Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecNone_VdwLJ_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_c
51  * Electrostatics interaction: None
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwLJ_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     int              nvdwtype;
78     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81
82     x                = xx[0];
83     f                = ff[0];
84
85     nri              = nlist->nri;
86     iinr             = nlist->iinr;
87     jindex           = nlist->jindex;
88     jjnr             = nlist->jjnr;
89     shiftidx         = nlist->shift;
90     gid              = nlist->gid;
91     shiftvec         = fr->shift_vec[0];
92     fshift           = fr->fshift[0];
93     nvdwtype         = fr->ntype;
94     vdwparam         = fr->nbfp;
95     vdwtype          = mdatoms->typeA;
96
97     outeriter        = 0;
98     inneriter        = 0;
99
100     /* Start outer loop over neighborlists */
101     for(iidx=0; iidx<nri; iidx++)
102     {
103         /* Load shift vector for this list */
104         i_shift_offset   = DIM*shiftidx[iidx];
105         shX              = shiftvec[i_shift_offset+XX];
106         shY              = shiftvec[i_shift_offset+YY];
107         shZ              = shiftvec[i_shift_offset+ZZ];
108
109         /* Load limits for loop over neighbors */
110         j_index_start    = jindex[iidx];
111         j_index_end      = jindex[iidx+1];
112
113         /* Get outer coordinate index */
114         inr              = iinr[iidx];
115         i_coord_offset   = DIM*inr;
116
117         /* Load i particle coords and add shift vector */
118         ix0              = shX + x[i_coord_offset+DIM*0+XX];
119         iy0              = shY + x[i_coord_offset+DIM*0+YY];
120         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
121
122         fix0             = 0.0;
123         fiy0             = 0.0;
124         fiz0             = 0.0;
125
126         /* Load parameters for i particles */
127         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
128
129         /* Reset potential sums */
130         vvdwsum          = 0.0;
131
132         /* Start inner kernel loop */
133         for(jidx=j_index_start; jidx<j_index_end; jidx++)
134         {
135             /* Get j neighbor index, and coordinate index */
136             jnr              = jjnr[jidx];
137             j_coord_offset   = DIM*jnr;
138
139             /* load j atom coordinates */
140             jx0              = x[j_coord_offset+DIM*0+XX];
141             jy0              = x[j_coord_offset+DIM*0+YY];
142             jz0              = x[j_coord_offset+DIM*0+ZZ];
143
144             /* Calculate displacement vector */
145             dx00             = ix0 - jx0;
146             dy00             = iy0 - jy0;
147             dz00             = iz0 - jz0;
148
149             /* Calculate squared distance and things based on it */
150             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
151
152             rinvsq00         = 1.0/rsq00;
153
154             /* Load parameters for j particles */
155             vdwjidx0         = 2*vdwtype[jnr+0];
156
157             /**************************
158              * CALCULATE INTERACTIONS *
159              **************************/
160
161             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
162             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
163
164             /* LENNARD-JONES DISPERSION/REPULSION */
165
166             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
167             vvdw6            = c6_00*rinvsix;
168             vvdw12           = c12_00*rinvsix*rinvsix;
169             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
170             fvdw             = (vvdw12-vvdw6)*rinvsq00;
171
172             /* Update potential sums from outer loop */
173             vvdwsum         += vvdw;
174
175             fscal            = fvdw;
176
177             /* Calculate temporary vectorial force */
178             tx               = fscal*dx00;
179             ty               = fscal*dy00;
180             tz               = fscal*dz00;
181
182             /* Update vectorial force */
183             fix0            += tx;
184             fiy0            += ty;
185             fiz0            += tz;
186             f[j_coord_offset+DIM*0+XX] -= tx;
187             f[j_coord_offset+DIM*0+YY] -= ty;
188             f[j_coord_offset+DIM*0+ZZ] -= tz;
189
190             /* Inner loop uses 32 flops */
191         }
192         /* End of innermost loop */
193
194         tx = ty = tz = 0;
195         f[i_coord_offset+DIM*0+XX] += fix0;
196         f[i_coord_offset+DIM*0+YY] += fiy0;
197         f[i_coord_offset+DIM*0+ZZ] += fiz0;
198         tx                         += fix0;
199         ty                         += fiy0;
200         tz                         += fiz0;
201         fshift[i_shift_offset+XX]  += tx;
202         fshift[i_shift_offset+YY]  += ty;
203         fshift[i_shift_offset+ZZ]  += tz;
204
205         ggid                        = gid[iidx];
206         /* Update potential energies */
207         kernel_data->energygrp_vdw[ggid] += vvdwsum;
208
209         /* Increment number of inner iterations */
210         inneriter                  += j_index_end - j_index_start;
211
212         /* Outer loop uses 13 flops */
213     }
214
215     /* Increment number of outer iterations */
216     outeriter        += nri;
217
218     /* Update outer/inner flops */
219
220     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*13 + inneriter*32);
221 }
222 /*
223  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_c
224  * Electrostatics interaction: None
225  * VdW interaction:            LennardJones
226  * Geometry:                   Particle-Particle
227  * Calculate force/pot:        Force
228  */
229 void
230 nb_kernel_ElecNone_VdwLJ_GeomP1P1_F_c
231                     (t_nblist                    * gmx_restrict       nlist,
232                      rvec                        * gmx_restrict          xx,
233                      rvec                        * gmx_restrict          ff,
234                      t_forcerec                  * gmx_restrict          fr,
235                      t_mdatoms                   * gmx_restrict     mdatoms,
236                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
237                      t_nrnb                      * gmx_restrict        nrnb)
238 {
239     int              i_shift_offset,i_coord_offset,j_coord_offset;
240     int              j_index_start,j_index_end;
241     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
242     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
243     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
244     real             *shiftvec,*fshift,*x,*f;
245     int              vdwioffset0;
246     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
247     int              vdwjidx0;
248     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
249     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
250     int              nvdwtype;
251     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
252     int              *vdwtype;
253     real             *vdwparam;
254
255     x                = xx[0];
256     f                = ff[0];
257
258     nri              = nlist->nri;
259     iinr             = nlist->iinr;
260     jindex           = nlist->jindex;
261     jjnr             = nlist->jjnr;
262     shiftidx         = nlist->shift;
263     gid              = nlist->gid;
264     shiftvec         = fr->shift_vec[0];
265     fshift           = fr->fshift[0];
266     nvdwtype         = fr->ntype;
267     vdwparam         = fr->nbfp;
268     vdwtype          = mdatoms->typeA;
269
270     outeriter        = 0;
271     inneriter        = 0;
272
273     /* Start outer loop over neighborlists */
274     for(iidx=0; iidx<nri; iidx++)
275     {
276         /* Load shift vector for this list */
277         i_shift_offset   = DIM*shiftidx[iidx];
278         shX              = shiftvec[i_shift_offset+XX];
279         shY              = shiftvec[i_shift_offset+YY];
280         shZ              = shiftvec[i_shift_offset+ZZ];
281
282         /* Load limits for loop over neighbors */
283         j_index_start    = jindex[iidx];
284         j_index_end      = jindex[iidx+1];
285
286         /* Get outer coordinate index */
287         inr              = iinr[iidx];
288         i_coord_offset   = DIM*inr;
289
290         /* Load i particle coords and add shift vector */
291         ix0              = shX + x[i_coord_offset+DIM*0+XX];
292         iy0              = shY + x[i_coord_offset+DIM*0+YY];
293         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
294
295         fix0             = 0.0;
296         fiy0             = 0.0;
297         fiz0             = 0.0;
298
299         /* Load parameters for i particles */
300         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
301
302         /* Start inner kernel loop */
303         for(jidx=j_index_start; jidx<j_index_end; jidx++)
304         {
305             /* Get j neighbor index, and coordinate index */
306             jnr              = jjnr[jidx];
307             j_coord_offset   = DIM*jnr;
308
309             /* load j atom coordinates */
310             jx0              = x[j_coord_offset+DIM*0+XX];
311             jy0              = x[j_coord_offset+DIM*0+YY];
312             jz0              = x[j_coord_offset+DIM*0+ZZ];
313
314             /* Calculate displacement vector */
315             dx00             = ix0 - jx0;
316             dy00             = iy0 - jy0;
317             dz00             = iz0 - jz0;
318
319             /* Calculate squared distance and things based on it */
320             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
321
322             rinvsq00         = 1.0/rsq00;
323
324             /* Load parameters for j particles */
325             vdwjidx0         = 2*vdwtype[jnr+0];
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
332             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
333
334             /* LENNARD-JONES DISPERSION/REPULSION */
335
336             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
337             fvdw             = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
338
339             fscal            = fvdw;
340
341             /* Calculate temporary vectorial force */
342             tx               = fscal*dx00;
343             ty               = fscal*dy00;
344             tz               = fscal*dz00;
345
346             /* Update vectorial force */
347             fix0            += tx;
348             fiy0            += ty;
349             fiz0            += tz;
350             f[j_coord_offset+DIM*0+XX] -= tx;
351             f[j_coord_offset+DIM*0+YY] -= ty;
352             f[j_coord_offset+DIM*0+ZZ] -= tz;
353
354             /* Inner loop uses 27 flops */
355         }
356         /* End of innermost loop */
357
358         tx = ty = tz = 0;
359         f[i_coord_offset+DIM*0+XX] += fix0;
360         f[i_coord_offset+DIM*0+YY] += fiy0;
361         f[i_coord_offset+DIM*0+ZZ] += fiz0;
362         tx                         += fix0;
363         ty                         += fiy0;
364         tz                         += fiz0;
365         fshift[i_shift_offset+XX]  += tx;
366         fshift[i_shift_offset+YY]  += ty;
367         fshift[i_shift_offset+ZZ]  += tz;
368
369         /* Increment number of inner iterations */
370         inneriter                  += j_index_end - j_index_start;
371
372         /* Outer loop uses 12 flops */
373     }
374
375     /* Increment number of outer iterations */
376     outeriter        += nri;
377
378     /* Update outer/inner flops */
379
380     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*12 + inneriter*27);
381 }