Remove no-inline-max-size and suppress remark
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecNone_VdwBham_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwBham_GeomP1P1_VF_c
51  * Electrostatics interaction: None
52  * VdW interaction:            Buckingham
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecNone_VdwBham_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     int              nvdwtype;
78     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81
82     x                = xx[0];
83     f                = ff[0];
84
85     nri              = nlist->nri;
86     iinr             = nlist->iinr;
87     jindex           = nlist->jindex;
88     jjnr             = nlist->jjnr;
89     shiftidx         = nlist->shift;
90     gid              = nlist->gid;
91     shiftvec         = fr->shift_vec[0];
92     fshift           = fr->fshift[0];
93     nvdwtype         = fr->ntype;
94     vdwparam         = fr->nbfp;
95     vdwtype          = mdatoms->typeA;
96
97     outeriter        = 0;
98     inneriter        = 0;
99
100     /* Start outer loop over neighborlists */
101     for(iidx=0; iidx<nri; iidx++)
102     {
103         /* Load shift vector for this list */
104         i_shift_offset   = DIM*shiftidx[iidx];
105         shX              = shiftvec[i_shift_offset+XX];
106         shY              = shiftvec[i_shift_offset+YY];
107         shZ              = shiftvec[i_shift_offset+ZZ];
108
109         /* Load limits for loop over neighbors */
110         j_index_start    = jindex[iidx];
111         j_index_end      = jindex[iidx+1];
112
113         /* Get outer coordinate index */
114         inr              = iinr[iidx];
115         i_coord_offset   = DIM*inr;
116
117         /* Load i particle coords and add shift vector */
118         ix0              = shX + x[i_coord_offset+DIM*0+XX];
119         iy0              = shY + x[i_coord_offset+DIM*0+YY];
120         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
121
122         fix0             = 0.0;
123         fiy0             = 0.0;
124         fiz0             = 0.0;
125
126         /* Load parameters for i particles */
127         vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
128
129         /* Reset potential sums */
130         vvdwsum          = 0.0;
131
132         /* Start inner kernel loop */
133         for(jidx=j_index_start; jidx<j_index_end; jidx++)
134         {
135             /* Get j neighbor index, and coordinate index */
136             jnr              = jjnr[jidx];
137             j_coord_offset   = DIM*jnr;
138
139             /* load j atom coordinates */
140             jx0              = x[j_coord_offset+DIM*0+XX];
141             jy0              = x[j_coord_offset+DIM*0+YY];
142             jz0              = x[j_coord_offset+DIM*0+ZZ];
143
144             /* Calculate displacement vector */
145             dx00             = ix0 - jx0;
146             dy00             = iy0 - jy0;
147             dz00             = iz0 - jz0;
148
149             /* Calculate squared distance and things based on it */
150             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
151
152             rinv00           = gmx_invsqrt(rsq00);
153
154             rinvsq00         = rinv00*rinv00;
155
156             /* Load parameters for j particles */
157             vdwjidx0         = 3*vdwtype[jnr+0];
158
159             /**************************
160              * CALCULATE INTERACTIONS *
161              **************************/
162
163             r00              = rsq00*rinv00;
164
165             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
166             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
167             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
168
169             /* BUCKINGHAM DISPERSION/REPULSION */
170             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
171             vvdw6            = c6_00*rinvsix;
172             br               = cexp2_00*r00;
173             vvdwexp          = cexp1_00*exp(-br);
174             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
175             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
176
177             /* Update potential sums from outer loop */
178             vvdwsum         += vvdw;
179
180             fscal            = fvdw;
181
182             /* Calculate temporary vectorial force */
183             tx               = fscal*dx00;
184             ty               = fscal*dy00;
185             tz               = fscal*dz00;
186
187             /* Update vectorial force */
188             fix0            += tx;
189             fiy0            += ty;
190             fiz0            += tz;
191             f[j_coord_offset+DIM*0+XX] -= tx;
192             f[j_coord_offset+DIM*0+YY] -= ty;
193             f[j_coord_offset+DIM*0+ZZ] -= tz;
194
195             /* Inner loop uses 61 flops */
196         }
197         /* End of innermost loop */
198
199         tx = ty = tz = 0;
200         f[i_coord_offset+DIM*0+XX] += fix0;
201         f[i_coord_offset+DIM*0+YY] += fiy0;
202         f[i_coord_offset+DIM*0+ZZ] += fiz0;
203         tx                         += fix0;
204         ty                         += fiy0;
205         tz                         += fiz0;
206         fshift[i_shift_offset+XX]  += tx;
207         fshift[i_shift_offset+YY]  += ty;
208         fshift[i_shift_offset+ZZ]  += tz;
209
210         ggid                        = gid[iidx];
211         /* Update potential energies */
212         kernel_data->energygrp_vdw[ggid] += vvdwsum;
213
214         /* Increment number of inner iterations */
215         inneriter                  += j_index_end - j_index_start;
216
217         /* Outer loop uses 13 flops */
218     }
219
220     /* Increment number of outer iterations */
221     outeriter        += nri;
222
223     /* Update outer/inner flops */
224
225     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*13 + inneriter*61);
226 }
227 /*
228  * Gromacs nonbonded kernel:   nb_kernel_ElecNone_VdwBham_GeomP1P1_F_c
229  * Electrostatics interaction: None
230  * VdW interaction:            Buckingham
231  * Geometry:                   Particle-Particle
232  * Calculate force/pot:        Force
233  */
234 void
235 nb_kernel_ElecNone_VdwBham_GeomP1P1_F_c
236                     (t_nblist                    * gmx_restrict       nlist,
237                      rvec                        * gmx_restrict          xx,
238                      rvec                        * gmx_restrict          ff,
239                      t_forcerec                  * gmx_restrict          fr,
240                      t_mdatoms                   * gmx_restrict     mdatoms,
241                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
242                      t_nrnb                      * gmx_restrict        nrnb)
243 {
244     int              i_shift_offset,i_coord_offset,j_coord_offset;
245     int              j_index_start,j_index_end;
246     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
247     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
248     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
249     real             *shiftvec,*fshift,*x,*f;
250     int              vdwioffset0;
251     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
252     int              vdwjidx0;
253     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
254     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
255     int              nvdwtype;
256     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
257     int              *vdwtype;
258     real             *vdwparam;
259
260     x                = xx[0];
261     f                = ff[0];
262
263     nri              = nlist->nri;
264     iinr             = nlist->iinr;
265     jindex           = nlist->jindex;
266     jjnr             = nlist->jjnr;
267     shiftidx         = nlist->shift;
268     gid              = nlist->gid;
269     shiftvec         = fr->shift_vec[0];
270     fshift           = fr->fshift[0];
271     nvdwtype         = fr->ntype;
272     vdwparam         = fr->nbfp;
273     vdwtype          = mdatoms->typeA;
274
275     outeriter        = 0;
276     inneriter        = 0;
277
278     /* Start outer loop over neighborlists */
279     for(iidx=0; iidx<nri; iidx++)
280     {
281         /* Load shift vector for this list */
282         i_shift_offset   = DIM*shiftidx[iidx];
283         shX              = shiftvec[i_shift_offset+XX];
284         shY              = shiftvec[i_shift_offset+YY];
285         shZ              = shiftvec[i_shift_offset+ZZ];
286
287         /* Load limits for loop over neighbors */
288         j_index_start    = jindex[iidx];
289         j_index_end      = jindex[iidx+1];
290
291         /* Get outer coordinate index */
292         inr              = iinr[iidx];
293         i_coord_offset   = DIM*inr;
294
295         /* Load i particle coords and add shift vector */
296         ix0              = shX + x[i_coord_offset+DIM*0+XX];
297         iy0              = shY + x[i_coord_offset+DIM*0+YY];
298         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
299
300         fix0             = 0.0;
301         fiy0             = 0.0;
302         fiz0             = 0.0;
303
304         /* Load parameters for i particles */
305         vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
306
307         /* Start inner kernel loop */
308         for(jidx=j_index_start; jidx<j_index_end; jidx++)
309         {
310             /* Get j neighbor index, and coordinate index */
311             jnr              = jjnr[jidx];
312             j_coord_offset   = DIM*jnr;
313
314             /* load j atom coordinates */
315             jx0              = x[j_coord_offset+DIM*0+XX];
316             jy0              = x[j_coord_offset+DIM*0+YY];
317             jz0              = x[j_coord_offset+DIM*0+ZZ];
318
319             /* Calculate displacement vector */
320             dx00             = ix0 - jx0;
321             dy00             = iy0 - jy0;
322             dz00             = iz0 - jz0;
323
324             /* Calculate squared distance and things based on it */
325             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
326
327             rinv00           = gmx_invsqrt(rsq00);
328
329             rinvsq00         = rinv00*rinv00;
330
331             /* Load parameters for j particles */
332             vdwjidx0         = 3*vdwtype[jnr+0];
333
334             /**************************
335              * CALCULATE INTERACTIONS *
336              **************************/
337
338             r00              = rsq00*rinv00;
339
340             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
341             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
342             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
343
344             /* BUCKINGHAM DISPERSION/REPULSION */
345             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
346             vvdw6            = c6_00*rinvsix;
347             br               = cexp2_00*r00;
348             vvdwexp          = cexp1_00*exp(-br);
349             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
350
351             fscal            = fvdw;
352
353             /* Calculate temporary vectorial force */
354             tx               = fscal*dx00;
355             ty               = fscal*dy00;
356             tz               = fscal*dz00;
357
358             /* Update vectorial force */
359             fix0            += tx;
360             fiy0            += ty;
361             fiz0            += tz;
362             f[j_coord_offset+DIM*0+XX] -= tx;
363             f[j_coord_offset+DIM*0+YY] -= ty;
364             f[j_coord_offset+DIM*0+ZZ] -= tz;
365
366             /* Inner loop uses 58 flops */
367         }
368         /* End of innermost loop */
369
370         tx = ty = tz = 0;
371         f[i_coord_offset+DIM*0+XX] += fix0;
372         f[i_coord_offset+DIM*0+YY] += fiy0;
373         f[i_coord_offset+DIM*0+ZZ] += fiz0;
374         tx                         += fix0;
375         ty                         += fiy0;
376         tz                         += fiz0;
377         fshift[i_shift_offset+XX]  += tx;
378         fshift[i_shift_offset+YY]  += ty;
379         fshift[i_shift_offset+ZZ]  += tz;
380
381         /* Increment number of inner iterations */
382         inneriter                  += j_index_end - j_index_start;
383
384         /* Outer loop uses 12 flops */
385     }
386
387     /* Increment number of outer iterations */
388     outeriter        += nri;
389
390     /* Update outer/inner flops */
391
392     inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*12 + inneriter*58);
393 }