         j_index_start    = jindex[iidx];
753         j_index_end      = jindex[iidx+1];
754
755         /* Get outer coordinate index */
756         inr              = iinr[iidx];
757         i_coord_offset   = DIM*inr;
758
759         /* Load i particle coords and add shift vector */
760         ix0              = shX + x[i_coord_offset+DIM*0+XX];
761         iy0              = shY + x[i_coord_offset+DIM*0+YY];
762         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
763         ix1              = shX + x[i_coord_offset+DIM*1+XX];
764         iy1              = shY + x[i_coord_offset+DIM*1+YY];
765         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
766         ix2              = shX + x[i_coord_offset+DIM*2+XX];
767         iy2              = shY + x[i_coord_offset+DIM*2+YY];
768         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
769
770         fix0             = 0.0;
771         fiy0             = 0.0;
772         fiz0             = 0.0;
773         fix1             = 0.0;
774         fiy1             = 0.0;
775         fiz1             = 0.0;
776         fix2             = 0.0;
777         fiy2             = 0.0;
778         fiz2             = 0.0;
779
780         /* Start inner kernel loop */
781         for(jidx=j_index_start; jidx<j_index_end; jidx++)
782         {
783             /* Get j neighbor index, and coordinate index */
784             jnr              = jjnr[jidx];
785             j_coord_offset   = DIM*jnr;
786
787             /* load j atom coordinates */
788             jx0              = x[j_coord_offset+DIM*0+XX];
789             jy0              = x[j_coord_offset+DIM*0+YY];
790             jz0              = x[j_coord_offset+DIM*0+ZZ];
791             jx1              = x[j_coord_offset+DIM*1+XX];
792             jy1              = x[j_coord_offset+DIM*1+YY];
793             jz1              = x[j_coord_offset+DIM*1+ZZ];
794             jx2              = x[j_coord_offset+DIM*2+XX];
795             jy2              = x[j_coord_offset+DIM*2+YY];
796             jz2              = x[j_coord_offset+DIM*2+ZZ];
797
798             /* Calculate displacement vector */
799             dx00             = ix0 - jx0;
800             dy00             = iy0 - jy0;
801             dz00             = iz0 - jz0;
802             dx01             = ix0 - jx1;
803             dy01             = iy0 - jy1;
804             dz01             = iz0 - jz1;
805             dx02             = ix0 - jx2;
806             dy02             = iy0 - jy2;
807             dz02             = iz0 - jz2;
808             dx10             = ix1 - jx0;
809             dy10             = iy1 - jy0;
810             dz10             = iz1 - jz0;
811             dx11             = ix1 - jx1;
812             dy11             = iy1 - jy1;
813             dz11             = iz1 - jz1;
814             dx12             = ix1 - jx2;
815             dy12             = iy1 - jy2;
816             dz12             = iz1 - jz2;
817             dx20             = ix2 - jx0;
818             dy20             = iy2 - jy0;
819             dz20             = iz2 - jz0;
820             dx21             = ix2 - jx1;
821             dy21             = iy2 - jy1;
822             dz21             = iz2 - jz1;
823             dx22             = ix2 - jx2;
824             dy22             = iy2 - jy2;
825             dz22             = iz2 - jz2;
826
827             /* Calculate squared distance and things based on it */
828             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
829             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
830             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
831             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
832             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
833             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
834             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
835             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
836             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
837
838             rinv00           = gmx_invsqrt(rsq00);
839             rinv01           = gmx_invsqrt(rsq01);
840             rinv02           = gmx_invsqrt(rsq02);
841             rinv10           = gmx_invsqrt(rsq10);
842             rinv11           = gmx_invsqrt(rsq11);
843             rinv12           = gmx_invsqrt(rsq12);
844             rinv20           = gmx_invsqrt(rsq20);
845             rinv21           = gmx_invsqrt(rsq21);
846             rinv22           = gmx_invsqrt(rsq22);
847
848             rinvsq00         = rinv00*rinv00;
849             rinvsq01         = rinv01*rinv01;
850             rinvsq02         = rinv02*rinv02;
851             rinvsq10         = rinv10*rinv10;
852             rinvsq11         = rinv11*rinv11;
853             rinvsq12         = rinv12*rinv12;
854             rinvsq20         = rinv20*rinv20;
855             rinvsq21         = rinv21*rinv21;
856             rinvsq22         = rinv22*rinv22;
857
858             /**************************
859              * CALCULATE INTERACTIONS *
860              **************************/
861
862             if (rsq00<rcutoff2)
863             {
864
865             r00              = rsq00*rinv00;
866
867             /* REACTION-FIELD ELECTROSTATICS */
868             felec            = qq00*(rinv00*rinvsq00-krf2);
869
870             /* BUCKINGHAM DISPERSION/REPULSION */
871             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
872             vvdw6            = c6_00*rinvsix;
873             br               = cexp2_00*r00;
874             vvdwexp          = cexp1_00*exp(-br);
875             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
876             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
877
878             d                = r00-rswitch;
879             d                = (d>0.0) ? d : 0.0;
880             d2               = d*d;
881             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
882
883             dsw              = d2*(swF2+d*(swF3+d*swF4));
884
885             /* Evaluate switch function */
886             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
887             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
888
889             fscal            = felec+fvdw;
890
891             /* Calculate temporary vectorial force */
892             tx               = fscal*dx00;
893             ty               = fscal*dy00;
894             tz               = fscal*dz00;
895
896             /* Update vectorial force */
897             fix0            += tx;
898             fiy0            += ty;
899             fiz0            += tz;
900             f[j_coord_offset+DIM*0+XX] -= tx;
901             f[j_coord_offset+DIM*0+YY] -= ty;
902             f[j_coord_offset+DIM*0+ZZ] -= tz;
903
904             }
905
906             /**************************
907              * CALCULATE INTERACTIONS *
908              **************************/
909
910             if (rsq01<rcutoff2)
911             {
912
913             /* REACTION-FIELD ELECTROSTATICS */
914             felec            = qq01*(rinv01*rinvsq01-krf2);
915
916             fscal            = felec;
917
918             /* Calculate temporary vectorial force */
919             tx               = fscal*dx01;
920             ty               = fscal*dy01;
921             tz               = fscal*dz01;
922
923             /* Update vectorial force */
924             fix0            += tx;
925             fiy0            += ty;
926             fiz0            += tz;
927             f[j_coord_offset+DIM*1+XX] -= tx;
928             f[j_coord_offset+DIM*1+YY] -= ty;
929             f[j_coord_offset+DIM*1+ZZ] -= tz;
930
931             }
932
933             /**************************
934              * CALCULATE INTERACTIONS *
935              **************************/
936
937             if (rsq02<rcutoff2)
938             {
939
940             /* REACTION-FIELD ELECTROSTATICS */
941             felec            = qq02*(rinv02*rinvsq02-krf2);
942
943             fscal            = felec;
944
945             /* Calculate temporary vectorial force */
946             tx               = fscal*dx02;
947             ty               = fscal*dy02;
948             tz               = fscal*dz02;
949
950             /* Update vectorial force */
951             fix0            += tx;
952             fiy0            += ty;
953             fiz0            += tz;
954             f[j_coord_offset+DIM*2+XX] -= tx;
955             f[j_coord_offset+DIM*2+YY] -= ty;
956             f[j_coord_offset+DIM*2+ZZ] -= tz;
957
958             }
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             if (rsq10<rcutoff2)
965             {
966
967             /* REACTION-FIELD ELECTROSTATICS */
968             felec            = qq10*(rinv10*rinvsq10-krf2);
969
970             fscal            = felec;
971
972             /* Calculate temporary vectorial force */
973             tx               = fscal*dx10;
974             ty               = fscal*dy10;
975             tz               = fscal*dz10;
976
977             /* Update vectorial force */
978             fix1            += tx;
979             fiy1            += ty;
980             fiz1            += tz;
981             f[j_coord_offset+DIM*0+XX] -= tx;
982             f[j_coord_offset+DIM*0+YY] -= ty;
983             f[j_coord_offset+DIM*0+ZZ] -= tz;
984
985             }
986
987             /**************************
988              * CALCULATE INTERACTIONS *
989              **************************/
990
991             if (rsq11<rcutoff2)
992             {
993
994             /* REACTION-FIELD ELECTROSTATICS */
995             felec            = qq11*(rinv11*rinvsq11-krf2);
996
997             fscal            = felec;
998
999             /* Calculate temporary vectorial force */
1000             tx               = fscal*dx11;
1001             ty               = fscal*dy11;
1002             tz               = fscal*dz11;
1003
1004             /* Update vectorial force */
1005             fix1            += tx;
1006             fiy1            += ty;
1007             fiz1            += tz;
1008             f[j_coord_offset+DIM*1+XX] -= tx;
1009             f[j_coord_offset+DIM*1+YY] -= ty;
1010             f[j_coord_offset+DIM*1+ZZ] -= tz;
1011
1012             }
1013
1014             /**************************
1015              * CALCULATE INTERACTIONS *
1016              **************************/
1017
1018             if (rsq12<rcutoff2)
1019             {
1020
1021             /* REACTION-FIELD ELECTROSTATICS */
1022             felec            = qq12*(rinv12*rinvsq12-krf2);
1023
1024             fscal            = felec;
1025
1026             /* Calculate temporary vectorial force */
1027             tx               = fscal*dx12;
1028             ty               = fscal*dy12;
1029             tz               = fscal*dz12;
1030
1031             /* Update vectorial force */
1032             fix1            += tx;
1033             fiy1            += ty;
1034             fiz1            += tz;
1035             f[j_coord_offset+DIM*2+XX] -= tx;
1036             f[j_coord_offset+DIM*2+YY] -= ty;
1037             f[j_coord_offset+DIM*2+ZZ] -= tz;
1038
1039             }
1040
1041             /**************************
1042              * CALCULATE INTERACTIONS *
1043              **************************/
1044
1045             if (rsq20<rcutoff2)
1046             {
1047
1048             /* REACTION-FIELD ELECTROSTATICS */
1049             felec            = qq20*(rinv20*rinvsq20-krf2);
1050
1051             fscal            = felec;
1052
1053             /* Calculate temporary vectorial force */
1054             tx               = fscal*dx20;
1055             ty               = fscal*dy20;
1056             tz               = fscal*dz20;
1057
1058             /* Update vectorial force */
1059             fix2            += tx;
1060             fiy2            += ty;
1061             fiz2            += tz;
1062             f[j_coord_offset+DIM*0+XX] -= tx;
1063             f[j_coord_offset+DIM*0+YY] -= ty;
1064             f[j_coord_offset+DIM*0+ZZ] -= tz;
1065
1066             }
1067
1068             /**************************
1069              * CALCULATE INTERACTIONS *
1070              **************************/
1071
1072             if (rsq21<rcutoff2)
1073             {
1074
1075             /* REACTION-FIELD ELECTROSTATICS */
1076             felec            = qq21*(rinv21*rinvsq21-krf2);
1077
1078             fscal            = felec;
1079
1080             /* Calculate temporary vectorial force */
1081             tx               = fscal*dx21;
1082             ty               = fscal*dy21;
1083             tz               = fscal*dz21;
1084
1085             /* Update vectorial force */
1086             fix2            += tx;
1087             fiy2            += ty;
1088             fiz2            += tz;
1089             f[j_coord_offset+DIM*1+XX] -= tx;
1090             f[j_coord_offset+DIM*1+YY] -= ty;
1091             f[j_coord_offset+DIM*1+ZZ] -= tz;
1092
1093             }
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             if (rsq22<rcutoff2)
1100             {
1101
1102             /* REACTION-FIELD ELECTROSTATICS */
1103             felec            = qq22*(rinv22*rinvsq22-krf2);
1104
1105             fscal            = felec;
1106
1107             /* Calculate temporary vectorial force */
1108             tx               = fscal*dx22;
1109             ty               = fscal*dy22;
1110             tz               = fscal*dz22;
1111
1112             /* Update vectorial force */
1113             fix2            += tx;
1114             fiy2            += ty;
1115             fiz2            += tz;
1116             f[j_coord_offset+DIM*2+XX] -= tx;
1117             f[j_coord_offset+DIM*2+YY] -= ty;
1118             f[j_coord_offset+DIM*2+ZZ] -= tz;
1119
1120             }
1121
1122             /* Inner loop uses 289 flops */
1123         }
1124         /* End of innermost loop */
1125
1126         tx = ty = tz = 0;
1127         f[i_coord_offset+DIM*0+XX] += fix0;
1128         f[i_coord_offset+DIM*0+YY] += fiy0;
1129         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1130         tx                         += fix0;
1131         ty                         += fiy0;
1132         tz                         += fiz0;
1133         f[i_coord_offset+DIM*1+XX] += fix1;
1134         f[i_coord_offset+DIM*1+YY] += fiy1;
1135         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1136         tx                         += fix1;
1137         ty                         += fiy1;
1138         tz                         += fiz1;
1139         f[i_coord_offset+DIM*2+XX] += fix2;
1140         f[i_coord_offset+DIM*2+YY] += fiy2;
1141         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1142         tx                         += fix2;
1143         ty                         += fiy2;
1144         tz                         += fiz2;
1145         fshift[i_shift_offset+XX]  += tx;
1146         fshift[i_shift_offset+YY]  += ty;
1147         fshift[i_shift_offset+ZZ]  += tz;
1148
1149         /* Increment number of inner iterations */
1150         inneriter                  += j_index_end - j_index_start;
1151
1152         /* Outer loop uses 30 flops */
1153     }
1154
1155     /* Increment number of outer iterations */
1156     outeriter        += nri;
1157
1158     /* Update outer/inner flops */
1159
1160     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*289);
1161 }