Merge origin/release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwNone_GeomW4P1_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_c
35  * Electrostatics interaction: Ewald
36  * VdW interaction:            None
37  * Geometry:                   Water4-Particle
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset1;
57     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
58     int              vdwioffset2;
59     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
60     int              vdwioffset3;
61     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
62     int              vdwjidx0;
63     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
64     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
65     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
66     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
67     real             velec,felec,velecsum,facel,crf,krf,krf2;
68     real             *charge;
69     int              ewitab;
70     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
71     real             *ewtab;
72
73     x                = xx[0];
74     f                = ff[0];
75
76     nri              = nlist->nri;
77     iinr             = nlist->iinr;
78     jindex           = nlist->jindex;
79     jjnr             = nlist->jjnr;
80     shiftidx         = nlist->shift;
81     gid              = nlist->gid;
82     shiftvec         = fr->shift_vec[0];
83     fshift           = fr->fshift[0];
84     facel            = fr->epsfac;
85     charge           = mdatoms->chargeA;
86
87     sh_ewald         = fr->ic->sh_ewald;
88     ewtab            = fr->ic->tabq_coul_FDV0;
89     ewtabscale       = fr->ic->tabq_scale;
90     ewtabhalfspace   = 0.5/ewtabscale;
91
92     /* Setup water-specific parameters */
93     inr              = nlist->iinr[0];
94     iq1              = facel*charge[inr+1];
95     iq2              = facel*charge[inr+2];
96     iq3              = facel*charge[inr+3];
97
98     outeriter        = 0;
99     inneriter        = 0;
100
101     /* Start outer loop over neighborlists */
102     for(iidx=0; iidx<nri; iidx++)
103     {
104         /* Load shift vector for this list */
105         i_shift_offset   = DIM*shiftidx[iidx];
106         shX              = shiftvec[i_shift_offset+XX];
107         shY              = shiftvec[i_shift_offset+YY];
108         shZ              = shiftvec[i_shift_offset+ZZ];
109
110         /* Load limits for loop over neighbors */
111         j_index_start    = jindex[iidx];
112         j_index_end      = jindex[iidx+1];
113
114         /* Get outer coordinate index */
115         inr              = iinr[iidx];
116         i_coord_offset   = DIM*inr;
117
118         /* Load i particle coords and add shift vector */
119         ix1              = shX + x[i_coord_offset+DIM*1+XX];
120         iy1              = shY + x[i_coord_offset+DIM*1+YY];
121         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
122         ix2              = shX + x[i_coord_offset+DIM*2+XX];
123         iy2              = shY + x[i_coord_offset+DIM*2+YY];
124         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
125         ix3              = shX + x[i_coord_offset+DIM*3+XX];
126         iy3              = shY + x[i_coord_offset+DIM*3+YY];
127         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
128
129         fix1             = 0.0;
130         fiy1             = 0.0;
131         fiz1             = 0.0;
132         fix2             = 0.0;
133         fiy2             = 0.0;
134         fiz2             = 0.0;
135         fix3             = 0.0;
136         fiy3             = 0.0;
137         fiz3             = 0.0;
138
139         /* Reset potential sums */
140         velecsum         = 0.0;
141
142         /* Start inner kernel loop */
143         for(jidx=j_index_start; jidx<j_index_end; jidx++)
144         {
145             /* Get j neighbor index, and coordinate index */
146             jnr              = jjnr[jidx];
147             j_coord_offset   = DIM*jnr;
148
149             /* load j atom coordinates */
150             jx0              = x[j_coord_offset+DIM*0+XX];
151             jy0              = x[j_coord_offset+DIM*0+YY];
152             jz0              = x[j_coord_offset+DIM*0+ZZ];
153
154             /* Calculate displacement vector */
155             dx10             = ix1 - jx0;
156             dy10             = iy1 - jy0;
157             dz10             = iz1 - jz0;
158             dx20             = ix2 - jx0;
159             dy20             = iy2 - jy0;
160             dz20             = iz2 - jz0;
161             dx30             = ix3 - jx0;
162             dy30             = iy3 - jy0;
163             dz30             = iz3 - jz0;
164
165             /* Calculate squared distance and things based on it */
166             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
167             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
168             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
169
170             rinv10           = gmx_invsqrt(rsq10);
171             rinv20           = gmx_invsqrt(rsq20);
172             rinv30           = gmx_invsqrt(rsq30);
173
174             rinvsq10         = rinv10*rinv10;
175             rinvsq20         = rinv20*rinv20;
176             rinvsq30         = rinv30*rinv30;
177
178             /* Load parameters for j particles */
179             jq0              = charge[jnr+0];
180
181             /**************************
182              * CALCULATE INTERACTIONS *
183              **************************/
184
185             r10              = rsq10*rinv10;
186
187             qq10             = iq1*jq0;
188
189             /* EWALD ELECTROSTATICS */
190
191             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
192             ewrt             = r10*ewtabscale;
193             ewitab           = ewrt;
194             eweps            = ewrt-ewitab;
195             ewitab           = 4*ewitab;
196             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
197             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
198             felec            = qq10*rinv10*(rinvsq10-felec);
199
200             /* Update potential sums from outer loop */
201             velecsum        += velec;
202
203             fscal            = felec;
204
205             /* Calculate temporary vectorial force */
206             tx               = fscal*dx10;
207             ty               = fscal*dy10;
208             tz               = fscal*dz10;
209
210             /* Update vectorial force */
211             fix1            += tx;
212             fiy1            += ty;
213             fiz1            += tz;
214             f[j_coord_offset+DIM*0+XX] -= tx;
215             f[j_coord_offset+DIM*0+YY] -= ty;
216             f[j_coord_offset+DIM*0+ZZ] -= tz;
217
218             /**************************
219              * CALCULATE INTERACTIONS *
220              **************************/
221
222             r20              = rsq20*rinv20;
223
224             qq20             = iq2*jq0;
225
226             /* EWALD ELECTROSTATICS */
227
228             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
229             ewrt             = r20*ewtabscale;
230             ewitab           = ewrt;
231             eweps            = ewrt-ewitab;
232             ewitab           = 4*ewitab;
233             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
234             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
235             felec            = qq20*rinv20*(rinvsq20-felec);
236
237             /* Update potential sums from outer loop */
238             velecsum        += velec;
239
240             fscal            = felec;
241
242             /* Calculate temporary vectorial force */
243             tx               = fscal*dx20;
244             ty               = fscal*dy20;
245             tz               = fscal*dz20;
246
247             /* Update vectorial force */
248             fix2            += tx;
249             fiy2            += ty;
250             fiz2            += tz;
251             f[j_coord_offset+DIM*0+XX] -= tx;
252             f[j_coord_offset+DIM*0+YY] -= ty;
253             f[j_coord_offset+DIM*0+ZZ] -= tz;
254
255             /**************************
256              * CALCULATE INTERACTIONS *
257              **************************/
258
259             r30              = rsq30*rinv30;
260
261             qq30             = iq3*jq0;
262
263             /* EWALD ELECTROSTATICS */
264
265             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
266             ewrt             = r30*ewtabscale;
267             ewitab           = ewrt;
268             eweps            = ewrt-ewitab;
269             ewitab           = 4*ewitab;
270             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
271             velec            = qq30*(rinv30-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
272             felec            = qq30*rinv30*(rinvsq30-felec);
273
274             /* Update potential sums from outer loop */
275             velecsum        += velec;
276
277             fscal            = felec;
278
279             /* Calculate temporary vectorial force */
280             tx               = fscal*dx30;
281             ty               = fscal*dy30;
282             tz               = fscal*dz30;
283
284             /* Update vectorial force */
285             fix3            += tx;
286             fiy3            += ty;
287             fiz3            += tz;
288             f[j_coord_offset+DIM*0+XX] -= tx;
289             f[j_coord_offset+DIM*0+YY] -= ty;
290             f[j_coord_offset+DIM*0+ZZ] -= tz;
291
292             /* Inner loop uses 123 flops */
293         }
294         /* End of innermost loop */
295
296         tx = ty = tz = 0;
297         f[i_coord_offset+DIM*1+XX] += fix1;
298         f[i_coord_offset+DIM*1+YY] += fiy1;
299         f[i_coord_offset+DIM*1+ZZ] += fiz1;
300         tx                         += fix1;
301         ty                         += fiy1;
302         tz                         += fiz1;
303         f[i_coord_offset+DIM*2+XX] += fix2;
304         f[i_coord_offset+DIM*2+YY] += fiy2;
305         f[i_coord_offset+DIM*2+ZZ] += fiz2;
306         tx                         += fix2;
307         ty                         += fiy2;
308         tz                         += fiz2;
309         f[i_coord_offset+DIM*3+XX] += fix3;
310         f[i_coord_offset+DIM*3+YY] += fiy3;
311         f[i_coord_offset+DIM*3+ZZ] += fiz3;
312         tx                         += fix3;
313         ty                         += fiy3;
314         tz                         += fiz3;
315         fshift[i_shift_offset+XX]  += tx;
316         fshift[i_shift_offset+YY]  += ty;
317         fshift[i_shift_offset+ZZ]  += tz;
318
319         ggid                        = gid[iidx];
320         /* Update potential energies */
321         kernel_data->energygrp_elec[ggid] += velecsum;
322
323         /* Increment number of inner iterations */
324         inneriter                  += j_index_end - j_index_start;
325
326         /* Outer loop uses 31 flops */
327     }
328
329     /* Increment number of outer iterations */
330     outeriter        += nri;
331
332     /* Update outer/inner flops */
333
334     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*31 + inneriter*123);
335 }
336 /*
337  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW4P1_F_c
338  * Electrostatics interaction: Ewald
339  * VdW interaction:            None
340  * Geometry:                   Water4-Particle
341  * Calculate force/pot:        Force
342  */
343 void
344 nb_kernel_ElecEw_VdwNone_GeomW4P1_F_c
345                     (t_nblist * gmx_restrict                nlist,
346                      rvec * gmx_restrict                    xx,
347                      rvec * gmx_restrict                    ff,
348                      t_forcerec * gmx_restrict              fr,
349                      t_mdatoms * gmx_restrict               mdatoms,
350                      nb_kernel_data_t * gmx_restrict        kernel_data,
351                      t_nrnb * gmx_restrict                  nrnb)
352 {
353     int              i_shift_offset,i_coord_offset,j_coord_offset;
354     int              j_index_start,j_index_end;
355     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
356     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
357     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
358     real             *shiftvec,*fshift,*x,*f;
359     int              vdwioffset1;
360     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
361     int              vdwioffset2;
362     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
363     int              vdwioffset3;
364     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
365     int              vdwjidx0;
366     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
367     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
368     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
369     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
370     real             velec,felec,velecsum,facel,crf,krf,krf2;
371     real             *charge;
372     int              ewitab;
373     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
374     real             *ewtab;
375
376     x                = xx[0];
377     f                = ff[0];
378
379     nri              = nlist->nri;
380     iinr             = nlist->iinr;
381     jindex           = nlist->jindex;
382     jjnr             = nlist->jjnr;
383     shiftidx         = nlist->shift;
384     gid              = nlist->gid;
385     shiftvec         = fr->shift_vec[0];
386     fshift           = fr->fshift[0];
387     facel            = fr->epsfac;
388     charge           = mdatoms->chargeA;
389
390     sh_ewald         = fr->ic->sh_ewald;
391     ewtab            = fr->ic->tabq_coul_F;
392     ewtabscale       = fr->ic->tabq_scale;
393     ewtabhalfspace   = 0.5/ewtabscale;
394
395     /* Setup water-specific parameters */
396     inr              = nlist->iinr[0];
397     iq1              = facel*charge[inr+1];
398     iq2              = facel*charge[inr+2];
399     iq3              = facel*charge[inr+3];
400
401     outeriter        = 0;
402     inneriter        = 0;
403
404     /* Start outer loop over neighborlists */
405     for(iidx=0; iidx<nri; iidx++)
406     {
407         /* Load shift vector for this list */
408         i_shift_offset   = DIM*shiftidx[iidx];
409         shX              = shiftvec[i_shift_offset+XX];
410         shY              = shiftvec[i_shift_offset+YY];
411         shZ              = shiftvec[i_shift_offset+ZZ];
412
413         /* Load limits for loop over neighbors */
414         j_index_start    = jindex[iidx];
415         j_index_end      = jindex[iidx+1];
416
417         /* Get outer coordinate index */
418         inr              = iinr[iidx];
419         i_coord_offset   = DIM*inr;
420
421         /* Load i particle coords and add shift vector */
422         ix1              = shX + x[i_coord_offset+DIM*1+XX];
423         iy1              = shY + x[i_coord_offset+DIM*1+YY];
424         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
425         ix2              = shX + x[i_coord_offset+DIM*2+XX];
426         iy2              = shY + x[i_coord_offset+DIM*2+YY];
427         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
428         ix3              = shX + x[i_coord_offset+DIM*3+XX];
429         iy3              = shY + x[i_coord_offset+DIM*3+YY];
430         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
431
432         fix1             = 0.0;
433         fiy1             = 0.0;
434         fiz1             = 0.0;
435         fix2             = 0.0;
436         fiy2             = 0.0;
437         fiz2             = 0.0;
438         fix3             = 0.0;
439         fiy3             = 0.0;
440         fiz3             = 0.0;
441
442         /* Start inner kernel loop */
443         for(jidx=j_index_start; jidx<j_index_end; jidx++)
444         {
445             /* Get j neighbor index, and coordinate index */
446             jnr              = jjnr[jidx];
447             j_coord_offset   = DIM*jnr;
448
449             /* load j atom coordinates */
450             jx0              = x[j_coord_offset+DIM*0+XX];
451             jy0              = x[j_coord_offset+DIM*0+YY];
452             jz0              = x[j_coord_offset+DIM*0+ZZ];
453
454             /* Calculate displacement vector */
455             dx10             = ix1 - jx0;
456             dy10             = iy1 - jy0;
457             dz10             = iz1 - jz0;
458             dx20             = ix2 - jx0;
459             dy20             = iy2 - jy0;
460             dz20             = iz2 - jz0;
461             dx30             = ix3 - jx0;
462             dy30             = iy3 - jy0;
463             dz30             = iz3 - jz0;
464
465             /* Calculate squared distance and things based on it */
466             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
467             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
468             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
469
470             rinv10           = gmx_invsqrt(rsq10);
471             rinv20           = gmx_invsqrt(rsq20);
472             rinv30           = gmx_invsqrt(rsq30);
473
474             rinvsq10         = rinv10*rinv10;
475             rinvsq20         = rinv20*rinv20;
476             rinvsq30         = rinv30*rinv30;
477
478             /* Load parameters for j particles */
479             jq0              = charge[jnr+0];
480
481             /**************************
482              * CALCULATE INTERACTIONS *
483              **************************/
484
485             r10              = rsq10*rinv10;
486
487             qq10             = iq1*jq0;
488
489             /* EWALD ELECTROSTATICS */
490
491             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
492             ewrt             = r10*ewtabscale;
493             ewitab           = ewrt;
494             eweps            = ewrt-ewitab;
495             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
496             felec            = qq10*rinv10*(rinvsq10-felec);
497
498             fscal            = felec;
499
500             /* Calculate temporary vectorial force */
501             tx               = fscal*dx10;
502             ty               = fscal*dy10;
503             tz               = fscal*dz10;
504
505             /* Update vectorial force */
506             fix1            += tx;
507             fiy1            += ty;
508             fiz1            += tz;
509             f[j_coord_offset+DIM*0+XX] -= tx;
510             f[j_coord_offset+DIM*0+YY] -= ty;
511             f[j_coord_offset+DIM*0+ZZ] -= tz;
512
513             /**************************
514              * CALCULATE INTERACTIONS *
515              **************************/
516
517             r20              = rsq20*rinv20;
518
519             qq20             = iq2*jq0;
520
521             /* EWALD ELECTROSTATICS */
522
523             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
524             ewrt             = r20*ewtabscale;
525             ewitab           = ewrt;
526             eweps            = ewrt-ewitab;
527             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
528             felec            = qq20*rinv20*(rinvsq20-felec);
529
530             fscal            = felec;
531
532             /* Calculate temporary vectorial force */
533             tx               = fscal*dx20;
534             ty               = fscal*dy20;
535             tz               = fscal*dz20;
536
537             /* Update vectorial force */
538             fix2            += tx;
539             fiy2            += ty;
540             fiz2            += tz;
541             f[j_coord_offset+DIM*0+XX] -= tx;
542             f[j_coord_offset+DIM*0+YY] -= ty;
543             f[j_coord_offset+DIM*0+ZZ] -= tz;
544
545             /**************************
546              * CALCULATE INTERACTIONS *
547              **************************/
548
549             r30              = rsq30*rinv30;
550
551             qq30             = iq3*jq0;
552
553             /* EWALD ELECTROSTATICS */
554
555             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
556             ewrt             = r30*ewtabscale;
557             ewitab           = ewrt;
558             eweps            = ewrt-ewitab;
559             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
560             felec            = qq30*rinv30*(rinvsq30-felec);
561
562             fscal            = felec;
563
564             /* Calculate temporary vectorial force */
565             tx               = fscal*dx30;
566             ty               = fscal*dy30;
567             tz               = fscal*dz30;
568
569             /* Update vectorial force */
570             fix3            += tx;
571             fiy3            += ty;
572             fiz3            += tz;
573             f[j_coord_offset+DIM*0+XX] -= tx;
574             f[j_coord_offset+DIM*0+YY] -= ty;
575             f[j_coord_offset+DIM*0+ZZ] -= tz;
576
577             /* Inner loop uses 102 flops */
578         }
579         /* End of innermost loop */
580
581         tx = ty = tz = 0;
582         f[i_coord_offset+DIM*1+XX] += fix1;
583         f[i_coord_offset+DIM*1+YY] += fiy1;
584         f[i_coord_offset+DIM*1+ZZ] += fiz1;
585         tx                         += fix1;
586         ty                         += fiy1;
587         tz                         += fiz1;
588         f[i_coord_offset+DIM*2+XX] += fix2;
589         f[i_coord_offset+DIM*2+YY] += fiy2;
590         f[i_coord_offset+DIM*2+ZZ] += fiz2;
591         tx                         += fix2;
592         ty                         += fiy2;
593         tz                         += fiz2;
594         f[i_coord_offset+DIM*3+XX] += fix3;
595         f[i_coord_offset+DIM*3+YY] += fiy3;
596         f[i_coord_offset+DIM*3+ZZ] += fiz3;
597         tx                         += fix3;
598         ty                         += fiy3;
599         tz                         += fiz3;
600         fshift[i_shift_offset+XX]  += tx;
601         fshift[i_shift_offset+YY]  += ty;
602         fshift[i_shift_offset+ZZ]  += tz;
603
604         /* Increment number of inner iterations */
605         inneriter                  += j_index_end - j_index_start;
606
607         /* Outer loop uses 30 flops */
608     }
609
610     /* Increment number of outer iterations */
611     outeriter        += nri;
612
613     /* Update outer/inner flops */
614
615     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*30 + inneriter*102);
616 }