Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwNone_GeomW3W3_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water3-Water3
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     int              vdwjidx1;
81     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82     int              vdwjidx2;
83     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93     real             velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              ewitab;
96     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
97     real             *ewtab;
98
99     x                = xx[0];
100     f                = ff[0];
101
102     nri              = nlist->nri;
103     iinr             = nlist->iinr;
104     jindex           = nlist->jindex;
105     jjnr             = nlist->jjnr;
106     shiftidx         = nlist->shift;
107     gid              = nlist->gid;
108     shiftvec         = fr->shift_vec[0];
109     fshift           = fr->fshift[0];
110     facel            = fr->epsfac;
111     charge           = mdatoms->chargeA;
112
113     sh_ewald         = fr->ic->sh_ewald;
114     ewtab            = fr->ic->tabq_coul_FDV0;
115     ewtabscale       = fr->ic->tabq_scale;
116     ewtabhalfspace   = 0.5/ewtabscale;
117
118     /* Setup water-specific parameters */
119     inr              = nlist->iinr[0];
120     iq0              = facel*charge[inr+0];
121     iq1              = facel*charge[inr+1];
122     iq2              = facel*charge[inr+2];
123
124     jq0              = charge[inr+0];
125     jq1              = charge[inr+1];
126     jq2              = charge[inr+2];
127     qq00             = iq0*jq0;
128     qq01             = iq0*jq1;
129     qq02             = iq0*jq2;
130     qq10             = iq1*jq0;
131     qq11             = iq1*jq1;
132     qq12             = iq1*jq2;
133     qq20             = iq2*jq0;
134     qq21             = iq2*jq1;
135     qq22             = iq2*jq2;
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145         shX              = shiftvec[i_shift_offset+XX];
146         shY              = shiftvec[i_shift_offset+YY];
147         shZ              = shiftvec[i_shift_offset+ZZ];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         ix0              = shX + x[i_coord_offset+DIM*0+XX];
159         iy0              = shY + x[i_coord_offset+DIM*0+YY];
160         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
161         ix1              = shX + x[i_coord_offset+DIM*1+XX];
162         iy1              = shY + x[i_coord_offset+DIM*1+YY];
163         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
164         ix2              = shX + x[i_coord_offset+DIM*2+XX];
165         iy2              = shY + x[i_coord_offset+DIM*2+YY];
166         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
167
168         fix0             = 0.0;
169         fiy0             = 0.0;
170         fiz0             = 0.0;
171         fix1             = 0.0;
172         fiy1             = 0.0;
173         fiz1             = 0.0;
174         fix2             = 0.0;
175         fiy2             = 0.0;
176         fiz2             = 0.0;
177
178         /* Reset potential sums */
179         velecsum         = 0.0;
180
181         /* Start inner kernel loop */
182         for(jidx=j_index_start; jidx<j_index_end; jidx++)
183         {
184             /* Get j neighbor index, and coordinate index */
185             jnr              = jjnr[jidx];
186             j_coord_offset   = DIM*jnr;
187
188             /* load j atom coordinates */
189             jx0              = x[j_coord_offset+DIM*0+XX];
190             jy0              = x[j_coord_offset+DIM*0+YY];
191             jz0              = x[j_coord_offset+DIM*0+ZZ];
192             jx1              = x[j_coord_offset+DIM*1+XX];
193             jy1              = x[j_coord_offset+DIM*1+YY];
194             jz1              = x[j_coord_offset+DIM*1+ZZ];
195             jx2              = x[j_coord_offset+DIM*2+XX];
196             jy2              = x[j_coord_offset+DIM*2+YY];
197             jz2              = x[j_coord_offset+DIM*2+ZZ];
198
199             /* Calculate displacement vector */
200             dx00             = ix0 - jx0;
201             dy00             = iy0 - jy0;
202             dz00             = iz0 - jz0;
203             dx01             = ix0 - jx1;
204             dy01             = iy0 - jy1;
205             dz01             = iz0 - jz1;
206             dx02             = ix0 - jx2;
207             dy02             = iy0 - jy2;
208             dz02             = iz0 - jz2;
209             dx10             = ix1 - jx0;
210             dy10             = iy1 - jy0;
211             dz10             = iz1 - jz0;
212             dx11             = ix1 - jx1;
213             dy11             = iy1 - jy1;
214             dz11             = iz1 - jz1;
215             dx12             = ix1 - jx2;
216             dy12             = iy1 - jy2;
217             dz12             = iz1 - jz2;
218             dx20             = ix2 - jx0;
219             dy20             = iy2 - jy0;
220             dz20             = iz2 - jz0;
221             dx21             = ix2 - jx1;
222             dy21             = iy2 - jy1;
223             dz21             = iz2 - jz1;
224             dx22             = ix2 - jx2;
225             dy22             = iy2 - jy2;
226             dz22             = iz2 - jz2;
227
228             /* Calculate squared distance and things based on it */
229             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
230             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
231             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
232             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
233             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
234             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
235             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
236             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
237             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
238
239             rinv00           = gmx_invsqrt(rsq00);
240             rinv01           = gmx_invsqrt(rsq01);
241             rinv02           = gmx_invsqrt(rsq02);
242             rinv10           = gmx_invsqrt(rsq10);
243             rinv11           = gmx_invsqrt(rsq11);
244             rinv12           = gmx_invsqrt(rsq12);
245             rinv20           = gmx_invsqrt(rsq20);
246             rinv21           = gmx_invsqrt(rsq21);
247             rinv22           = gmx_invsqrt(rsq22);
248
249             rinvsq00         = rinv00*rinv00;
250             rinvsq01         = rinv01*rinv01;
251             rinvsq02         = rinv02*rinv02;
252             rinvsq10         = rinv10*rinv10;
253             rinvsq11         = rinv11*rinv11;
254             rinvsq12         = rinv12*rinv12;
255             rinvsq20         = rinv20*rinv20;
256             rinvsq21         = rinv21*rinv21;
257             rinvsq22         = rinv22*rinv22;
258
259             /**************************
260              * CALCULATE INTERACTIONS *
261              **************************/
262
263             r00              = rsq00*rinv00;
264
265             /* EWALD ELECTROSTATICS */
266
267             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
268             ewrt             = r00*ewtabscale;
269             ewitab           = ewrt;
270             eweps            = ewrt-ewitab;
271             ewitab           = 4*ewitab;
272             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
273             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
274             felec            = qq00*rinv00*(rinvsq00-felec);
275
276             /* Update potential sums from outer loop */
277             velecsum        += velec;
278
279             fscal            = felec;
280
281             /* Calculate temporary vectorial force */
282             tx               = fscal*dx00;
283             ty               = fscal*dy00;
284             tz               = fscal*dz00;
285
286             /* Update vectorial force */
287             fix0            += tx;
288             fiy0            += ty;
289             fiz0            += tz;
290             f[j_coord_offset+DIM*0+XX] -= tx;
291             f[j_coord_offset+DIM*0+YY] -= ty;
292             f[j_coord_offset+DIM*0+ZZ] -= tz;
293
294             /**************************
295              * CALCULATE INTERACTIONS *
296              **************************/
297
298             r01              = rsq01*rinv01;
299
300             /* EWALD ELECTROSTATICS */
301
302             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
303             ewrt             = r01*ewtabscale;
304             ewitab           = ewrt;
305             eweps            = ewrt-ewitab;
306             ewitab           = 4*ewitab;
307             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
308             velec            = qq01*(rinv01-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
309             felec            = qq01*rinv01*(rinvsq01-felec);
310
311             /* Update potential sums from outer loop */
312             velecsum        += velec;
313
314             fscal            = felec;
315
316             /* Calculate temporary vectorial force */
317             tx               = fscal*dx01;
318             ty               = fscal*dy01;
319             tz               = fscal*dz01;
320
321             /* Update vectorial force */
322             fix0            += tx;
323             fiy0            += ty;
324             fiz0            += tz;
325             f[j_coord_offset+DIM*1+XX] -= tx;
326             f[j_coord_offset+DIM*1+YY] -= ty;
327             f[j_coord_offset+DIM*1+ZZ] -= tz;
328
329             /**************************
330              * CALCULATE INTERACTIONS *
331              **************************/
332
333             r02              = rsq02*rinv02;
334
335             /* EWALD ELECTROSTATICS */
336
337             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
338             ewrt             = r02*ewtabscale;
339             ewitab           = ewrt;
340             eweps            = ewrt-ewitab;
341             ewitab           = 4*ewitab;
342             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
343             velec            = qq02*(rinv02-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
344             felec            = qq02*rinv02*(rinvsq02-felec);
345
346             /* Update potential sums from outer loop */
347             velecsum        += velec;
348
349             fscal            = felec;
350
351             /* Calculate temporary vectorial force */
352             tx               = fscal*dx02;
353             ty               = fscal*dy02;
354             tz               = fscal*dz02;
355
356             /* Update vectorial force */
357             fix0            += tx;
358             fiy0            += ty;
359             fiz0            += tz;
360             f[j_coord_offset+DIM*2+XX] -= tx;
361             f[j_coord_offset+DIM*2+YY] -= ty;
362             f[j_coord_offset+DIM*2+ZZ] -= tz;
363
364             /**************************
365              * CALCULATE INTERACTIONS *
366              **************************/
367
368             r10              = rsq10*rinv10;
369
370             /* EWALD ELECTROSTATICS */
371
372             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
373             ewrt             = r10*ewtabscale;
374             ewitab           = ewrt;
375             eweps            = ewrt-ewitab;
376             ewitab           = 4*ewitab;
377             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
378             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
379             felec            = qq10*rinv10*(rinvsq10-felec);
380
381             /* Update potential sums from outer loop */
382             velecsum        += velec;
383
384             fscal            = felec;
385
386             /* Calculate temporary vectorial force */
387             tx               = fscal*dx10;
388             ty               = fscal*dy10;
389             tz               = fscal*dz10;
390
391             /* Update vectorial force */
392             fix1            += tx;
393             fiy1            += ty;
394             fiz1            += tz;
395             f[j_coord_offset+DIM*0+XX] -= tx;
396             f[j_coord_offset+DIM*0+YY] -= ty;
397             f[j_coord_offset+DIM*0+ZZ] -= tz;
398
399             /**************************
400              * CALCULATE INTERACTIONS *
401              **************************/
402
403             r11              = rsq11*rinv11;
404
405             /* EWALD ELECTROSTATICS */
406
407             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
408             ewrt             = r11*ewtabscale;
409             ewitab           = ewrt;
410             eweps            = ewrt-ewitab;
411             ewitab           = 4*ewitab;
412             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
413             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
414             felec            = qq11*rinv11*(rinvsq11-felec);
415
416             /* Update potential sums from outer loop */
417             velecsum        += velec;
418
419             fscal            = felec;
420
421             /* Calculate temporary vectorial force */
422             tx               = fscal*dx11;
423             ty               = fscal*dy11;
424             tz               = fscal*dz11;
425
426             /* Update vectorial force */
427             fix1            += tx;
428             fiy1            += ty;
429             fiz1            += tz;
430             f[j_coord_offset+DIM*1+XX] -= tx;
431             f[j_coord_offset+DIM*1+YY] -= ty;
432             f[j_coord_offset+DIM*1+ZZ] -= tz;
433
434             /**************************
435              * CALCULATE INTERACTIONS *
436              **************************/
437
438             r12              = rsq12*rinv12;
439
440             /* EWALD ELECTROSTATICS */
441
442             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
443             ewrt             = r12*ewtabscale;
444             ewitab           = ewrt;
445             eweps            = ewrt-ewitab;
446             ewitab           = 4*ewitab;
447             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
448             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
449             felec            = qq12*rinv12*(rinvsq12-felec);
450
451             /* Update potential sums from outer loop */
452             velecsum        += velec;
453
454             fscal            = felec;
455
456             /* Calculate temporary vectorial force */
457             tx               = fscal*dx12;
458             ty               = fscal*dy12;
459             tz               = fscal*dz12;
460
461             /* Update vectorial force */
462             fix1            += tx;
463             fiy1            += ty;
464             fiz1            += tz;
465             f[j_coord_offset+DIM*2+XX] -= tx;
466             f[j_coord_offset+DIM*2+YY] -= ty;
467             f[j_coord_offset+DIM*2+ZZ] -= tz;
468
469             /**************************
470              * CALCULATE INTERACTIONS *
471              **************************/
472
473             r20              = rsq20*rinv20;
474
475             /* EWALD ELECTROSTATICS */
476
477             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
478             ewrt             = r20*ewtabscale;
479             ewitab           = ewrt;
480             eweps            = ewrt-ewitab;
481             ewitab           = 4*ewitab;
482             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
483             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
484             felec            = qq20*rinv20*(rinvsq20-felec);
485
486             /* Update potential sums from outer loop */
487             velecsum        += velec;
488
489             fscal            = felec;
490
491             /* Calculate temporary vectorial force */
492             tx               = fscal*dx20;
493             ty               = fscal*dy20;
494             tz               = fscal*dz20;
495
496             /* Update vectorial force */
497             fix2            += tx;
498             fiy2            += ty;
499             fiz2            += tz;
500             f[j_coord_offset+DIM*0+XX] -= tx;
501             f[j_coord_offset+DIM*0+YY] -= ty;
502             f[j_coord_offset+DIM*0+ZZ] -= tz;
503
504             /**************************
505              * CALCULATE INTERACTIONS *
506              **************************/
507
508             r21              = rsq21*rinv21;
509
510             /* EWALD ELECTROSTATICS */
511
512             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
513             ewrt             = r21*ewtabscale;
514             ewitab           = ewrt;
515             eweps            = ewrt-ewitab;
516             ewitab           = 4*ewitab;
517             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
518             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
519             felec            = qq21*rinv21*(rinvsq21-felec);
520
521             /* Update potential sums from outer loop */
522             velecsum        += velec;
523
524             fscal            = felec;
525
526             /* Calculate temporary vectorial force */
527             tx               = fscal*dx21;
528             ty               = fscal*dy21;
529             tz               = fscal*dz21;
530
531             /* Update vectorial force */
532             fix2            += tx;
533             fiy2            += ty;
534             fiz2            += tz;
535             f[j_coord_offset+DIM*1+XX] -= tx;
536             f[j_coord_offset+DIM*1+YY] -= ty;
537             f[j_coord_offset+DIM*1+ZZ] -= tz;
538
539             /**************************
540              * CALCULATE INTERACTIONS *
541              **************************/
542
543             r22              = rsq22*rinv22;
544
545             /* EWALD ELECTROSTATICS */
546
547             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
548             ewrt             = r22*ewtabscale;
549             ewitab           = ewrt;
550             eweps            = ewrt-ewitab;
551             ewitab           = 4*ewitab;
552             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
553             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
554             felec            = qq22*rinv22*(rinvsq22-felec);
555
556             /* Update potential sums from outer loop */
557             velecsum        += velec;
558
559             fscal            = felec;
560
561             /* Calculate temporary vectorial force */
562             tx               = fscal*dx22;
563             ty               = fscal*dy22;
564             tz               = fscal*dz22;
565
566             /* Update vectorial force */
567             fix2            += tx;
568             fiy2            += ty;
569             fiz2            += tz;
570             f[j_coord_offset+DIM*2+XX] -= tx;
571             f[j_coord_offset+DIM*2+YY] -= ty;
572             f[j_coord_offset+DIM*2+ZZ] -= tz;
573
574             /* Inner loop uses 360 flops */
575         }
576         /* End of innermost loop */
577
578         tx = ty = tz = 0;
579         f[i_coord_offset+DIM*0+XX] += fix0;
580         f[i_coord_offset+DIM*0+YY] += fiy0;
581         f[i_coord_offset+DIM*0+ZZ] += fiz0;
582         tx                         += fix0;
583         ty                         += fiy0;
584         tz                         += fiz0;
585         f[i_coord_offset+DIM*1+XX] += fix1;
586         f[i_coord_offset+DIM*1+YY] += fiy1;
587         f[i_coord_offset+DIM*1+ZZ] += fiz1;
588         tx                         += fix1;
589         ty                         += fiy1;
590         tz                         += fiz1;
591         f[i_coord_offset+DIM*2+XX] += fix2;
592         f[i_coord_offset+DIM*2+YY] += fiy2;
593         f[i_coord_offset+DIM*2+ZZ] += fiz2;
594         tx                         += fix2;
595         ty                         += fiy2;
596         tz                         += fiz2;
597         fshift[i_shift_offset+XX]  += tx;
598         fshift[i_shift_offset+YY]  += ty;
599         fshift[i_shift_offset+ZZ]  += tz;
600
601         ggid                        = gid[iidx];
602         /* Update potential energies */
603         kernel_data->energygrp_elec[ggid] += velecsum;
604
605         /* Increment number of inner iterations */
606         inneriter                  += j_index_end - j_index_start;
607
608         /* Outer loop uses 31 flops */
609     }
610
611     /* Increment number of outer iterations */
612     outeriter        += nri;
613
614     /* Update outer/inner flops */
615
616     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*31 + inneriter*360);
617 }
618 /*
619  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3W3_F_c
620  * Electrostatics interaction: Ewald
621  * VdW interaction:            None
622  * Geometry:                   Water3-Water3
623  * Calculate force/pot:        Force
624  */
625 void
626 nb_kernel_ElecEw_VdwNone_GeomW3W3_F_c
627                     (t_nblist                    * gmx_restrict       nlist,
628                      rvec                        * gmx_restrict          xx,
629                      rvec                        * gmx_restrict          ff,
630                      t_forcerec                  * gmx_restrict          fr,
631                      t_mdatoms                   * gmx_restrict     mdatoms,
632                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
633                      t_nrnb                      * gmx_restrict        nrnb)
634 {
635     int              i_shift_offset,i_coord_offset,j_coord_offset;
636     int              j_index_start,j_index_end;
637     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
638     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
639     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
640     real             *shiftvec,*fshift,*x,*f;
641     int              vdwioffset0;
642     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
643     int              vdwioffset1;
644     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
645     int              vdwioffset2;
646     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
647     int              vdwjidx0;
648     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
649     int              vdwjidx1;
650     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
651     int              vdwjidx2;
652     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
653     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
654     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
655     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
656     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
657     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
658     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
659     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
660     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
661     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
662     real             velec,felec,velecsum,facel,crf,krf,krf2;
663     real             *charge;
664     int              ewitab;
665     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
666     real             *ewtab;
667
668     x                = xx[0];
669     f                = ff[0];
670
671     nri              = nlist->nri;
672     iinr             = nlist->iinr;
673     jindex           = nlist->jindex;
674     jjnr             = nlist->jjnr;
675     shiftidx         = nlist->shift;
676     gid              = nlist->gid;
677     shiftvec         = fr->shift_vec[0];
678     fshift           = fr->fshift[0];
679     facel            = fr->epsfac;
680     charge           = mdatoms->chargeA;
681
682     sh_ewald         = fr->ic->sh_ewald;
683     ewtab            = fr->ic->tabq_coul_F;
684     ewtabscale       = fr->ic->tabq_scale;
685     ewtabhalfspace   = 0.5/ewtabscale;
686
687     /* Setup water-specific parameters */
688     inr              = nlist->iinr[0];
689     iq0              = facel*charge[inr+0];
690     iq1              = facel*charge[inr+1];
691     iq2              = facel*charge[inr+2];
692
693     jq0              = charge[inr+0];
694     jq1              = charge[inr+1];
695     jq2              = charge[inr+2];
696     qq00             = iq0*jq0;
697     qq01             = iq0*jq1;
698     qq02             = iq0*jq2;
699     qq10             = iq1*jq0;
700     qq11             = iq1*jq1;
701     qq12             = iq1*jq2;
702     qq20             = iq2*jq0;
703     qq21             = iq2*jq1;
704     qq22             = iq2*jq2;
705
706     outeriter        = 0;
707     inneriter        = 0;
708
709     /* Start outer loop over neighborlists */
710     for(iidx=0; iidx<nri; iidx++)
711     {
712         /* Load shift vector for this list */
713         i_shift_offset   = DIM*shiftidx[iidx];
714         shX              = shiftvec[i_shift_offset+XX];
715         shY              = shiftvec[i_shift_offset+YY];
716         shZ              = shiftvec[i_shift_offset+ZZ];
717
718         /* Load limits for loop over neighbors */
719         j_index_start    = jindex[iidx];
720         j_index_end      = jindex[iidx+1];
721
722         /* Get outer coordinate index */
723         inr              = iinr[iidx];
724         i_coord_offset   = DIM*inr;
725
726         /* Load i particle coords and add shift vector */
727         ix0              = shX + x[i_coord_offset+DIM*0+XX];
728         iy0              = shY + x[i_coord_offset+DIM*0+YY];
729         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
730         ix1              = shX + x[i_coord_offset+DIM*1+XX];
731         iy1              = shY + x[i_coord_offset+DIM*1+YY];
732         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
733         ix2              = shX + x[i_coord_offset+DIM*2+XX];
734         iy2              = shY + x[i_coord_offset+DIM*2+YY];
735         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
736
737         fix0             = 0.0;
738         fiy0             = 0.0;
739         fiz0             = 0.0;
740         fix1             = 0.0;
741         fiy1             = 0.0;
742         fiz1             = 0.0;
743         fix2             = 0.0;
744         fiy2             = 0.0;
745         fiz2             = 0.0;
746
747         /* Start inner kernel loop */
748         for(jidx=j_index_start; jidx<j_index_end; jidx++)
749         {
750             /* Get j neighbor index, and coordinate index */
751             jnr              = jjnr[jidx];
752             j_coord_offset   = DIM*jnr;
753
754             /* load j atom coordinates */
755             jx0              = x[j_coord_offset+DIM*0+XX];
756             jy0              = x[j_coord_offset+DIM*0+YY];
757             jz0              = x[j_coord_offset+DIM*0+ZZ];
758             jx1              = x[j_coord_offset+DIM*1+XX];
759             jy1              = x[j_coord_offset+DIM*1+YY];
760             jz1              = x[j_coord_offset+DIM*1+ZZ];
761             jx2              = x[j_coord_offset+DIM*2+XX];
762             jy2              = x[j_coord_offset+DIM*2+YY];
763             jz2              = x[j_coord_offset+DIM*2+ZZ];
764
765             /* Calculate displacement vector */
766             dx00             = ix0 - jx0;
767             dy00             = iy0 - jy0;
768             dz00             = iz0 - jz0;
769             dx01             = ix0 - jx1;
770             dy01             = iy0 - jy1;
771             dz01             = iz0 - jz1;
772             dx02             = ix0 - jx2;
773             dy02             = iy0 - jy2;
774             dz02             = iz0 - jz2;
775             dx10             = ix1 - jx0;
776             dy10             = iy1 - jy0;
777             dz10             = iz1 - jz0;
778             dx11             = ix1 - jx1;
779             dy11             = iy1 - jy1;
780             dz11             = iz1 - jz1;
781             dx12             = ix1 - jx2;
782             dy12             = iy1 - jy2;
783             dz12             = iz1 - jz2;
784             dx20             = ix2 - jx0;
785             dy20             = iy2 - jy0;
786             dz20             = iz2 - jz0;
787             dx21             = ix2 - jx1;
788             dy21             = iy2 - jy1;
789             dz21             = iz2 - jz1;
790             dx22             = ix2 - jx2;
791             dy22             = iy2 - jy2;
792             dz22             = iz2 - jz2;
793
794             /* Calculate squared distance and things based on it */
795             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
796             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
797             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
798             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
799             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
800             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
801             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
802             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
803             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
804
805             rinv00           = gmx_invsqrt(rsq00);
806             rinv01           = gmx_invsqrt(rsq01);
807             rinv02           = gmx_invsqrt(rsq02);
808             rinv10           = gmx_invsqrt(rsq10);
809             rinv11           = gmx_invsqrt(rsq11);
810             rinv12           = gmx_invsqrt(rsq12);
811             rinv20           = gmx_invsqrt(rsq20);
812             rinv21           = gmx_invsqrt(rsq21);
813             rinv22           = gmx_invsqrt(rsq22);
814
815             rinvsq00         = rinv00*rinv00;
816             rinvsq01         = rinv01*rinv01;
817             rinvsq02         = rinv02*rinv02;
818             rinvsq10         = rinv10*rinv10;
819             rinvsq11         = rinv11*rinv11;
820             rinvsq12         = rinv12*rinv12;
821             rinvsq20         = rinv20*rinv20;
822             rinvsq21         = rinv21*rinv21;
823             rinvsq22         = rinv22*rinv22;
824
825             /**************************
826              * CALCULATE INTERACTIONS *
827              **************************/
828
829             r00              = rsq00*rinv00;
830
831             /* EWALD ELECTROSTATICS */
832
833             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
834             ewrt             = r00*ewtabscale;
835             ewitab           = ewrt;
836             eweps            = ewrt-ewitab;
837             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
838             felec            = qq00*rinv00*(rinvsq00-felec);
839
840             fscal            = felec;
841
842             /* Calculate temporary vectorial force */
843             tx               = fscal*dx00;
844             ty               = fscal*dy00;
845             tz               = fscal*dz00;
846
847             /* Update vectorial force */
848             fix0            += tx;
849             fiy0            += ty;
850             fiz0            += tz;
851             f[j_coord_offset+DIM*0+XX] -= tx;
852             f[j_coord_offset+DIM*0+YY] -= ty;
853             f[j_coord_offset+DIM*0+ZZ] -= tz;
854
855             /**************************
856              * CALCULATE INTERACTIONS *
857              **************************/
858
859             r01              = rsq01*rinv01;
860
861             /* EWALD ELECTROSTATICS */
862
863             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
864             ewrt             = r01*ewtabscale;
865             ewitab           = ewrt;
866             eweps            = ewrt-ewitab;
867             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
868             felec            = qq01*rinv01*(rinvsq01-felec);
869
870             fscal            = felec;
871
872             /* Calculate temporary vectorial force */
873             tx               = fscal*dx01;
874             ty               = fscal*dy01;
875             tz               = fscal*dz01;
876
877             /* Update vectorial force */
878             fix0            += tx;
879             fiy0            += ty;
880             fiz0            += tz;
881             f[j_coord_offset+DIM*1+XX] -= tx;
882             f[j_coord_offset+DIM*1+YY] -= ty;
883             f[j_coord_offset+DIM*1+ZZ] -= tz;
884
885             /**************************
886              * CALCULATE INTERACTIONS *
887              **************************/
888
889             r02              = rsq02*rinv02;
890
891             /* EWALD ELECTROSTATICS */
892
893             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
894             ewrt             = r02*ewtabscale;
895             ewitab           = ewrt;
896             eweps            = ewrt-ewitab;
897             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
898             felec            = qq02*rinv02*(rinvsq02-felec);
899
900             fscal            = felec;
901
902             /* Calculate temporary vectorial force */
903             tx               = fscal*dx02;
904             ty               = fscal*dy02;
905             tz               = fscal*dz02;
906
907             /* Update vectorial force */
908             fix0            += tx;
909             fiy0            += ty;
910             fiz0            += tz;
911             f[j_coord_offset+DIM*2+XX] -= tx;
912             f[j_coord_offset+DIM*2+YY] -= ty;
913             f[j_coord_offset+DIM*2+ZZ] -= tz;
914
915             /**************************
916              * CALCULATE INTERACTIONS *
917              **************************/
918
919             r10              = rsq10*rinv10;
920
921             /* EWALD ELECTROSTATICS */
922
923             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
924             ewrt             = r10*ewtabscale;
925             ewitab           = ewrt;
926             eweps            = ewrt-ewitab;
927             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
928             felec            = qq10*rinv10*(rinvsq10-felec);
929
930             fscal            = felec;
931
932             /* Calculate temporary vectorial force */
933             tx               = fscal*dx10;
934             ty               = fscal*dy10;
935             tz               = fscal*dz10;
936
937             /* Update vectorial force */
938             fix1            += tx;
939             fiy1            += ty;
940             fiz1            += tz;
941             f[j_coord_offset+DIM*0+XX] -= tx;
942             f[j_coord_offset+DIM*0+YY] -= ty;
943             f[j_coord_offset+DIM*0+ZZ] -= tz;
944
945             /**************************
946              * CALCULATE INTERACTIONS *
947              **************************/
948
949             r11              = rsq11*rinv11;
950
951             /* EWALD ELECTROSTATICS */
952
953             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
954             ewrt             = r11*ewtabscale;
955             ewitab           = ewrt;
956             eweps            = ewrt-ewitab;
957             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
958             felec            = qq11*rinv11*(rinvsq11-felec);
959
960             fscal            = felec;
961
962             /* Calculate temporary vectorial force */
963             tx               = fscal*dx11;
964             ty               = fscal*dy11;
965             tz               = fscal*dz11;
966
967             /* Update vectorial force */
968             fix1            += tx;
969             fiy1            += ty;
970             fiz1            += tz;
971             f[j_coord_offset+DIM*1+XX] -= tx;
972             f[j_coord_offset+DIM*1+YY] -= ty;
973             f[j_coord_offset+DIM*1+ZZ] -= tz;
974
975             /**************************
976              * CALCULATE INTERACTIONS *
977              **************************/
978
979             r12              = rsq12*rinv12;
980
981             /* EWALD ELECTROSTATICS */
982
983             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
984             ewrt             = r12*ewtabscale;
985             ewitab           = ewrt;
986             eweps            = ewrt-ewitab;
987             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
988             felec            = qq12*rinv12*(rinvsq12-felec);
989
990             fscal            = felec;
991
992             /* Calculate temporary vectorial force */
993             tx               = fscal*dx12;
994             ty               = fscal*dy12;
995             tz               = fscal*dz12;
996
997             /* Update vectorial force */
998             fix1            += tx;
999             fiy1            += ty;
1000             fiz1            += tz;
1001             f[j_coord_offset+DIM*2+XX] -= tx;
1002             f[j_coord_offset+DIM*2+YY] -= ty;
1003             f[j_coord_offset+DIM*2+ZZ] -= tz;
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             r20              = rsq20*rinv20;
1010
1011             /* EWALD ELECTROSTATICS */
1012
1013             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1014             ewrt             = r20*ewtabscale;
1015             ewitab           = ewrt;
1016             eweps            = ewrt-ewitab;
1017             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1018             felec            = qq20*rinv20*(rinvsq20-felec);
1019
1020             fscal            = felec;
1021
1022             /* Calculate temporary vectorial force */
1023             tx               = fscal*dx20;
1024             ty               = fscal*dy20;
1025             tz               = fscal*dz20;
1026
1027             /* Update vectorial force */
1028             fix2            += tx;
1029             fiy2            += ty;
1030             fiz2            += tz;
1031             f[j_coord_offset+DIM*0+XX] -= tx;
1032             f[j_coord_offset+DIM*0+YY] -= ty;
1033             f[j_coord_offset+DIM*0+ZZ] -= tz;
1034
1035             /**************************
1036              * CALCULATE INTERACTIONS *
1037              **************************/
1038
1039             r21              = rsq21*rinv21;
1040
1041             /* EWALD ELECTROSTATICS */
1042
1043             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1044             ewrt             = r21*ewtabscale;
1045             ewitab           = ewrt;
1046             eweps            = ewrt-ewitab;
1047             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1048             felec            = qq21*rinv21*(rinvsq21-felec);
1049
1050             fscal            = felec;
1051
1052             /* Calculate temporary vectorial force */
1053             tx               = fscal*dx21;
1054             ty               = fscal*dy21;
1055             tz               = fscal*dz21;
1056
1057             /* Update vectorial force */
1058             fix2            += tx;
1059             fiy2            += ty;
1060             fiz2            += tz;
1061             f[j_coord_offset+DIM*1+XX] -= tx;
1062             f[j_coord_offset+DIM*1+YY] -= ty;
1063             f[j_coord_offset+DIM*1+ZZ] -= tz;
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             r22              = rsq22*rinv22;
1070
1071             /* EWALD ELECTROSTATICS */
1072
1073             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1074             ewrt             = r22*ewtabscale;
1075             ewitab           = ewrt;
1076             eweps            = ewrt-ewitab;
1077             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1078             felec            = qq22*rinv22*(rinvsq22-felec);
1079
1080             fscal            = felec;
1081
1082             /* Calculate temporary vectorial force */
1083             tx               = fscal*dx22;
1084             ty               = fscal*dy22;
1085             tz               = fscal*dz22;
1086
1087             /* Update vectorial force */
1088             fix2            += tx;
1089             fiy2            += ty;
1090             fiz2            += tz;
1091             f[j_coord_offset+DIM*2+XX] -= tx;
1092             f[j_coord_offset+DIM*2+YY] -= ty;
1093             f[j_coord_offset+DIM*2+ZZ] -= tz;
1094
1095             /* Inner loop uses 297 flops */
1096         }
1097         /* End of innermost loop */
1098
1099         tx = ty = tz = 0;
1100         f[i_coord_offset+DIM*0+XX] += fix0;
1101         f[i_coord_offset+DIM*0+YY] += fiy0;
1102         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1103         tx                         += fix0;
1104         ty                         += fiy0;
1105         tz                         += fiz0;
1106         f[i_coord_offset+DIM*1+XX] += fix1;
1107         f[i_coord_offset+DIM*1+YY] += fiy1;
1108         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1109         tx                         += fix1;
1110         ty                         += fiy1;
1111         tz                         += fiz1;
1112         f[i_coord_offset+DIM*2+XX] += fix2;
1113         f[i_coord_offset+DIM*2+YY] += fiy2;
1114         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1115         tx                         += fix2;
1116         ty                         += fiy2;
1117         tz                         += fiz2;
1118         fshift[i_shift_offset+XX]  += tx;
1119         fshift[i_shift_offset+YY]  += ty;
1120         fshift[i_shift_offset+ZZ]  += tz;
1121
1122         /* Increment number of inner iterations */
1123         inneriter                  += j_index_end - j_index_start;
1124
1125         /* Outer loop uses 30 flops */
1126     }
1127
1128     /* Increment number of outer iterations */
1129     outeriter        += nri;
1130
1131     /* Update outer/inner flops */
1132
1133     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*30 + inneriter*297);
1134 }