Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwNone_GeomW4W4_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_c
49  * Electrostatics interaction: Ewald
50  * VdW interaction:            None
51  * Geometry:                   Water4-Water4
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecEw_VdwNone_GeomW4W4_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset1;
71     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
72     int              vdwioffset2;
73     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
74     int              vdwioffset3;
75     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
76     int              vdwjidx1;
77     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
78     int              vdwjidx2;
79     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
80     int              vdwjidx3;
81     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
82     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
83     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
84     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
85     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
86     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
87     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
88     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
89     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
90     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
91     real             velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              ewitab;
94     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
95     real             *ewtab;
96
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = fr->epsfac;
109     charge           = mdatoms->chargeA;
110
111     sh_ewald         = fr->ic->sh_ewald;
112     ewtab            = fr->ic->tabq_coul_FDV0;
113     ewtabscale       = fr->ic->tabq_scale;
114     ewtabhalfspace   = 0.5/ewtabscale;
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq1              = facel*charge[inr+1];
119     iq2              = facel*charge[inr+2];
120     iq3              = facel*charge[inr+3];
121
122     jq1              = charge[inr+1];
123     jq2              = charge[inr+2];
124     jq3              = charge[inr+3];
125     qq11             = iq1*jq1;
126     qq12             = iq1*jq2;
127     qq13             = iq1*jq3;
128     qq21             = iq2*jq1;
129     qq22             = iq2*jq2;
130     qq23             = iq2*jq3;
131     qq31             = iq3*jq1;
132     qq32             = iq3*jq2;
133     qq33             = iq3*jq3;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143         shX              = shiftvec[i_shift_offset+XX];
144         shY              = shiftvec[i_shift_offset+YY];
145         shZ              = shiftvec[i_shift_offset+ZZ];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         ix1              = shX + x[i_coord_offset+DIM*1+XX];
157         iy1              = shY + x[i_coord_offset+DIM*1+YY];
158         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
159         ix2              = shX + x[i_coord_offset+DIM*2+XX];
160         iy2              = shY + x[i_coord_offset+DIM*2+YY];
161         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
162         ix3              = shX + x[i_coord_offset+DIM*3+XX];
163         iy3              = shY + x[i_coord_offset+DIM*3+YY];
164         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
165
166         fix1             = 0.0;
167         fiy1             = 0.0;
168         fiz1             = 0.0;
169         fix2             = 0.0;
170         fiy2             = 0.0;
171         fiz2             = 0.0;
172         fix3             = 0.0;
173         fiy3             = 0.0;
174         fiz3             = 0.0;
175
176         /* Reset potential sums */
177         velecsum         = 0.0;
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end; jidx++)
181         {
182             /* Get j neighbor index, and coordinate index */
183             jnr              = jjnr[jidx];
184             j_coord_offset   = DIM*jnr;
185
186             /* load j atom coordinates */
187             jx1              = x[j_coord_offset+DIM*1+XX];
188             jy1              = x[j_coord_offset+DIM*1+YY];
189             jz1              = x[j_coord_offset+DIM*1+ZZ];
190             jx2              = x[j_coord_offset+DIM*2+XX];
191             jy2              = x[j_coord_offset+DIM*2+YY];
192             jz2              = x[j_coord_offset+DIM*2+ZZ];
193             jx3              = x[j_coord_offset+DIM*3+XX];
194             jy3              = x[j_coord_offset+DIM*3+YY];
195             jz3              = x[j_coord_offset+DIM*3+ZZ];
196
197             /* Calculate displacement vector */
198             dx11             = ix1 - jx1;
199             dy11             = iy1 - jy1;
200             dz11             = iz1 - jz1;
201             dx12             = ix1 - jx2;
202             dy12             = iy1 - jy2;
203             dz12             = iz1 - jz2;
204             dx13             = ix1 - jx3;
205             dy13             = iy1 - jy3;
206             dz13             = iz1 - jz3;
207             dx21             = ix2 - jx1;
208             dy21             = iy2 - jy1;
209             dz21             = iz2 - jz1;
210             dx22             = ix2 - jx2;
211             dy22             = iy2 - jy2;
212             dz22             = iz2 - jz2;
213             dx23             = ix2 - jx3;
214             dy23             = iy2 - jy3;
215             dz23             = iz2 - jz3;
216             dx31             = ix3 - jx1;
217             dy31             = iy3 - jy1;
218             dz31             = iz3 - jz1;
219             dx32             = ix3 - jx2;
220             dy32             = iy3 - jy2;
221             dz32             = iz3 - jz2;
222             dx33             = ix3 - jx3;
223             dy33             = iy3 - jy3;
224             dz33             = iz3 - jz3;
225
226             /* Calculate squared distance and things based on it */
227             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
228             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
229             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
230             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
231             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
232             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
233             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
234             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
235             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
236
237             rinv11           = gmx_invsqrt(rsq11);
238             rinv12           = gmx_invsqrt(rsq12);
239             rinv13           = gmx_invsqrt(rsq13);
240             rinv21           = gmx_invsqrt(rsq21);
241             rinv22           = gmx_invsqrt(rsq22);
242             rinv23           = gmx_invsqrt(rsq23);
243             rinv31           = gmx_invsqrt(rsq31);
244             rinv32           = gmx_invsqrt(rsq32);
245             rinv33           = gmx_invsqrt(rsq33);
246
247             rinvsq11         = rinv11*rinv11;
248             rinvsq12         = rinv12*rinv12;
249             rinvsq13         = rinv13*rinv13;
250             rinvsq21         = rinv21*rinv21;
251             rinvsq22         = rinv22*rinv22;
252             rinvsq23         = rinv23*rinv23;
253             rinvsq31         = rinv31*rinv31;
254             rinvsq32         = rinv32*rinv32;
255             rinvsq33         = rinv33*rinv33;
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             r11              = rsq11*rinv11;
262
263             /* EWALD ELECTROSTATICS */
264
265             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
266             ewrt             = r11*ewtabscale;
267             ewitab           = ewrt;
268             eweps            = ewrt-ewitab;
269             ewitab           = 4*ewitab;
270             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
271             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
272             felec            = qq11*rinv11*(rinvsq11-felec);
273
274             /* Update potential sums from outer loop */
275             velecsum        += velec;
276
277             fscal            = felec;
278
279             /* Calculate temporary vectorial force */
280             tx               = fscal*dx11;
281             ty               = fscal*dy11;
282             tz               = fscal*dz11;
283
284             /* Update vectorial force */
285             fix1            += tx;
286             fiy1            += ty;
287             fiz1            += tz;
288             f[j_coord_offset+DIM*1+XX] -= tx;
289             f[j_coord_offset+DIM*1+YY] -= ty;
290             f[j_coord_offset+DIM*1+ZZ] -= tz;
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             r12              = rsq12*rinv12;
297
298             /* EWALD ELECTROSTATICS */
299
300             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
301             ewrt             = r12*ewtabscale;
302             ewitab           = ewrt;
303             eweps            = ewrt-ewitab;
304             ewitab           = 4*ewitab;
305             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
306             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
307             felec            = qq12*rinv12*(rinvsq12-felec);
308
309             /* Update potential sums from outer loop */
310             velecsum        += velec;
311
312             fscal            = felec;
313
314             /* Calculate temporary vectorial force */
315             tx               = fscal*dx12;
316             ty               = fscal*dy12;
317             tz               = fscal*dz12;
318
319             /* Update vectorial force */
320             fix1            += tx;
321             fiy1            += ty;
322             fiz1            += tz;
323             f[j_coord_offset+DIM*2+XX] -= tx;
324             f[j_coord_offset+DIM*2+YY] -= ty;
325             f[j_coord_offset+DIM*2+ZZ] -= tz;
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             r13              = rsq13*rinv13;
332
333             /* EWALD ELECTROSTATICS */
334
335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
336             ewrt             = r13*ewtabscale;
337             ewitab           = ewrt;
338             eweps            = ewrt-ewitab;
339             ewitab           = 4*ewitab;
340             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
341             velec            = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
342             felec            = qq13*rinv13*(rinvsq13-felec);
343
344             /* Update potential sums from outer loop */
345             velecsum        += velec;
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = fscal*dx13;
351             ty               = fscal*dy13;
352             tz               = fscal*dz13;
353
354             /* Update vectorial force */
355             fix1            += tx;
356             fiy1            += ty;
357             fiz1            += tz;
358             f[j_coord_offset+DIM*3+XX] -= tx;
359             f[j_coord_offset+DIM*3+YY] -= ty;
360             f[j_coord_offset+DIM*3+ZZ] -= tz;
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             r21              = rsq21*rinv21;
367
368             /* EWALD ELECTROSTATICS */
369
370             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
371             ewrt             = r21*ewtabscale;
372             ewitab           = ewrt;
373             eweps            = ewrt-ewitab;
374             ewitab           = 4*ewitab;
375             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
376             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
377             felec            = qq21*rinv21*(rinvsq21-felec);
378
379             /* Update potential sums from outer loop */
380             velecsum        += velec;
381
382             fscal            = felec;
383
384             /* Calculate temporary vectorial force */
385             tx               = fscal*dx21;
386             ty               = fscal*dy21;
387             tz               = fscal*dz21;
388
389             /* Update vectorial force */
390             fix2            += tx;
391             fiy2            += ty;
392             fiz2            += tz;
393             f[j_coord_offset+DIM*1+XX] -= tx;
394             f[j_coord_offset+DIM*1+YY] -= ty;
395             f[j_coord_offset+DIM*1+ZZ] -= tz;
396
397             /**************************
398              * CALCULATE INTERACTIONS *
399              **************************/
400
401             r22              = rsq22*rinv22;
402
403             /* EWALD ELECTROSTATICS */
404
405             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
406             ewrt             = r22*ewtabscale;
407             ewitab           = ewrt;
408             eweps            = ewrt-ewitab;
409             ewitab           = 4*ewitab;
410             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
411             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
412             felec            = qq22*rinv22*(rinvsq22-felec);
413
414             /* Update potential sums from outer loop */
415             velecsum        += velec;
416
417             fscal            = felec;
418
419             /* Calculate temporary vectorial force */
420             tx               = fscal*dx22;
421             ty               = fscal*dy22;
422             tz               = fscal*dz22;
423
424             /* Update vectorial force */
425             fix2            += tx;
426             fiy2            += ty;
427             fiz2            += tz;
428             f[j_coord_offset+DIM*2+XX] -= tx;
429             f[j_coord_offset+DIM*2+YY] -= ty;
430             f[j_coord_offset+DIM*2+ZZ] -= tz;
431
432             /**************************
433              * CALCULATE INTERACTIONS *
434              **************************/
435
436             r23              = rsq23*rinv23;
437
438             /* EWALD ELECTROSTATICS */
439
440             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
441             ewrt             = r23*ewtabscale;
442             ewitab           = ewrt;
443             eweps            = ewrt-ewitab;
444             ewitab           = 4*ewitab;
445             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
446             velec            = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
447             felec            = qq23*rinv23*(rinvsq23-felec);
448
449             /* Update potential sums from outer loop */
450             velecsum        += velec;
451
452             fscal            = felec;
453
454             /* Calculate temporary vectorial force */
455             tx               = fscal*dx23;
456             ty               = fscal*dy23;
457             tz               = fscal*dz23;
458
459             /* Update vectorial force */
460             fix2            += tx;
461             fiy2            += ty;
462             fiz2            += tz;
463             f[j_coord_offset+DIM*3+XX] -= tx;
464             f[j_coord_offset+DIM*3+YY] -= ty;
465             f[j_coord_offset+DIM*3+ZZ] -= tz;
466
467             /**************************
468              * CALCULATE INTERACTIONS *
469              **************************/
470
471             r31              = rsq31*rinv31;
472
473             /* EWALD ELECTROSTATICS */
474
475             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
476             ewrt             = r31*ewtabscale;
477             ewitab           = ewrt;
478             eweps            = ewrt-ewitab;
479             ewitab           = 4*ewitab;
480             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
481             velec            = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
482             felec            = qq31*rinv31*(rinvsq31-felec);
483
484             /* Update potential sums from outer loop */
485             velecsum        += velec;
486
487             fscal            = felec;
488
489             /* Calculate temporary vectorial force */
490             tx               = fscal*dx31;
491             ty               = fscal*dy31;
492             tz               = fscal*dz31;
493
494             /* Update vectorial force */
495             fix3            += tx;
496             fiy3            += ty;
497             fiz3            += tz;
498             f[j_coord_offset+DIM*1+XX] -= tx;
499             f[j_coord_offset+DIM*1+YY] -= ty;
500             f[j_coord_offset+DIM*1+ZZ] -= tz;
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             r32              = rsq32*rinv32;
507
508             /* EWALD ELECTROSTATICS */
509
510             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
511             ewrt             = r32*ewtabscale;
512             ewitab           = ewrt;
513             eweps            = ewrt-ewitab;
514             ewitab           = 4*ewitab;
515             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
516             velec            = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
517             felec            = qq32*rinv32*(rinvsq32-felec);
518
519             /* Update potential sums from outer loop */
520             velecsum        += velec;
521
522             fscal            = felec;
523
524             /* Calculate temporary vectorial force */
525             tx               = fscal*dx32;
526             ty               = fscal*dy32;
527             tz               = fscal*dz32;
528
529             /* Update vectorial force */
530             fix3            += tx;
531             fiy3            += ty;
532             fiz3            += tz;
533             f[j_coord_offset+DIM*2+XX] -= tx;
534             f[j_coord_offset+DIM*2+YY] -= ty;
535             f[j_coord_offset+DIM*2+ZZ] -= tz;
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             r33              = rsq33*rinv33;
542
543             /* EWALD ELECTROSTATICS */
544
545             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
546             ewrt             = r33*ewtabscale;
547             ewitab           = ewrt;
548             eweps            = ewrt-ewitab;
549             ewitab           = 4*ewitab;
550             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
551             velec            = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
552             felec            = qq33*rinv33*(rinvsq33-felec);
553
554             /* Update potential sums from outer loop */
555             velecsum        += velec;
556
557             fscal            = felec;
558
559             /* Calculate temporary vectorial force */
560             tx               = fscal*dx33;
561             ty               = fscal*dy33;
562             tz               = fscal*dz33;
563
564             /* Update vectorial force */
565             fix3            += tx;
566             fiy3            += ty;
567             fiz3            += tz;
568             f[j_coord_offset+DIM*3+XX] -= tx;
569             f[j_coord_offset+DIM*3+YY] -= ty;
570             f[j_coord_offset+DIM*3+ZZ] -= tz;
571
572             /* Inner loop uses 360 flops */
573         }
574         /* End of innermost loop */
575
576         tx = ty = tz = 0;
577         f[i_coord_offset+DIM*1+XX] += fix1;
578         f[i_coord_offset+DIM*1+YY] += fiy1;
579         f[i_coord_offset+DIM*1+ZZ] += fiz1;
580         tx                         += fix1;
581         ty                         += fiy1;
582         tz                         += fiz1;
583         f[i_coord_offset+DIM*2+XX] += fix2;
584         f[i_coord_offset+DIM*2+YY] += fiy2;
585         f[i_coord_offset+DIM*2+ZZ] += fiz2;
586         tx                         += fix2;
587         ty                         += fiy2;
588         tz                         += fiz2;
589         f[i_coord_offset+DIM*3+XX] += fix3;
590         f[i_coord_offset+DIM*3+YY] += fiy3;
591         f[i_coord_offset+DIM*3+ZZ] += fiz3;
592         tx                         += fix3;
593         ty                         += fiy3;
594         tz                         += fiz3;
595         fshift[i_shift_offset+XX]  += tx;
596         fshift[i_shift_offset+YY]  += ty;
597         fshift[i_shift_offset+ZZ]  += tz;
598
599         ggid                        = gid[iidx];
600         /* Update potential energies */
601         kernel_data->energygrp_elec[ggid] += velecsum;
602
603         /* Increment number of inner iterations */
604         inneriter                  += j_index_end - j_index_start;
605
606         /* Outer loop uses 31 flops */
607     }
608
609     /* Increment number of outer iterations */
610     outeriter        += nri;
611
612     /* Update outer/inner flops */
613
614     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_VF,outeriter*31 + inneriter*360);
615 }
616 /*
617  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4W4_F_c
618  * Electrostatics interaction: Ewald
619  * VdW interaction:            None
620  * Geometry:                   Water4-Water4
621  * Calculate force/pot:        Force
622  */
623 void
624 nb_kernel_ElecEw_VdwNone_GeomW4W4_F_c
625                     (t_nblist                    * gmx_restrict       nlist,
626                      rvec                        * gmx_restrict          xx,
627                      rvec                        * gmx_restrict          ff,
628                      t_forcerec                  * gmx_restrict          fr,
629                      t_mdatoms                   * gmx_restrict     mdatoms,
630                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
631                      t_nrnb                      * gmx_restrict        nrnb)
632 {
633     int              i_shift_offset,i_coord_offset,j_coord_offset;
634     int              j_index_start,j_index_end;
635     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
636     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
637     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
638     real             *shiftvec,*fshift,*x,*f;
639     int              vdwioffset1;
640     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
641     int              vdwioffset2;
642     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
643     int              vdwioffset3;
644     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
645     int              vdwjidx1;
646     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
647     int              vdwjidx2;
648     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
649     int              vdwjidx3;
650     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
651     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
652     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
653     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
654     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
655     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
656     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
657     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
658     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
659     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
660     real             velec,felec,velecsum,facel,crf,krf,krf2;
661     real             *charge;
662     int              ewitab;
663     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
664     real             *ewtab;
665
666     x                = xx[0];
667     f                = ff[0];
668
669     nri              = nlist->nri;
670     iinr             = nlist->iinr;
671     jindex           = nlist->jindex;
672     jjnr             = nlist->jjnr;
673     shiftidx         = nlist->shift;
674     gid              = nlist->gid;
675     shiftvec         = fr->shift_vec[0];
676     fshift           = fr->fshift[0];
677     facel            = fr->epsfac;
678     charge           = mdatoms->chargeA;
679
680     sh_ewald         = fr->ic->sh_ewald;
681     ewtab            = fr->ic->tabq_coul_F;
682     ewtabscale       = fr->ic->tabq_scale;
683     ewtabhalfspace   = 0.5/ewtabscale;
684
685     /* Setup water-specific parameters */
686     inr              = nlist->iinr[0];
687     iq1              = facel*charge[inr+1];
688     iq2              = facel*charge[inr+2];
689     iq3              = facel*charge[inr+3];
690
691     jq1              = charge[inr+1];
692     jq2              = charge[inr+2];
693     jq3              = charge[inr+3];
694     qq11             = iq1*jq1;
695     qq12             = iq1*jq2;
696     qq13             = iq1*jq3;
697     qq21             = iq2*jq1;
698     qq22             = iq2*jq2;
699     qq23             = iq2*jq3;
700     qq31             = iq3*jq1;
701     qq32             = iq3*jq2;
702     qq33             = iq3*jq3;
703
704     outeriter        = 0;
705     inneriter        = 0;
706
707     /* Start outer loop over neighborlists */
708     for(iidx=0; iidx<nri; iidx++)
709     {
710         /* Load shift vector for this list */
711         i_shift_offset   = DIM*shiftidx[iidx];
712         shX              = shiftvec[i_shift_offset+XX];
713         shY              = shiftvec[i_shift_offset+YY];
714         shZ              = shiftvec[i_shift_offset+ZZ];
715
716         /* Load limits for loop over neighbors */
717         j_index_start    = jindex[iidx];
718         j_index_end      = jindex[iidx+1];
719
720         /* Get outer coordinate index */
721         inr              = iinr[iidx];
722         i_coord_offset   = DIM*inr;
723
724         /* Load i particle coords and add shift vector */
725         ix1              = shX + x[i_coord_offset+DIM*1+XX];
726         iy1              = shY + x[i_coord_offset+DIM*1+YY];
727         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
728         ix2              = shX + x[i_coord_offset+DIM*2+XX];
729         iy2              = shY + x[i_coord_offset+DIM*2+YY];
730         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
731         ix3              = shX + x[i_coord_offset+DIM*3+XX];
732         iy3              = shY + x[i_coord_offset+DIM*3+YY];
733         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
734
735         fix1             = 0.0;
736         fiy1             = 0.0;
737         fiz1             = 0.0;
738         fix2             = 0.0;
739         fiy2             = 0.0;
740         fiz2             = 0.0;
741         fix3             = 0.0;
742         fiy3             = 0.0;
743         fiz3             = 0.0;
744
745         /* Start inner kernel loop */
746         for(jidx=j_index_start; jidx<j_index_end; jidx++)
747         {
748             /* Get j neighbor index, and coordinate index */
749             jnr              = jjnr[jidx];
750             j_coord_offset   = DIM*jnr;
751
752             /* load j atom coordinates */
753             jx1              = x[j_coord_offset+DIM*1+XX];
754             jy1              = x[j_coord_offset+DIM*1+YY];
755             jz1              = x[j_coord_offset+DIM*1+ZZ];
756             jx2              = x[j_coord_offset+DIM*2+XX];
757             jy2              = x[j_coord_offset+DIM*2+YY];
758             jz2              = x[j_coord_offset+DIM*2+ZZ];
759             jx3              = x[j_coord_offset+DIM*3+XX];
760             jy3              = x[j_coord_offset+DIM*3+YY];
761             jz3              = x[j_coord_offset+DIM*3+ZZ];
762
763             /* Calculate displacement vector */
764             dx11             = ix1 - jx1;
765             dy11             = iy1 - jy1;
766             dz11             = iz1 - jz1;
767             dx12             = ix1 - jx2;
768             dy12             = iy1 - jy2;
769             dz12             = iz1 - jz2;
770             dx13             = ix1 - jx3;
771             dy13             = iy1 - jy3;
772             dz13             = iz1 - jz3;
773             dx21             = ix2 - jx1;
774             dy21             = iy2 - jy1;
775             dz21             = iz2 - jz1;
776             dx22             = ix2 - jx2;
777             dy22             = iy2 - jy2;
778             dz22             = iz2 - jz2;
779             dx23             = ix2 - jx3;
780             dy23             = iy2 - jy3;
781             dz23             = iz2 - jz3;
782             dx31             = ix3 - jx1;
783             dy31             = iy3 - jy1;
784             dz31             = iz3 - jz1;
785             dx32             = ix3 - jx2;
786             dy32             = iy3 - jy2;
787             dz32             = iz3 - jz2;
788             dx33             = ix3 - jx3;
789             dy33             = iy3 - jy3;
790             dz33             = iz3 - jz3;
791
792             /* Calculate squared distance and things based on it */
793             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
794             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
795             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
796             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
797             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
798             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
799             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
800             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
801             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
802
803             rinv11           = gmx_invsqrt(rsq11);
804             rinv12           = gmx_invsqrt(rsq12);
805             rinv13           = gmx_invsqrt(rsq13);
806             rinv21           = gmx_invsqrt(rsq21);
807             rinv22           = gmx_invsqrt(rsq22);
808             rinv23           = gmx_invsqrt(rsq23);
809             rinv31           = gmx_invsqrt(rsq31);
810             rinv32           = gmx_invsqrt(rsq32);
811             rinv33           = gmx_invsqrt(rsq33);
812
813             rinvsq11         = rinv11*rinv11;
814             rinvsq12         = rinv12*rinv12;
815             rinvsq13         = rinv13*rinv13;
816             rinvsq21         = rinv21*rinv21;
817             rinvsq22         = rinv22*rinv22;
818             rinvsq23         = rinv23*rinv23;
819             rinvsq31         = rinv31*rinv31;
820             rinvsq32         = rinv32*rinv32;
821             rinvsq33         = rinv33*rinv33;
822
823             /**************************
824              * CALCULATE INTERACTIONS *
825              **************************/
826
827             r11              = rsq11*rinv11;
828
829             /* EWALD ELECTROSTATICS */
830
831             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
832             ewrt             = r11*ewtabscale;
833             ewitab           = ewrt;
834             eweps            = ewrt-ewitab;
835             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
836             felec            = qq11*rinv11*(rinvsq11-felec);
837
838             fscal            = felec;
839
840             /* Calculate temporary vectorial force */
841             tx               = fscal*dx11;
842             ty               = fscal*dy11;
843             tz               = fscal*dz11;
844
845             /* Update vectorial force */
846             fix1            += tx;
847             fiy1            += ty;
848             fiz1            += tz;
849             f[j_coord_offset+DIM*1+XX] -= tx;
850             f[j_coord_offset+DIM*1+YY] -= ty;
851             f[j_coord_offset+DIM*1+ZZ] -= tz;
852
853             /**************************
854              * CALCULATE INTERACTIONS *
855              **************************/
856
857             r12              = rsq12*rinv12;
858
859             /* EWALD ELECTROSTATICS */
860
861             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
862             ewrt             = r12*ewtabscale;
863             ewitab           = ewrt;
864             eweps            = ewrt-ewitab;
865             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
866             felec            = qq12*rinv12*(rinvsq12-felec);
867
868             fscal            = felec;
869
870             /* Calculate temporary vectorial force */
871             tx               = fscal*dx12;
872             ty               = fscal*dy12;
873             tz               = fscal*dz12;
874
875             /* Update vectorial force */
876             fix1            += tx;
877             fiy1            += ty;
878             fiz1            += tz;
879             f[j_coord_offset+DIM*2+XX] -= tx;
880             f[j_coord_offset+DIM*2+YY] -= ty;
881             f[j_coord_offset+DIM*2+ZZ] -= tz;
882
883             /**************************
884              * CALCULATE INTERACTIONS *
885              **************************/
886
887             r13              = rsq13*rinv13;
888
889             /* EWALD ELECTROSTATICS */
890
891             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
892             ewrt             = r13*ewtabscale;
893             ewitab           = ewrt;
894             eweps            = ewrt-ewitab;
895             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
896             felec            = qq13*rinv13*(rinvsq13-felec);
897
898             fscal            = felec;
899
900             /* Calculate temporary vectorial force */
901             tx               = fscal*dx13;
902             ty               = fscal*dy13;
903             tz               = fscal*dz13;
904
905             /* Update vectorial force */
906             fix1            += tx;
907             fiy1            += ty;
908             fiz1            += tz;
909             f[j_coord_offset+DIM*3+XX] -= tx;
910             f[j_coord_offset+DIM*3+YY] -= ty;
911             f[j_coord_offset+DIM*3+ZZ] -= tz;
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r21              = rsq21*rinv21;
918
919             /* EWALD ELECTROSTATICS */
920
921             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
922             ewrt             = r21*ewtabscale;
923             ewitab           = ewrt;
924             eweps            = ewrt-ewitab;
925             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
926             felec            = qq21*rinv21*(rinvsq21-felec);
927
928             fscal            = felec;
929
930             /* Calculate temporary vectorial force */
931             tx               = fscal*dx21;
932             ty               = fscal*dy21;
933             tz               = fscal*dz21;
934
935             /* Update vectorial force */
936             fix2            += tx;
937             fiy2            += ty;
938             fiz2            += tz;
939             f[j_coord_offset+DIM*1+XX] -= tx;
940             f[j_coord_offset+DIM*1+YY] -= ty;
941             f[j_coord_offset+DIM*1+ZZ] -= tz;
942
943             /**************************
944              * CALCULATE INTERACTIONS *
945              **************************/
946
947             r22              = rsq22*rinv22;
948
949             /* EWALD ELECTROSTATICS */
950
951             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
952             ewrt             = r22*ewtabscale;
953             ewitab           = ewrt;
954             eweps            = ewrt-ewitab;
955             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
956             felec            = qq22*rinv22*(rinvsq22-felec);
957
958             fscal            = felec;
959
960             /* Calculate temporary vectorial force */
961             tx               = fscal*dx22;
962             ty               = fscal*dy22;
963             tz               = fscal*dz22;
964
965             /* Update vectorial force */
966             fix2            += tx;
967             fiy2            += ty;
968             fiz2            += tz;
969             f[j_coord_offset+DIM*2+XX] -= tx;
970             f[j_coord_offset+DIM*2+YY] -= ty;
971             f[j_coord_offset+DIM*2+ZZ] -= tz;
972
973             /**************************
974              * CALCULATE INTERACTIONS *
975              **************************/
976
977             r23              = rsq23*rinv23;
978
979             /* EWALD ELECTROSTATICS */
980
981             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
982             ewrt             = r23*ewtabscale;
983             ewitab           = ewrt;
984             eweps            = ewrt-ewitab;
985             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
986             felec            = qq23*rinv23*(rinvsq23-felec);
987
988             fscal            = felec;
989
990             /* Calculate temporary vectorial force */
991             tx               = fscal*dx23;
992             ty               = fscal*dy23;
993             tz               = fscal*dz23;
994
995             /* Update vectorial force */
996             fix2            += tx;
997             fiy2            += ty;
998             fiz2            += tz;
999             f[j_coord_offset+DIM*3+XX] -= tx;
1000             f[j_coord_offset+DIM*3+YY] -= ty;
1001             f[j_coord_offset+DIM*3+ZZ] -= tz;
1002
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             r31              = rsq31*rinv31;
1008
1009             /* EWALD ELECTROSTATICS */
1010
1011             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1012             ewrt             = r31*ewtabscale;
1013             ewitab           = ewrt;
1014             eweps            = ewrt-ewitab;
1015             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1016             felec            = qq31*rinv31*(rinvsq31-felec);
1017
1018             fscal            = felec;
1019
1020             /* Calculate temporary vectorial force */
1021             tx               = fscal*dx31;
1022             ty               = fscal*dy31;
1023             tz               = fscal*dz31;
1024
1025             /* Update vectorial force */
1026             fix3            += tx;
1027             fiy3            += ty;
1028             fiz3            += tz;
1029             f[j_coord_offset+DIM*1+XX] -= tx;
1030             f[j_coord_offset+DIM*1+YY] -= ty;
1031             f[j_coord_offset+DIM*1+ZZ] -= tz;
1032
1033             /**************************
1034              * CALCULATE INTERACTIONS *
1035              **************************/
1036
1037             r32              = rsq32*rinv32;
1038
1039             /* EWALD ELECTROSTATICS */
1040
1041             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1042             ewrt             = r32*ewtabscale;
1043             ewitab           = ewrt;
1044             eweps            = ewrt-ewitab;
1045             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1046             felec            = qq32*rinv32*(rinvsq32-felec);
1047
1048             fscal            = felec;
1049
1050             /* Calculate temporary vectorial force */
1051             tx               = fscal*dx32;
1052             ty               = fscal*dy32;
1053             tz               = fscal*dz32;
1054
1055             /* Update vectorial force */
1056             fix3            += tx;
1057             fiy3            += ty;
1058             fiz3            += tz;
1059             f[j_coord_offset+DIM*2+XX] -= tx;
1060             f[j_coord_offset+DIM*2+YY] -= ty;
1061             f[j_coord_offset+DIM*2+ZZ] -= tz;
1062
1063             /**************************
1064              * CALCULATE INTERACTIONS *
1065              **************************/
1066
1067             r33              = rsq33*rinv33;
1068
1069             /* EWALD ELECTROSTATICS */
1070
1071             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1072             ewrt             = r33*ewtabscale;
1073             ewitab           = ewrt;
1074             eweps            = ewrt-ewitab;
1075             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1076             felec            = qq33*rinv33*(rinvsq33-felec);
1077
1078             fscal            = felec;
1079
1080             /* Calculate temporary vectorial force */
1081             tx               = fscal*dx33;
1082             ty               = fscal*dy33;
1083             tz               = fscal*dz33;
1084
1085             /* Update vectorial force */
1086             fix3            += tx;
1087             fiy3            += ty;
1088             fiz3            += tz;
1089             f[j_coord_offset+DIM*3+XX] -= tx;
1090             f[j_coord_offset+DIM*3+YY] -= ty;
1091             f[j_coord_offset+DIM*3+ZZ] -= tz;
1092
1093             /* Inner loop uses 297 flops */
1094         }
1095         /* End of innermost loop */
1096
1097         tx = ty = tz = 0;
1098         f[i_coord_offset+DIM*1+XX] += fix1;
1099         f[i_coord_offset+DIM*1+YY] += fiy1;
1100         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1101         tx                         += fix1;
1102         ty                         += fiy1;
1103         tz                         += fiz1;
1104         f[i_coord_offset+DIM*2+XX] += fix2;
1105         f[i_coord_offset+DIM*2+YY] += fiy2;
1106         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1107         tx                         += fix2;
1108         ty                         += fiy2;
1109         tz                         += fiz2;
1110         f[i_coord_offset+DIM*3+XX] += fix3;
1111         f[i_coord_offset+DIM*3+YY] += fiy3;
1112         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1113         tx                         += fix3;
1114         ty                         += fiy3;
1115         tz                         += fiz3;
1116         fshift[i_shift_offset+XX]  += tx;
1117         fshift[i_shift_offset+YY]  += ty;
1118         fshift[i_shift_offset+ZZ]  += tz;
1119
1120         /* Increment number of inner iterations */
1121         inneriter                  += j_index_end - j_index_start;
1122
1123         /* Outer loop uses 30 flops */
1124     }
1125
1126     /* Increment number of outer iterations */
1127     outeriter        += nri;
1128
1129     /* Update outer/inner flops */
1130
1131     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_F,outeriter*30 + inneriter*297);
1132 }