d7cc1f7160dd2e45b98bff8fee7906180cbc681d
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecGB_VdwNone_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_c
51  * Electrostatics interaction: GeneralizedBorn
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecGB_VdwNone_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              gbitab;
80     real             vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
81     real             *invsqrta,*dvda,*gbtab;
82     int              vfitab;
83     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
84     real             *vftab;
85
86     x                = xx[0];
87     f                = ff[0];
88
89     nri              = nlist->nri;
90     iinr             = nlist->iinr;
91     jindex           = nlist->jindex;
92     jjnr             = nlist->jjnr;
93     shiftidx         = nlist->shift;
94     gid              = nlist->gid;
95     shiftvec         = fr->shift_vec[0];
96     fshift           = fr->fshift[0];
97     facel            = fr->epsfac;
98     charge           = mdatoms->chargeA;
99
100     invsqrta         = fr->invsqrta;
101     dvda             = fr->dvda;
102     gbtabscale       = fr->gbtab.scale;
103     gbtab            = fr->gbtab.data;
104     gbinvepsdiff     = (1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent);
105
106     outeriter        = 0;
107     inneriter        = 0;
108
109     /* Start outer loop over neighborlists */
110     for(iidx=0; iidx<nri; iidx++)
111     {
112         /* Load shift vector for this list */
113         i_shift_offset   = DIM*shiftidx[iidx];
114         shX              = shiftvec[i_shift_offset+XX];
115         shY              = shiftvec[i_shift_offset+YY];
116         shZ              = shiftvec[i_shift_offset+ZZ];
117
118         /* Load limits for loop over neighbors */
119         j_index_start    = jindex[iidx];
120         j_index_end      = jindex[iidx+1];
121
122         /* Get outer coordinate index */
123         inr              = iinr[iidx];
124         i_coord_offset   = DIM*inr;
125
126         /* Load i particle coords and add shift vector */
127         ix0              = shX + x[i_coord_offset+DIM*0+XX];
128         iy0              = shY + x[i_coord_offset+DIM*0+YY];
129         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
130
131         fix0             = 0.0;
132         fiy0             = 0.0;
133         fiz0             = 0.0;
134
135         /* Load parameters for i particles */
136         iq0              = facel*charge[inr+0];
137         isai0            = invsqrta[inr+0];
138
139         /* Reset potential sums */
140         velecsum         = 0.0;
141         vgbsum           = 0.0;
142         dvdasum          = 0.0;
143
144         /* Start inner kernel loop */
145         for(jidx=j_index_start; jidx<j_index_end; jidx++)
146         {
147             /* Get j neighbor index, and coordinate index */
148             jnr              = jjnr[jidx];
149             j_coord_offset   = DIM*jnr;
150
151             /* load j atom coordinates */
152             jx0              = x[j_coord_offset+DIM*0+XX];
153             jy0              = x[j_coord_offset+DIM*0+YY];
154             jz0              = x[j_coord_offset+DIM*0+ZZ];
155
156             /* Calculate displacement vector */
157             dx00             = ix0 - jx0;
158             dy00             = iy0 - jy0;
159             dz00             = iz0 - jz0;
160
161             /* Calculate squared distance and things based on it */
162             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
163
164             rinv00           = gmx_invsqrt(rsq00);
165
166             /* Load parameters for j particles */
167             jq0              = charge[jnr+0];
168             isaj0           = invsqrta[jnr+0];
169
170             /**************************
171              * CALCULATE INTERACTIONS *
172              **************************/
173
174             r00              = rsq00*rinv00;
175
176             qq00             = iq0*jq0;
177
178             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
179             isaprod          = isai0*isaj0;
180             gbqqfactor       = isaprod*(-qq00)*gbinvepsdiff;
181             gbscale          = isaprod*gbtabscale;
182             dvdaj            = dvda[jnr+0];
183
184             /* Calculate generalized born table index - this is a separate table from the normal one,
185              * but we use the same procedure by multiplying r with scale and truncating to integer.
186              */
187             rt               = r00*gbscale;
188             gbitab           = rt;
189             gbeps            = rt-gbitab;
190             gbitab           = 4*gbitab;
191
192             Y                = gbtab[gbitab];
193             F                = gbtab[gbitab+1];
194             Geps             = gbeps*gbtab[gbitab+2];
195             Heps2            = gbeps*gbeps*gbtab[gbitab+3];
196             Fp               = F+Geps+Heps2;
197             VV               = Y+gbeps*Fp;
198             vgb              = gbqqfactor*VV;
199
200             FF               = Fp+Geps+2.0*Heps2;
201             fgb              = gbqqfactor*FF*gbscale;
202             dvdatmp          = -0.5*(vgb+fgb*r00);
203             dvdasum          = dvdasum + dvdatmp;
204             dvda[jnr]        = dvdaj+dvdatmp*isaj0*isaj0;
205             velec            = qq00*rinv00;
206             felec            = (velec*rinv00-fgb)*rinv00;
207
208             /* Update potential sums from outer loop */
209             velecsum        += velec;
210             vgbsum          += vgb;
211
212             fscal            = felec;
213
214             /* Calculate temporary vectorial force */
215             tx               = fscal*dx00;
216             ty               = fscal*dy00;
217             tz               = fscal*dz00;
218
219             /* Update vectorial force */
220             fix0            += tx;
221             fiy0            += ty;
222             fiz0            += tz;
223             f[j_coord_offset+DIM*0+XX] -= tx;
224             f[j_coord_offset+DIM*0+YY] -= ty;
225             f[j_coord_offset+DIM*0+ZZ] -= tz;
226
227             /* Inner loop uses 58 flops */
228         }
229         /* End of innermost loop */
230
231         tx = ty = tz = 0;
232         f[i_coord_offset+DIM*0+XX] += fix0;
233         f[i_coord_offset+DIM*0+YY] += fiy0;
234         f[i_coord_offset+DIM*0+ZZ] += fiz0;
235         tx                         += fix0;
236         ty                         += fiy0;
237         tz                         += fiz0;
238         fshift[i_shift_offset+XX]  += tx;
239         fshift[i_shift_offset+YY]  += ty;
240         fshift[i_shift_offset+ZZ]  += tz;
241
242         ggid                        = gid[iidx];
243         /* Update potential energies */
244         kernel_data->energygrp_elec[ggid] += velecsum;
245         kernel_data->energygrp_polarization[ggid] += vgbsum;
246         dvda[inr]                   = dvda[inr] + dvdasum*isai0*isai0;
247
248         /* Increment number of inner iterations */
249         inneriter                  += j_index_end - j_index_start;
250
251         /* Outer loop uses 15 flops */
252     }
253
254     /* Increment number of outer iterations */
255     outeriter        += nri;
256
257     /* Update outer/inner flops */
258
259     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*15 + inneriter*58);
260 }
261 /*
262  * Gromacs nonbonded kernel:   nb_kernel_ElecGB_VdwNone_GeomP1P1_F_c
263  * Electrostatics interaction: GeneralizedBorn
264  * VdW interaction:            None
265  * Geometry:                   Particle-Particle
266  * Calculate force/pot:        Force
267  */
268 void
269 nb_kernel_ElecGB_VdwNone_GeomP1P1_F_c
270                     (t_nblist                    * gmx_restrict       nlist,
271                      rvec                        * gmx_restrict          xx,
272                      rvec                        * gmx_restrict          ff,
273                      t_forcerec                  * gmx_restrict          fr,
274                      t_mdatoms                   * gmx_restrict     mdatoms,
275                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
276                      t_nrnb                      * gmx_restrict        nrnb)
277 {
278     int              i_shift_offset,i_coord_offset,j_coord_offset;
279     int              j_index_start,j_index_end;
280     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
281     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
282     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
283     real             *shiftvec,*fshift,*x,*f;
284     int              vdwioffset0;
285     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
286     int              vdwjidx0;
287     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
288     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
289     real             velec,felec,velecsum,facel,crf,krf,krf2;
290     real             *charge;
291     int              gbitab;
292     real             vgb,fgb,vgbsum,dvdasum,gbscale,gbtabscale,isaprod,gbqqfactor,gbinvepsdiff,dvdaj,gbeps,dvdatmp;
293     real             *invsqrta,*dvda,*gbtab;
294     int              vfitab;
295     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
296     real             *vftab;
297
298     x                = xx[0];
299     f                = ff[0];
300
301     nri              = nlist->nri;
302     iinr             = nlist->iinr;
303     jindex           = nlist->jindex;
304     jjnr             = nlist->jjnr;
305     shiftidx         = nlist->shift;
306     gid              = nlist->gid;
307     shiftvec         = fr->shift_vec[0];
308     fshift           = fr->fshift[0];
309     facel            = fr->epsfac;
310     charge           = mdatoms->chargeA;
311
312     invsqrta         = fr->invsqrta;
313     dvda             = fr->dvda;
314     gbtabscale       = fr->gbtab.scale;
315     gbtab            = fr->gbtab.data;
316     gbinvepsdiff     = (1.0/fr->epsilon_r) - (1.0/fr->gb_epsilon_solvent);
317
318     outeriter        = 0;
319     inneriter        = 0;
320
321     /* Start outer loop over neighborlists */
322     for(iidx=0; iidx<nri; iidx++)
323     {
324         /* Load shift vector for this list */
325         i_shift_offset   = DIM*shiftidx[iidx];
326         shX              = shiftvec[i_shift_offset+XX];
327         shY              = shiftvec[i_shift_offset+YY];
328         shZ              = shiftvec[i_shift_offset+ZZ];
329
330         /* Load limits for loop over neighbors */
331         j_index_start    = jindex[iidx];
332         j_index_end      = jindex[iidx+1];
333
334         /* Get outer coordinate index */
335         inr              = iinr[iidx];
336         i_coord_offset   = DIM*inr;
337
338         /* Load i particle coords and add shift vector */
339         ix0              = shX + x[i_coord_offset+DIM*0+XX];
340         iy0              = shY + x[i_coord_offset+DIM*0+YY];
341         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
342
343         fix0             = 0.0;
344         fiy0             = 0.0;
345         fiz0             = 0.0;
346
347         /* Load parameters for i particles */
348         iq0              = facel*charge[inr+0];
349         isai0            = invsqrta[inr+0];
350
351         dvdasum          = 0.0;
352
353         /* Start inner kernel loop */
354         for(jidx=j_index_start; jidx<j_index_end; jidx++)
355         {
356             /* Get j neighbor index, and coordinate index */
357             jnr              = jjnr[jidx];
358             j_coord_offset   = DIM*jnr;
359
360             /* load j atom coordinates */
361             jx0              = x[j_coord_offset+DIM*0+XX];
362             jy0              = x[j_coord_offset+DIM*0+YY];
363             jz0              = x[j_coord_offset+DIM*0+ZZ];
364
365             /* Calculate displacement vector */
366             dx00             = ix0 - jx0;
367             dy00             = iy0 - jy0;
368             dz00             = iz0 - jz0;
369
370             /* Calculate squared distance and things based on it */
371             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
372
373             rinv00           = gmx_invsqrt(rsq00);
374
375             /* Load parameters for j particles */
376             jq0              = charge[jnr+0];
377             isaj0           = invsqrta[jnr+0];
378
379             /**************************
380              * CALCULATE INTERACTIONS *
381              **************************/
382
383             r00              = rsq00*rinv00;
384
385             qq00             = iq0*jq0;
386
387             /* GENERALIZED BORN AND COULOMB ELECTROSTATICS */
388             isaprod          = isai0*isaj0;
389             gbqqfactor       = isaprod*(-qq00)*gbinvepsdiff;
390             gbscale          = isaprod*gbtabscale;
391             dvdaj            = dvda[jnr+0];
392
393             /* Calculate generalized born table index - this is a separate table from the normal one,
394              * but we use the same procedure by multiplying r with scale and truncating to integer.
395              */
396             rt               = r00*gbscale;
397             gbitab           = rt;
398             gbeps            = rt-gbitab;
399             gbitab           = 4*gbitab;
400
401             Y                = gbtab[gbitab];
402             F                = gbtab[gbitab+1];
403             Geps             = gbeps*gbtab[gbitab+2];
404             Heps2            = gbeps*gbeps*gbtab[gbitab+3];
405             Fp               = F+Geps+Heps2;
406             VV               = Y+gbeps*Fp;
407             vgb              = gbqqfactor*VV;
408
409             FF               = Fp+Geps+2.0*Heps2;
410             fgb              = gbqqfactor*FF*gbscale;
411             dvdatmp          = -0.5*(vgb+fgb*r00);
412             dvdasum          = dvdasum + dvdatmp;
413             dvda[jnr]        = dvdaj+dvdatmp*isaj0*isaj0;
414             velec            = qq00*rinv00;
415             felec            = (velec*rinv00-fgb)*rinv00;
416
417             fscal            = felec;
418
419             /* Calculate temporary vectorial force */
420             tx               = fscal*dx00;
421             ty               = fscal*dy00;
422             tz               = fscal*dz00;
423
424             /* Update vectorial force */
425             fix0            += tx;
426             fiy0            += ty;
427             fiz0            += tz;
428             f[j_coord_offset+DIM*0+XX] -= tx;
429             f[j_coord_offset+DIM*0+YY] -= ty;
430             f[j_coord_offset+DIM*0+ZZ] -= tz;
431
432             /* Inner loop uses 56 flops */
433         }
434         /* End of innermost loop */
435
436         tx = ty = tz = 0;
437         f[i_coord_offset+DIM*0+XX] += fix0;
438         f[i_coord_offset+DIM*0+YY] += fiy0;
439         f[i_coord_offset+DIM*0+ZZ] += fiz0;
440         tx                         += fix0;
441         ty                         += fiy0;
442         tz                         += fiz0;
443         fshift[i_shift_offset+XX]  += tx;
444         fshift[i_shift_offset+YY]  += ty;
445         fshift[i_shift_offset+ZZ]  += tz;
446
447         dvda[inr]                   = dvda[inr] + dvdasum*isai0*isai0;
448
449         /* Increment number of inner iterations */
450         inneriter                  += j_index_end - j_index_start;
451
452         /* Outer loop uses 13 flops */
453     }
454
455     /* Increment number of outer iterations */
456     outeriter        += nri;
457
458     /* Update outer/inner flops */
459
460     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*13 + inneriter*56);
461 }