Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecRFCut_VdwBhamSh_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwBhamSh_GeomP1P1_VF_c
51  * Electrostatics interaction: ReactionField
52  * VdW interaction:            Buckingham
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecRFCut_VdwBhamSh_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83
84     x                = xx[0];
85     f                = ff[0];
86
87     nri              = nlist->nri;
88     iinr             = nlist->iinr;
89     jindex           = nlist->jindex;
90     jjnr             = nlist->jjnr;
91     shiftidx         = nlist->shift;
92     gid              = nlist->gid;
93     shiftvec         = fr->shift_vec[0];
94     fshift           = fr->fshift[0];
95     facel            = fr->epsfac;
96     charge           = mdatoms->chargeA;
97     krf              = fr->ic->k_rf;
98     krf2             = krf*2.0;
99     crf              = fr->ic->c_rf;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
105     rcutoff          = fr->rcoulomb;
106     rcutoff2         = rcutoff*rcutoff;
107
108     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
109     rvdw             = fr->rvdw;
110
111     outeriter        = 0;
112     inneriter        = 0;
113
114     /* Start outer loop over neighborlists */
115     for(iidx=0; iidx<nri; iidx++)
116     {
117         /* Load shift vector for this list */
118         i_shift_offset   = DIM*shiftidx[iidx];
119         shX              = shiftvec[i_shift_offset+XX];
120         shY              = shiftvec[i_shift_offset+YY];
121         shZ              = shiftvec[i_shift_offset+ZZ];
122
123         /* Load limits for loop over neighbors */
124         j_index_start    = jindex[iidx];
125         j_index_end      = jindex[iidx+1];
126
127         /* Get outer coordinate index */
128         inr              = iinr[iidx];
129         i_coord_offset   = DIM*inr;
130
131         /* Load i particle coords and add shift vector */
132         ix0              = shX + x[i_coord_offset+DIM*0+XX];
133         iy0              = shY + x[i_coord_offset+DIM*0+YY];
134         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
135
136         fix0             = 0.0;
137         fiy0             = 0.0;
138         fiz0             = 0.0;
139
140         /* Load parameters for i particles */
141         iq0              = facel*charge[inr+0];
142         vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
143
144         /* Reset potential sums */
145         velecsum         = 0.0;
146         vvdwsum          = 0.0;
147
148         /* Start inner kernel loop */
149         for(jidx=j_index_start; jidx<j_index_end; jidx++)
150         {
151             /* Get j neighbor index, and coordinate index */
152             jnr              = jjnr[jidx];
153             j_coord_offset   = DIM*jnr;
154
155             /* load j atom coordinates */
156             jx0              = x[j_coord_offset+DIM*0+XX];
157             jy0              = x[j_coord_offset+DIM*0+YY];
158             jz0              = x[j_coord_offset+DIM*0+ZZ];
159
160             /* Calculate displacement vector */
161             dx00             = ix0 - jx0;
162             dy00             = iy0 - jy0;
163             dz00             = iz0 - jz0;
164
165             /* Calculate squared distance and things based on it */
166             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
167
168             rinv00           = gmx_invsqrt(rsq00);
169
170             rinvsq00         = rinv00*rinv00;
171
172             /* Load parameters for j particles */
173             jq0              = charge[jnr+0];
174             vdwjidx0         = 3*vdwtype[jnr+0];
175
176             /**************************
177              * CALCULATE INTERACTIONS *
178              **************************/
179
180             if (rsq00<rcutoff2)
181             {
182
183             r00              = rsq00*rinv00;
184
185             qq00             = iq0*jq0;
186             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
187             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
188             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
189
190             /* REACTION-FIELD ELECTROSTATICS */
191             velec            = qq00*(rinv00+krf*rsq00-crf);
192             felec            = qq00*(rinv00*rinvsq00-krf2);
193
194             /* BUCKINGHAM DISPERSION/REPULSION */
195             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
196             vvdw6            = c6_00*rinvsix;
197             br               = cexp2_00*r00;
198             vvdwexp          = cexp1_00*exp(-br);
199             vvdw             = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
200             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
201
202             /* Update potential sums from outer loop */
203             velecsum        += velec;
204             vvdwsum         += vvdw;
205
206             fscal            = felec+fvdw;
207
208             /* Calculate temporary vectorial force */
209             tx               = fscal*dx00;
210             ty               = fscal*dy00;
211             tz               = fscal*dz00;
212
213             /* Update vectorial force */
214             fix0            += tx;
215             fiy0            += ty;
216             fiz0            += tz;
217             f[j_coord_offset+DIM*0+XX] -= tx;
218             f[j_coord_offset+DIM*0+YY] -= ty;
219             f[j_coord_offset+DIM*0+ZZ] -= tz;
220
221             }
222
223             /* Inner loop uses 102 flops */
224         }
225         /* End of innermost loop */
226
227         tx = ty = tz = 0;
228         f[i_coord_offset+DIM*0+XX] += fix0;
229         f[i_coord_offset+DIM*0+YY] += fiy0;
230         f[i_coord_offset+DIM*0+ZZ] += fiz0;
231         tx                         += fix0;
232         ty                         += fiy0;
233         tz                         += fiz0;
234         fshift[i_shift_offset+XX]  += tx;
235         fshift[i_shift_offset+YY]  += ty;
236         fshift[i_shift_offset+ZZ]  += tz;
237
238         ggid                        = gid[iidx];
239         /* Update potential energies */
240         kernel_data->energygrp_elec[ggid] += velecsum;
241         kernel_data->energygrp_vdw[ggid] += vvdwsum;
242
243         /* Increment number of inner iterations */
244         inneriter                  += j_index_end - j_index_start;
245
246         /* Outer loop uses 15 flops */
247     }
248
249     /* Increment number of outer iterations */
250     outeriter        += nri;
251
252     /* Update outer/inner flops */
253
254     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*102);
255 }
256 /*
257  * Gromacs nonbonded kernel:   nb_kernel_ElecRFCut_VdwBhamSh_GeomP1P1_F_c
258  * Electrostatics interaction: ReactionField
259  * VdW interaction:            Buckingham
260  * Geometry:                   Particle-Particle
261  * Calculate force/pot:        Force
262  */
263 void
264 nb_kernel_ElecRFCut_VdwBhamSh_GeomP1P1_F_c
265                     (t_nblist                    * gmx_restrict       nlist,
266                      rvec                        * gmx_restrict          xx,
267                      rvec                        * gmx_restrict          ff,
268                      t_forcerec                  * gmx_restrict          fr,
269                      t_mdatoms                   * gmx_restrict     mdatoms,
270                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
271                      t_nrnb                      * gmx_restrict        nrnb)
272 {
273     int              i_shift_offset,i_coord_offset,j_coord_offset;
274     int              j_index_start,j_index_end;
275     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
276     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
277     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
278     real             *shiftvec,*fshift,*x,*f;
279     int              vdwioffset0;
280     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
281     int              vdwjidx0;
282     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
283     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
284     real             velec,felec,velecsum,facel,crf,krf,krf2;
285     real             *charge;
286     int              nvdwtype;
287     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
288     int              *vdwtype;
289     real             *vdwparam;
290
291     x                = xx[0];
292     f                = ff[0];
293
294     nri              = nlist->nri;
295     iinr             = nlist->iinr;
296     jindex           = nlist->jindex;
297     jjnr             = nlist->jjnr;
298     shiftidx         = nlist->shift;
299     gid              = nlist->gid;
300     shiftvec         = fr->shift_vec[0];
301     fshift           = fr->fshift[0];
302     facel            = fr->epsfac;
303     charge           = mdatoms->chargeA;
304     krf              = fr->ic->k_rf;
305     krf2             = krf*2.0;
306     crf              = fr->ic->c_rf;
307     nvdwtype         = fr->ntype;
308     vdwparam         = fr->nbfp;
309     vdwtype          = mdatoms->typeA;
310
311     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
312     rcutoff          = fr->rcoulomb;
313     rcutoff2         = rcutoff*rcutoff;
314
315     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
316     rvdw             = fr->rvdw;
317
318     outeriter        = 0;
319     inneriter        = 0;
320
321     /* Start outer loop over neighborlists */
322     for(iidx=0; iidx<nri; iidx++)
323     {
324         /* Load shift vector for this list */
325         i_shift_offset   = DIM*shiftidx[iidx];
326         shX              = shiftvec[i_shift_offset+XX];
327         shY              = shiftvec[i_shift_offset+YY];
328         shZ              = shiftvec[i_shift_offset+ZZ];
329
330         /* Load limits for loop over neighbors */
331         j_index_start    = jindex[iidx];
332         j_index_end      = jindex[iidx+1];
333
334         /* Get outer coordinate index */
335         inr              = iinr[iidx];
336         i_coord_offset   = DIM*inr;
337
338         /* Load i particle coords and add shift vector */
339         ix0              = shX + x[i_coord_offset+DIM*0+XX];
340         iy0              = shY + x[i_coord_offset+DIM*0+YY];
341         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
342
343         fix0             = 0.0;
344         fiy0             = 0.0;
345         fiz0             = 0.0;
346
347         /* Load parameters for i particles */
348         iq0              = facel*charge[inr+0];
349         vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
350
351         /* Start inner kernel loop */
352         for(jidx=j_index_start; jidx<j_index_end; jidx++)
353         {
354             /* Get j neighbor index, and coordinate index */
355             jnr              = jjnr[jidx];
356             j_coord_offset   = DIM*jnr;
357
358             /* load j atom coordinates */
359             jx0              = x[j_coord_offset+DIM*0+XX];
360             jy0              = x[j_coord_offset+DIM*0+YY];
361             jz0              = x[j_coord_offset+DIM*0+ZZ];
362
363             /* Calculate displacement vector */
364             dx00             = ix0 - jx0;
365             dy00             = iy0 - jy0;
366             dz00             = iz0 - jz0;
367
368             /* Calculate squared distance and things based on it */
369             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
370
371             rinv00           = gmx_invsqrt(rsq00);
372
373             rinvsq00         = rinv00*rinv00;
374
375             /* Load parameters for j particles */
376             jq0              = charge[jnr+0];
377             vdwjidx0         = 3*vdwtype[jnr+0];
378
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             if (rsq00<rcutoff2)
384             {
385
386             r00              = rsq00*rinv00;
387
388             qq00             = iq0*jq0;
389             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
390             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
391             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
392
393             /* REACTION-FIELD ELECTROSTATICS */
394             felec            = qq00*(rinv00*rinvsq00-krf2);
395
396             /* BUCKINGHAM DISPERSION/REPULSION */
397             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
398             vvdw6            = c6_00*rinvsix;
399             br               = cexp2_00*r00;
400             vvdwexp          = cexp1_00*exp(-br);
401             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
402
403             fscal            = felec+fvdw;
404
405             /* Calculate temporary vectorial force */
406             tx               = fscal*dx00;
407             ty               = fscal*dy00;
408             tz               = fscal*dz00;
409
410             /* Update vectorial force */
411             fix0            += tx;
412             fiy0            += ty;
413             fiz0            += tz;
414             f[j_coord_offset+DIM*0+XX] -= tx;
415             f[j_coord_offset+DIM*0+YY] -= ty;
416             f[j_coord_offset+DIM*0+ZZ] -= tz;
417
418             }
419
420             /* Inner loop uses 63 flops */
421         }
422         /* End of innermost loop */
423
424         tx = ty = tz = 0;
425         f[i_coord_offset+DIM*0+XX] += fix0;
426         f[i_coord_offset+DIM*0+YY] += fiy0;
427         f[i_coord_offset+DIM*0+ZZ] += fiz0;
428         tx                         += fix0;
429         ty                         += fiy0;
430         tz                         += fiz0;
431         fshift[i_shift_offset+XX]  += tx;
432         fshift[i_shift_offset+YY]  += ty;
433         fshift[i_shift_offset+ZZ]  += tz;
434
435         /* Increment number of inner iterations */
436         inneriter                  += j_index_end - j_index_start;
437
438         /* Outer loop uses 13 flops */
439     }
440
441     /* Increment number of outer iterations */
442     outeriter        += nri;
443
444     /* Update outer/inner flops */
445
446     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*63);
447 }