0c28e9d3035ecda17570c37710bc898913c3ae9d
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwNone_GeomW3W3_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_c
49  * Electrostatics interaction: Ewald
50  * VdW interaction:            None
51  * Geometry:                   Water3-Water3
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecEw_VdwNone_GeomW3W3_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwioffset1;
73     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     int              vdwioffset2;
75     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0;
77     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     int              vdwjidx1;
79     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
80     int              vdwjidx2;
81     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
82     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
84     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
85     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
86     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
87     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
88     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
89     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
90     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
91     real             velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              ewitab;
94     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
95     real             *ewtab;
96
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = fr->epsfac;
109     charge           = mdatoms->chargeA;
110
111     sh_ewald         = fr->ic->sh_ewald;
112     ewtab            = fr->ic->tabq_coul_FDV0;
113     ewtabscale       = fr->ic->tabq_scale;
114     ewtabhalfspace   = 0.5/ewtabscale;
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = facel*charge[inr+0];
119     iq1              = facel*charge[inr+1];
120     iq2              = facel*charge[inr+2];
121
122     jq0              = charge[inr+0];
123     jq1              = charge[inr+1];
124     jq2              = charge[inr+2];
125     qq00             = iq0*jq0;
126     qq01             = iq0*jq1;
127     qq02             = iq0*jq2;
128     qq10             = iq1*jq0;
129     qq11             = iq1*jq1;
130     qq12             = iq1*jq2;
131     qq20             = iq2*jq0;
132     qq21             = iq2*jq1;
133     qq22             = iq2*jq2;
134
135     outeriter        = 0;
136     inneriter        = 0;
137
138     /* Start outer loop over neighborlists */
139     for(iidx=0; iidx<nri; iidx++)
140     {
141         /* Load shift vector for this list */
142         i_shift_offset   = DIM*shiftidx[iidx];
143         shX              = shiftvec[i_shift_offset+XX];
144         shY              = shiftvec[i_shift_offset+YY];
145         shZ              = shiftvec[i_shift_offset+ZZ];
146
147         /* Load limits for loop over neighbors */
148         j_index_start    = jindex[iidx];
149         j_index_end      = jindex[iidx+1];
150
151         /* Get outer coordinate index */
152         inr              = iinr[iidx];
153         i_coord_offset   = DIM*inr;
154
155         /* Load i particle coords and add shift vector */
156         ix0              = shX + x[i_coord_offset+DIM*0+XX];
157         iy0              = shY + x[i_coord_offset+DIM*0+YY];
158         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
159         ix1              = shX + x[i_coord_offset+DIM*1+XX];
160         iy1              = shY + x[i_coord_offset+DIM*1+YY];
161         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
162         ix2              = shX + x[i_coord_offset+DIM*2+XX];
163         iy2              = shY + x[i_coord_offset+DIM*2+YY];
164         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
165
166         fix0             = 0.0;
167         fiy0             = 0.0;
168         fiz0             = 0.0;
169         fix1             = 0.0;
170         fiy1             = 0.0;
171         fiz1             = 0.0;
172         fix2             = 0.0;
173         fiy2             = 0.0;
174         fiz2             = 0.0;
175
176         /* Reset potential sums */
177         velecsum         = 0.0;
178
179         /* Start inner kernel loop */
180         for(jidx=j_index_start; jidx<j_index_end; jidx++)
181         {
182             /* Get j neighbor index, and coordinate index */
183             jnr              = jjnr[jidx];
184             j_coord_offset   = DIM*jnr;
185
186             /* load j atom coordinates */
187             jx0              = x[j_coord_offset+DIM*0+XX];
188             jy0              = x[j_coord_offset+DIM*0+YY];
189             jz0              = x[j_coord_offset+DIM*0+ZZ];
190             jx1              = x[j_coord_offset+DIM*1+XX];
191             jy1              = x[j_coord_offset+DIM*1+YY];
192             jz1              = x[j_coord_offset+DIM*1+ZZ];
193             jx2              = x[j_coord_offset+DIM*2+XX];
194             jy2              = x[j_coord_offset+DIM*2+YY];
195             jz2              = x[j_coord_offset+DIM*2+ZZ];
196
197             /* Calculate displacement vector */
198             dx00             = ix0 - jx0;
199             dy00             = iy0 - jy0;
200             dz00             = iz0 - jz0;
201             dx01             = ix0 - jx1;
202             dy01             = iy0 - jy1;
203             dz01             = iz0 - jz1;
204             dx02             = ix0 - jx2;
205             dy02             = iy0 - jy2;
206             dz02             = iz0 - jz2;
207             dx10             = ix1 - jx0;
208             dy10             = iy1 - jy0;
209             dz10             = iz1 - jz0;
210             dx11             = ix1 - jx1;
211             dy11             = iy1 - jy1;
212             dz11             = iz1 - jz1;
213             dx12             = ix1 - jx2;
214             dy12             = iy1 - jy2;
215             dz12             = iz1 - jz2;
216             dx20             = ix2 - jx0;
217             dy20             = iy2 - jy0;
218             dz20             = iz2 - jz0;
219             dx21             = ix2 - jx1;
220             dy21             = iy2 - jy1;
221             dz21             = iz2 - jz1;
222             dx22             = ix2 - jx2;
223             dy22             = iy2 - jy2;
224             dz22             = iz2 - jz2;
225
226             /* Calculate squared distance and things based on it */
227             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
228             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
229             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
230             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
231             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
232             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
233             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
234             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
235             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
236
237             rinv00           = gmx_invsqrt(rsq00);
238             rinv01           = gmx_invsqrt(rsq01);
239             rinv02           = gmx_invsqrt(rsq02);
240             rinv10           = gmx_invsqrt(rsq10);
241             rinv11           = gmx_invsqrt(rsq11);
242             rinv12           = gmx_invsqrt(rsq12);
243             rinv20           = gmx_invsqrt(rsq20);
244             rinv21           = gmx_invsqrt(rsq21);
245             rinv22           = gmx_invsqrt(rsq22);
246
247             rinvsq00         = rinv00*rinv00;
248             rinvsq01         = rinv01*rinv01;
249             rinvsq02         = rinv02*rinv02;
250             rinvsq10         = rinv10*rinv10;
251             rinvsq11         = rinv11*rinv11;
252             rinvsq12         = rinv12*rinv12;
253             rinvsq20         = rinv20*rinv20;
254             rinvsq21         = rinv21*rinv21;
255             rinvsq22         = rinv22*rinv22;
256
257             /**************************
258              * CALCULATE INTERACTIONS *
259              **************************/
260
261             r00              = rsq00*rinv00;
262
263             /* EWALD ELECTROSTATICS */
264
265             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
266             ewrt             = r00*ewtabscale;
267             ewitab           = ewrt;
268             eweps            = ewrt-ewitab;
269             ewitab           = 4*ewitab;
270             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
271             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
272             felec            = qq00*rinv00*(rinvsq00-felec);
273
274             /* Update potential sums from outer loop */
275             velecsum        += velec;
276
277             fscal            = felec;
278
279             /* Calculate temporary vectorial force */
280             tx               = fscal*dx00;
281             ty               = fscal*dy00;
282             tz               = fscal*dz00;
283
284             /* Update vectorial force */
285             fix0            += tx;
286             fiy0            += ty;
287             fiz0            += tz;
288             f[j_coord_offset+DIM*0+XX] -= tx;
289             f[j_coord_offset+DIM*0+YY] -= ty;
290             f[j_coord_offset+DIM*0+ZZ] -= tz;
291
292             /**************************
293              * CALCULATE INTERACTIONS *
294              **************************/
295
296             r01              = rsq01*rinv01;
297
298             /* EWALD ELECTROSTATICS */
299
300             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
301             ewrt             = r01*ewtabscale;
302             ewitab           = ewrt;
303             eweps            = ewrt-ewitab;
304             ewitab           = 4*ewitab;
305             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
306             velec            = qq01*(rinv01-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
307             felec            = qq01*rinv01*(rinvsq01-felec);
308
309             /* Update potential sums from outer loop */
310             velecsum        += velec;
311
312             fscal            = felec;
313
314             /* Calculate temporary vectorial force */
315             tx               = fscal*dx01;
316             ty               = fscal*dy01;
317             tz               = fscal*dz01;
318
319             /* Update vectorial force */
320             fix0            += tx;
321             fiy0            += ty;
322             fiz0            += tz;
323             f[j_coord_offset+DIM*1+XX] -= tx;
324             f[j_coord_offset+DIM*1+YY] -= ty;
325             f[j_coord_offset+DIM*1+ZZ] -= tz;
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             r02              = rsq02*rinv02;
332
333             /* EWALD ELECTROSTATICS */
334
335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
336             ewrt             = r02*ewtabscale;
337             ewitab           = ewrt;
338             eweps            = ewrt-ewitab;
339             ewitab           = 4*ewitab;
340             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
341             velec            = qq02*(rinv02-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
342             felec            = qq02*rinv02*(rinvsq02-felec);
343
344             /* Update potential sums from outer loop */
345             velecsum        += velec;
346
347             fscal            = felec;
348
349             /* Calculate temporary vectorial force */
350             tx               = fscal*dx02;
351             ty               = fscal*dy02;
352             tz               = fscal*dz02;
353
354             /* Update vectorial force */
355             fix0            += tx;
356             fiy0            += ty;
357             fiz0            += tz;
358             f[j_coord_offset+DIM*2+XX] -= tx;
359             f[j_coord_offset+DIM*2+YY] -= ty;
360             f[j_coord_offset+DIM*2+ZZ] -= tz;
361
362             /**************************
363              * CALCULATE INTERACTIONS *
364              **************************/
365
366             r10              = rsq10*rinv10;
367
368             /* EWALD ELECTROSTATICS */
369
370             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
371             ewrt             = r10*ewtabscale;
372             ewitab           = ewrt;
373             eweps            = ewrt-ewitab;
374             ewitab           = 4*ewitab;
375             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
376             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
377             felec            = qq10*rinv10*(rinvsq10-felec);
378
379             /* Update potential sums from outer loop */
380             velecsum        += velec;
381
382             fscal            = felec;
383
384             /* Calculate temporary vectorial force */
385             tx               = fscal*dx10;
386             ty               = fscal*dy10;
387             tz               = fscal*dz10;
388
389             /* Update vectorial force */
390             fix1            += tx;
391             fiy1            += ty;
392             fiz1            += tz;
393             f[j_coord_offset+DIM*0+XX] -= tx;
394             f[j_coord_offset+DIM*0+YY] -= ty;
395             f[j_coord_offset+DIM*0+ZZ] -= tz;
396
397             /**************************
398              * CALCULATE INTERACTIONS *
399              **************************/
400
401             r11              = rsq11*rinv11;
402
403             /* EWALD ELECTROSTATICS */
404
405             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
406             ewrt             = r11*ewtabscale;
407             ewitab           = ewrt;
408             eweps            = ewrt-ewitab;
409             ewitab           = 4*ewitab;
410             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
411             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
412             felec            = qq11*rinv11*(rinvsq11-felec);
413
414             /* Update potential sums from outer loop */
415             velecsum        += velec;
416
417             fscal            = felec;
418
419             /* Calculate temporary vectorial force */
420             tx               = fscal*dx11;
421             ty               = fscal*dy11;
422             tz               = fscal*dz11;
423
424             /* Update vectorial force */
425             fix1            += tx;
426             fiy1            += ty;
427             fiz1            += tz;
428             f[j_coord_offset+DIM*1+XX] -= tx;
429             f[j_coord_offset+DIM*1+YY] -= ty;
430             f[j_coord_offset+DIM*1+ZZ] -= tz;
431
432             /**************************
433              * CALCULATE INTERACTIONS *
434              **************************/
435
436             r12              = rsq12*rinv12;
437
438             /* EWALD ELECTROSTATICS */
439
440             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
441             ewrt             = r12*ewtabscale;
442             ewitab           = ewrt;
443             eweps            = ewrt-ewitab;
444             ewitab           = 4*ewitab;
445             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
446             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
447             felec            = qq12*rinv12*(rinvsq12-felec);
448
449             /* Update potential sums from outer loop */
450             velecsum        += velec;
451
452             fscal            = felec;
453
454             /* Calculate temporary vectorial force */
455             tx               = fscal*dx12;
456             ty               = fscal*dy12;
457             tz               = fscal*dz12;
458
459             /* Update vectorial force */
460             fix1            += tx;
461             fiy1            += ty;
462             fiz1            += tz;
463             f[j_coord_offset+DIM*2+XX] -= tx;
464             f[j_coord_offset+DIM*2+YY] -= ty;
465             f[j_coord_offset+DIM*2+ZZ] -= tz;
466
467             /**************************
468              * CALCULATE INTERACTIONS *
469              **************************/
470
471             r20              = rsq20*rinv20;
472
473             /* EWALD ELECTROSTATICS */
474
475             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
476             ewrt             = r20*ewtabscale;
477             ewitab           = ewrt;
478             eweps            = ewrt-ewitab;
479             ewitab           = 4*ewitab;
480             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
481             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
482             felec            = qq20*rinv20*(rinvsq20-felec);
483
484             /* Update potential sums from outer loop */
485             velecsum        += velec;
486
487             fscal            = felec;
488
489             /* Calculate temporary vectorial force */
490             tx               = fscal*dx20;
491             ty               = fscal*dy20;
492             tz               = fscal*dz20;
493
494             /* Update vectorial force */
495             fix2            += tx;
496             fiy2            += ty;
497             fiz2            += tz;
498             f[j_coord_offset+DIM*0+XX] -= tx;
499             f[j_coord_offset+DIM*0+YY] -= ty;
500             f[j_coord_offset+DIM*0+ZZ] -= tz;
501
502             /**************************
503              * CALCULATE INTERACTIONS *
504              **************************/
505
506             r21              = rsq21*rinv21;
507
508             /* EWALD ELECTROSTATICS */
509
510             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
511             ewrt             = r21*ewtabscale;
512             ewitab           = ewrt;
513             eweps            = ewrt-ewitab;
514             ewitab           = 4*ewitab;
515             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
516             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
517             felec            = qq21*rinv21*(rinvsq21-felec);
518
519             /* Update potential sums from outer loop */
520             velecsum        += velec;
521
522             fscal            = felec;
523
524             /* Calculate temporary vectorial force */
525             tx               = fscal*dx21;
526             ty               = fscal*dy21;
527             tz               = fscal*dz21;
528
529             /* Update vectorial force */
530             fix2            += tx;
531             fiy2            += ty;
532             fiz2            += tz;
533             f[j_coord_offset+DIM*1+XX] -= tx;
534             f[j_coord_offset+DIM*1+YY] -= ty;
535             f[j_coord_offset+DIM*1+ZZ] -= tz;
536
537             /**************************
538              * CALCULATE INTERACTIONS *
539              **************************/
540
541             r22              = rsq22*rinv22;
542
543             /* EWALD ELECTROSTATICS */
544
545             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
546             ewrt             = r22*ewtabscale;
547             ewitab           = ewrt;
548             eweps            = ewrt-ewitab;
549             ewitab           = 4*ewitab;
550             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
551             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
552             felec            = qq22*rinv22*(rinvsq22-felec);
553
554             /* Update potential sums from outer loop */
555             velecsum        += velec;
556
557             fscal            = felec;
558
559             /* Calculate temporary vectorial force */
560             tx               = fscal*dx22;
561             ty               = fscal*dy22;
562             tz               = fscal*dz22;
563
564             /* Update vectorial force */
565             fix2            += tx;
566             fiy2            += ty;
567             fiz2            += tz;
568             f[j_coord_offset+DIM*2+XX] -= tx;
569             f[j_coord_offset+DIM*2+YY] -= ty;
570             f[j_coord_offset+DIM*2+ZZ] -= tz;
571
572             /* Inner loop uses 360 flops */
573         }
574         /* End of innermost loop */
575
576         tx = ty = tz = 0;
577         f[i_coord_offset+DIM*0+XX] += fix0;
578         f[i_coord_offset+DIM*0+YY] += fiy0;
579         f[i_coord_offset+DIM*0+ZZ] += fiz0;
580         tx                         += fix0;
581         ty                         += fiy0;
582         tz                         += fiz0;
583         f[i_coord_offset+DIM*1+XX] += fix1;
584         f[i_coord_offset+DIM*1+YY] += fiy1;
585         f[i_coord_offset+DIM*1+ZZ] += fiz1;
586         tx                         += fix1;
587         ty                         += fiy1;
588         tz                         += fiz1;
589         f[i_coord_offset+DIM*2+XX] += fix2;
590         f[i_coord_offset+DIM*2+YY] += fiy2;
591         f[i_coord_offset+DIM*2+ZZ] += fiz2;
592         tx                         += fix2;
593         ty                         += fiy2;
594         tz                         += fiz2;
595         fshift[i_shift_offset+XX]  += tx;
596         fshift[i_shift_offset+YY]  += ty;
597         fshift[i_shift_offset+ZZ]  += tz;
598
599         ggid                        = gid[iidx];
600         /* Update potential energies */
601         kernel_data->energygrp_elec[ggid] += velecsum;
602
603         /* Increment number of inner iterations */
604         inneriter                  += j_index_end - j_index_start;
605
606         /* Outer loop uses 31 flops */
607     }
608
609     /* Increment number of outer iterations */
610     outeriter        += nri;
611
612     /* Update outer/inner flops */
613
614     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*31 + inneriter*360);
615 }
616 /*
617  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwNone_GeomW3W3_F_c
618  * Electrostatics interaction: Ewald
619  * VdW interaction:            None
620  * Geometry:                   Water3-Water3
621  * Calculate force/pot:        Force
622  */
623 void
624 nb_kernel_ElecEw_VdwNone_GeomW3W3_F_c
625                     (t_nblist                    * gmx_restrict       nlist,
626                      rvec                        * gmx_restrict          xx,
627                      rvec                        * gmx_restrict          ff,
628                      t_forcerec                  * gmx_restrict          fr,
629                      t_mdatoms                   * gmx_restrict     mdatoms,
630                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
631                      t_nrnb                      * gmx_restrict        nrnb)
632 {
633     int              i_shift_offset,i_coord_offset,j_coord_offset;
634     int              j_index_start,j_index_end;
635     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
636     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
637     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
638     real             *shiftvec,*fshift,*x,*f;
639     int              vdwioffset0;
640     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
641     int              vdwioffset1;
642     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
643     int              vdwioffset2;
644     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
645     int              vdwjidx0;
646     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
647     int              vdwjidx1;
648     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
649     int              vdwjidx2;
650     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
651     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
652     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
653     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
654     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
655     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
656     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
657     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
658     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
659     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
660     real             velec,felec,velecsum,facel,crf,krf,krf2;
661     real             *charge;
662     int              ewitab;
663     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
664     real             *ewtab;
665
666     x                = xx[0];
667     f                = ff[0];
668
669     nri              = nlist->nri;
670     iinr             = nlist->iinr;
671     jindex           = nlist->jindex;
672     jjnr             = nlist->jjnr;
673     shiftidx         = nlist->shift;
674     gid              = nlist->gid;
675     shiftvec         = fr->shift_vec[0];
676     fshift           = fr->fshift[0];
677     facel            = fr->epsfac;
678     charge           = mdatoms->chargeA;
679
680     sh_ewald         = fr->ic->sh_ewald;
681     ewtab            = fr->ic->tabq_coul_F;
682     ewtabscale       = fr->ic->tabq_scale;
683     ewtabhalfspace   = 0.5/ewtabscale;
684
685     /* Setup water-specific parameters */
686     inr              = nlist->iinr[0];
687     iq0              = facel*charge[inr+0];
688     iq1              = facel*charge[inr+1];
689     iq2              = facel*charge[inr+2];
690
691     jq0              = charge[inr+0];
692     jq1              = charge[inr+1];
693     jq2              = charge[inr+2];
694     qq00             = iq0*jq0;
695     qq01             = iq0*jq1;
696     qq02             = iq0*jq2;
697     qq10             = iq1*jq0;
698     qq11             = iq1*jq1;
699     qq12             = iq1*jq2;
700     qq20             = iq2*jq0;
701     qq21             = iq2*jq1;
702     qq22             = iq2*jq2;
703
704     outeriter        = 0;
705     inneriter        = 0;
706
707     /* Start outer loop over neighborlists */
708     for(iidx=0; iidx<nri; iidx++)
709     {
710         /* Load shift vector for this list */
711         i_shift_offset   = DIM*shiftidx[iidx];
712         shX              = shiftvec[i_shift_offset+XX];
713         shY              = shiftvec[i_shift_offset+YY];
714         shZ              = shiftvec[i_shift_offset+ZZ];
715
716         /* Load limits for loop over neighbors */
717         j_index_start    = jindex[iidx];
718         j_index_end      = jindex[iidx+1];
719
720         /* Get outer coordinate index */
721         inr              = iinr[iidx];
722         i_coord_offset   = DIM*inr;
723
724         /* Load i particle coords and add shift vector */
725         ix0              = shX + x[i_coord_offset+DIM*0+XX];
726         iy0              = shY + x[i_coord_offset+DIM*0+YY];
727         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
728         ix1              = shX + x[i_coord_offset+DIM*1+XX];
729         iy1              = shY + x[i_coord_offset+DIM*1+YY];
730         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
731         ix2              = shX + x[i_coord_offset+DIM*2+XX];
732         iy2              = shY + x[i_coord_offset+DIM*2+YY];
733         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
734
735         fix0             = 0.0;
736         fiy0             = 0.0;
737         fiz0             = 0.0;
738         fix1             = 0.0;
739         fiy1             = 0.0;
740         fiz1             = 0.0;
741         fix2             = 0.0;
742         fiy2             = 0.0;
743         fiz2             = 0.0;
744
745         /* Start inner kernel loop */
746         for(jidx=j_index_start; jidx<j_index_end; jidx++)
747         {
748             /* Get j neighbor index, and coordinate index */
749             jnr              = jjnr[jidx];
750             j_coord_offset   = DIM*jnr;
751
752             /* load j atom coordinates */
753             jx0              = x[j_coord_offset+DIM*0+XX];
754             jy0              = x[j_coord_offset+DIM*0+YY];
755             jz0              = x[j_coord_offset+DIM*0+ZZ];
756             jx1              = x[j_coord_offset+DIM*1+XX];
757             jy1              = x[j_coord_offset+DIM*1+YY];
758             jz1              = x[j_coord_offset+DIM*1+ZZ];
759             jx2              = x[j_coord_offset+DIM*2+XX];
760             jy2              = x[j_coord_offset+DIM*2+YY];
761             jz2              = x[j_coord_offset+DIM*2+ZZ];
762
763             /* Calculate displacement vector */
764             dx00             = ix0 - jx0;
765             dy00             = iy0 - jy0;
766             dz00             = iz0 - jz0;
767             dx01             = ix0 - jx1;
768             dy01             = iy0 - jy1;
769             dz01             = iz0 - jz1;
770             dx02             = ix0 - jx2;
771             dy02             = iy0 - jy2;
772             dz02             = iz0 - jz2;
773             dx10             = ix1 - jx0;
774             dy10             = iy1 - jy0;
775             dz10             = iz1 - jz0;
776             dx11             = ix1 - jx1;
777             dy11             = iy1 - jy1;
778             dz11             = iz1 - jz1;
779             dx12             = ix1 - jx2;
780             dy12             = iy1 - jy2;
781             dz12             = iz1 - jz2;
782             dx20             = ix2 - jx0;
783             dy20             = iy2 - jy0;
784             dz20             = iz2 - jz0;
785             dx21             = ix2 - jx1;
786             dy21             = iy2 - jy1;
787             dz21             = iz2 - jz1;
788             dx22             = ix2 - jx2;
789             dy22             = iy2 - jy2;
790             dz22             = iz2 - jz2;
791
792             /* Calculate squared distance and things based on it */
793             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
794             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
795             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
796             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
797             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
798             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
799             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
800             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
801             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
802
803             rinv00           = gmx_invsqrt(rsq00);
804             rinv01           = gmx_invsqrt(rsq01);
805             rinv02           = gmx_invsqrt(rsq02);
806             rinv10           = gmx_invsqrt(rsq10);
807             rinv11           = gmx_invsqrt(rsq11);
808             rinv12           = gmx_invsqrt(rsq12);
809             rinv20           = gmx_invsqrt(rsq20);
810             rinv21           = gmx_invsqrt(rsq21);
811             rinv22           = gmx_invsqrt(rsq22);
812
813             rinvsq00         = rinv00*rinv00;
814             rinvsq01         = rinv01*rinv01;
815             rinvsq02         = rinv02*rinv02;
816             rinvsq10         = rinv10*rinv10;
817             rinvsq11         = rinv11*rinv11;
818             rinvsq12         = rinv12*rinv12;
819             rinvsq20         = rinv20*rinv20;
820             rinvsq21         = rinv21*rinv21;
821             rinvsq22         = rinv22*rinv22;
822
823             /**************************
824              * CALCULATE INTERACTIONS *
825              **************************/
826
827             r00              = rsq00*rinv00;
828
829             /* EWALD ELECTROSTATICS */
830
831             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
832             ewrt             = r00*ewtabscale;
833             ewitab           = ewrt;
834             eweps            = ewrt-ewitab;
835             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
836             felec            = qq00*rinv00*(rinvsq00-felec);
837
838             fscal            = felec;
839
840             /* Calculate temporary vectorial force */
841             tx               = fscal*dx00;
842             ty               = fscal*dy00;
843             tz               = fscal*dz00;
844
845             /* Update vectorial force */
846             fix0            += tx;
847             fiy0            += ty;
848             fiz0            += tz;
849             f[j_coord_offset+DIM*0+XX] -= tx;
850             f[j_coord_offset+DIM*0+YY] -= ty;
851             f[j_coord_offset+DIM*0+ZZ] -= tz;
852
853             /**************************
854              * CALCULATE INTERACTIONS *
855              **************************/
856
857             r01              = rsq01*rinv01;
858
859             /* EWALD ELECTROSTATICS */
860
861             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
862             ewrt             = r01*ewtabscale;
863             ewitab           = ewrt;
864             eweps            = ewrt-ewitab;
865             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
866             felec            = qq01*rinv01*(rinvsq01-felec);
867
868             fscal            = felec;
869
870             /* Calculate temporary vectorial force */
871             tx               = fscal*dx01;
872             ty               = fscal*dy01;
873             tz               = fscal*dz01;
874
875             /* Update vectorial force */
876             fix0            += tx;
877             fiy0            += ty;
878             fiz0            += tz;
879             f[j_coord_offset+DIM*1+XX] -= tx;
880             f[j_coord_offset+DIM*1+YY] -= ty;
881             f[j_coord_offset+DIM*1+ZZ] -= tz;
882
883             /**************************
884              * CALCULATE INTERACTIONS *
885              **************************/
886
887             r02              = rsq02*rinv02;
888
889             /* EWALD ELECTROSTATICS */
890
891             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
892             ewrt             = r02*ewtabscale;
893             ewitab           = ewrt;
894             eweps            = ewrt-ewitab;
895             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
896             felec            = qq02*rinv02*(rinvsq02-felec);
897
898             fscal            = felec;
899
900             /* Calculate temporary vectorial force */
901             tx               = fscal*dx02;
902             ty               = fscal*dy02;
903             tz               = fscal*dz02;
904
905             /* Update vectorial force */
906             fix0            += tx;
907             fiy0            += ty;
908             fiz0            += tz;
909             f[j_coord_offset+DIM*2+XX] -= tx;
910             f[j_coord_offset+DIM*2+YY] -= ty;
911             f[j_coord_offset+DIM*2+ZZ] -= tz;
912
913             /**************************
914              * CALCULATE INTERACTIONS *
915              **************************/
916
917             r10              = rsq10*rinv10;
918
919             /* EWALD ELECTROSTATICS */
920
921             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
922             ewrt             = r10*ewtabscale;
923             ewitab           = ewrt;
924             eweps            = ewrt-ewitab;
925             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
926             felec            = qq10*rinv10*(rinvsq10-felec);
927
928             fscal            = felec;
929
930             /* Calculate temporary vectorial force */
931             tx               = fscal*dx10;
932             ty               = fscal*dy10;
933             tz               = fscal*dz10;
934
935             /* Update vectorial force */
936             fix1            += tx;
937             fiy1            += ty;
938             fiz1            += tz;
939             f[j_coord_offset+DIM*0+XX] -= tx;
940             f[j_coord_offset+DIM*0+YY] -= ty;
941             f[j_coord_offset+DIM*0+ZZ] -= tz;
942
943             /**************************
944              * CALCULATE INTERACTIONS *
945              **************************/
946
947             r11              = rsq11*rinv11;
948
949             /* EWALD ELECTROSTATICS */
950
951             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
952             ewrt             = r11*ewtabscale;
953             ewitab           = ewrt;
954             eweps            = ewrt-ewitab;
955             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
956             felec            = qq11*rinv11*(rinvsq11-felec);
957
958             fscal            = felec;
959
960             /* Calculate temporary vectorial force */
961             tx               = fscal*dx11;
962             ty               = fscal*dy11;
963             tz               = fscal*dz11;
964
965             /* Update vectorial force */
966             fix1            += tx;
967             fiy1            += ty;
968             fiz1            += tz;
969             f[j_coord_offset+DIM*1+XX] -= tx;
970             f[j_coord_offset+DIM*1+YY] -= ty;
971             f[j_coord_offset+DIM*1+ZZ] -= tz;
972
973             /**************************
974              * CALCULATE INTERACTIONS *
975              **************************/
976
977             r12              = rsq12*rinv12;
978
979             /* EWALD ELECTROSTATICS */
980
981             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
982             ewrt             = r12*ewtabscale;
983             ewitab           = ewrt;
984             eweps            = ewrt-ewitab;
985             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
986             felec            = qq12*rinv12*(rinvsq12-felec);
987
988             fscal            = felec;
989
990             /* Calculate temporary vectorial force */
991             tx               = fscal*dx12;
992             ty               = fscal*dy12;
993             tz               = fscal*dz12;
994
995             /* Update vectorial force */
996             fix1            += tx;
997             fiy1            += ty;
998             fiz1            += tz;
999             f[j_coord_offset+DIM*2+XX] -= tx;
1000             f[j_coord_offset+DIM*2+YY] -= ty;
1001             f[j_coord_offset+DIM*2+ZZ] -= tz;
1002
1003             /**************************
1004              * CALCULATE INTERACTIONS *
1005              **************************/
1006
1007             r20              = rsq20*rinv20;
1008
1009             /* EWALD ELECTROSTATICS */
1010
1011             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1012             ewrt             = r20*ewtabscale;
1013             ewitab           = ewrt;
1014             eweps            = ewrt-ewitab;
1015             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1016             felec            = qq20*rinv20*(rinvsq20-felec);
1017
1018             fscal            = felec;
1019
1020             /* Calculate temporary vectorial force */
1021             tx               = fscal*dx20;
1022             ty               = fscal*dy20;
1023             tz               = fscal*dz20;
1024
1025             /* Update vectorial force */
1026             fix2            += tx;
1027             fiy2            += ty;
1028             fiz2            += tz;
1029             f[j_coord_offset+DIM*0+XX] -= tx;
1030             f[j_coord_offset+DIM*0+YY] -= ty;
1031             f[j_coord_offset+DIM*0+ZZ] -= tz;
1032
1033             /**************************
1034              * CALCULATE INTERACTIONS *
1035              **************************/
1036
1037             r21              = rsq21*rinv21;
1038
1039             /* EWALD ELECTROSTATICS */
1040
1041             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1042             ewrt             = r21*ewtabscale;
1043             ewitab           = ewrt;
1044             eweps            = ewrt-ewitab;
1045             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1046             felec            = qq21*rinv21*(rinvsq21-felec);
1047
1048             fscal            = felec;
1049
1050             /* Calculate temporary vectorial force */
1051             tx               = fscal*dx21;
1052             ty               = fscal*dy21;
1053             tz               = fscal*dz21;
1054
1055             /* Update vectorial force */
1056             fix2            += tx;
1057             fiy2            += ty;
1058             fiz2            += tz;
1059             f[j_coord_offset+DIM*1+XX] -= tx;
1060             f[j_coord_offset+DIM*1+YY] -= ty;
1061             f[j_coord_offset+DIM*1+ZZ] -= tz;
1062
1063             /**************************
1064              * CALCULATE INTERACTIONS *
1065              **************************/
1066
1067             r22              = rsq22*rinv22;
1068
1069             /* EWALD ELECTROSTATICS */
1070
1071             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1072             ewrt             = r22*ewtabscale;
1073             ewitab           = ewrt;
1074             eweps            = ewrt-ewitab;
1075             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1076             felec            = qq22*rinv22*(rinvsq22-felec);
1077
1078             fscal            = felec;
1079
1080             /* Calculate temporary vectorial force */
1081             tx               = fscal*dx22;
1082             ty               = fscal*dy22;
1083             tz               = fscal*dz22;
1084
1085             /* Update vectorial force */
1086             fix2            += tx;
1087             fiy2            += ty;
1088             fiz2            += tz;
1089             f[j_coord_offset+DIM*2+XX] -= tx;
1090             f[j_coord_offset+DIM*2+YY] -= ty;
1091             f[j_coord_offset+DIM*2+ZZ] -= tz;
1092
1093             /* Inner loop uses 297 flops */
1094         }
1095         /* End of innermost loop */
1096
1097         tx = ty = tz = 0;
1098         f[i_coord_offset+DIM*0+XX] += fix0;
1099         f[i_coord_offset+DIM*0+YY] += fiy0;
1100         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1101         tx                         += fix0;
1102         ty                         += fiy0;
1103         tz                         += fiz0;
1104         f[i_coord_offset+DIM*1+XX] += fix1;
1105         f[i_coord_offset+DIM*1+YY] += fiy1;
1106         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1107         tx                         += fix1;
1108         ty                         += fiy1;
1109         tz                         += fiz1;
1110         f[i_coord_offset+DIM*2+XX] += fix2;
1111         f[i_coord_offset+DIM*2+YY] += fiy2;
1112         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1113         tx                         += fix2;
1114         ty                         += fiy2;
1115         tz                         += fiz2;
1116         fshift[i_shift_offset+XX]  += tx;
1117         fshift[i_shift_offset+YY]  += ty;
1118         fshift[i_shift_offset+ZZ]  += tz;
1119
1120         /* Increment number of inner iterations */
1121         inneriter                  += j_index_end - j_index_start;
1122
1123         /* Outer loop uses 30 flops */
1124     }
1125
1126     /* Increment number of outer iterations */
1127     outeriter        += nri;
1128
1129     /* Update outer/inner flops */
1130
1131     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*30 + inneriter*297);
1132 }