Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwLJ_GeomW4W4_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4W4_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Water4
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomW4W4_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwioffset3;
79     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0;
81     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     int              vdwjidx1;
83     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84     int              vdwjidx2;
85     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86     int              vdwjidx3;
87     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98     real             velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     int              ewitab;
105     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
106     real             *ewtab;
107
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = fr->epsfac;
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = fr->ic->sh_ewald;
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = fr->ic->tabq_scale;
128     ewtabhalfspace   = 0.5/ewtabscale;
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq1              = facel*charge[inr+1];
133     iq2              = facel*charge[inr+2];
134     iq3              = facel*charge[inr+3];
135     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
136
137     jq1              = charge[inr+1];
138     jq2              = charge[inr+2];
139     jq3              = charge[inr+3];
140     vdwjidx0         = 2*vdwtype[inr+0];
141     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
142     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
143     qq11             = iq1*jq1;
144     qq12             = iq1*jq2;
145     qq13             = iq1*jq3;
146     qq21             = iq2*jq1;
147     qq22             = iq2*jq2;
148     qq23             = iq2*jq3;
149     qq31             = iq3*jq1;
150     qq32             = iq3*jq2;
151     qq33             = iq3*jq3;
152
153     outeriter        = 0;
154     inneriter        = 0;
155
156     /* Start outer loop over neighborlists */
157     for(iidx=0; iidx<nri; iidx++)
158     {
159         /* Load shift vector for this list */
160         i_shift_offset   = DIM*shiftidx[iidx];
161         shX              = shiftvec[i_shift_offset+XX];
162         shY              = shiftvec[i_shift_offset+YY];
163         shZ              = shiftvec[i_shift_offset+ZZ];
164
165         /* Load limits for loop over neighbors */
166         j_index_start    = jindex[iidx];
167         j_index_end      = jindex[iidx+1];
168
169         /* Get outer coordinate index */
170         inr              = iinr[iidx];
171         i_coord_offset   = DIM*inr;
172
173         /* Load i particle coords and add shift vector */
174         ix0              = shX + x[i_coord_offset+DIM*0+XX];
175         iy0              = shY + x[i_coord_offset+DIM*0+YY];
176         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
177         ix1              = shX + x[i_coord_offset+DIM*1+XX];
178         iy1              = shY + x[i_coord_offset+DIM*1+YY];
179         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
180         ix2              = shX + x[i_coord_offset+DIM*2+XX];
181         iy2              = shY + x[i_coord_offset+DIM*2+YY];
182         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
183         ix3              = shX + x[i_coord_offset+DIM*3+XX];
184         iy3              = shY + x[i_coord_offset+DIM*3+YY];
185         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
186
187         fix0             = 0.0;
188         fiy0             = 0.0;
189         fiz0             = 0.0;
190         fix1             = 0.0;
191         fiy1             = 0.0;
192         fiz1             = 0.0;
193         fix2             = 0.0;
194         fiy2             = 0.0;
195         fiz2             = 0.0;
196         fix3             = 0.0;
197         fiy3             = 0.0;
198         fiz3             = 0.0;
199
200         /* Reset potential sums */
201         velecsum         = 0.0;
202         vvdwsum          = 0.0;
203
204         /* Start inner kernel loop */
205         for(jidx=j_index_start; jidx<j_index_end; jidx++)
206         {
207             /* Get j neighbor index, and coordinate index */
208             jnr              = jjnr[jidx];
209             j_coord_offset   = DIM*jnr;
210
211             /* load j atom coordinates */
212             jx0              = x[j_coord_offset+DIM*0+XX];
213             jy0              = x[j_coord_offset+DIM*0+YY];
214             jz0              = x[j_coord_offset+DIM*0+ZZ];
215             jx1              = x[j_coord_offset+DIM*1+XX];
216             jy1              = x[j_coord_offset+DIM*1+YY];
217             jz1              = x[j_coord_offset+DIM*1+ZZ];
218             jx2              = x[j_coord_offset+DIM*2+XX];
219             jy2              = x[j_coord_offset+DIM*2+YY];
220             jz2              = x[j_coord_offset+DIM*2+ZZ];
221             jx3              = x[j_coord_offset+DIM*3+XX];
222             jy3              = x[j_coord_offset+DIM*3+YY];
223             jz3              = x[j_coord_offset+DIM*3+ZZ];
224
225             /* Calculate displacement vector */
226             dx00             = ix0 - jx0;
227             dy00             = iy0 - jy0;
228             dz00             = iz0 - jz0;
229             dx11             = ix1 - jx1;
230             dy11             = iy1 - jy1;
231             dz11             = iz1 - jz1;
232             dx12             = ix1 - jx2;
233             dy12             = iy1 - jy2;
234             dz12             = iz1 - jz2;
235             dx13             = ix1 - jx3;
236             dy13             = iy1 - jy3;
237             dz13             = iz1 - jz3;
238             dx21             = ix2 - jx1;
239             dy21             = iy2 - jy1;
240             dz21             = iz2 - jz1;
241             dx22             = ix2 - jx2;
242             dy22             = iy2 - jy2;
243             dz22             = iz2 - jz2;
244             dx23             = ix2 - jx3;
245             dy23             = iy2 - jy3;
246             dz23             = iz2 - jz3;
247             dx31             = ix3 - jx1;
248             dy31             = iy3 - jy1;
249             dz31             = iz3 - jz1;
250             dx32             = ix3 - jx2;
251             dy32             = iy3 - jy2;
252             dz32             = iz3 - jz2;
253             dx33             = ix3 - jx3;
254             dy33             = iy3 - jy3;
255             dz33             = iz3 - jz3;
256
257             /* Calculate squared distance and things based on it */
258             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
259             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
260             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
261             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
262             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
263             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
264             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
265             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
266             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
267             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
268
269             rinv11           = gmx_invsqrt(rsq11);
270             rinv12           = gmx_invsqrt(rsq12);
271             rinv13           = gmx_invsqrt(rsq13);
272             rinv21           = gmx_invsqrt(rsq21);
273             rinv22           = gmx_invsqrt(rsq22);
274             rinv23           = gmx_invsqrt(rsq23);
275             rinv31           = gmx_invsqrt(rsq31);
276             rinv32           = gmx_invsqrt(rsq32);
277             rinv33           = gmx_invsqrt(rsq33);
278
279             rinvsq00         = 1.0/rsq00;
280             rinvsq11         = rinv11*rinv11;
281             rinvsq12         = rinv12*rinv12;
282             rinvsq13         = rinv13*rinv13;
283             rinvsq21         = rinv21*rinv21;
284             rinvsq22         = rinv22*rinv22;
285             rinvsq23         = rinv23*rinv23;
286             rinvsq31         = rinv31*rinv31;
287             rinvsq32         = rinv32*rinv32;
288             rinvsq33         = rinv33*rinv33;
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             /* LENNARD-JONES DISPERSION/REPULSION */
295
296             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
297             vvdw6            = c6_00*rinvsix;
298             vvdw12           = c12_00*rinvsix*rinvsix;
299             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
300             fvdw             = (vvdw12-vvdw6)*rinvsq00;
301
302             /* Update potential sums from outer loop */
303             vvdwsum         += vvdw;
304
305             fscal            = fvdw;
306
307             /* Calculate temporary vectorial force */
308             tx               = fscal*dx00;
309             ty               = fscal*dy00;
310             tz               = fscal*dz00;
311
312             /* Update vectorial force */
313             fix0            += tx;
314             fiy0            += ty;
315             fiz0            += tz;
316             f[j_coord_offset+DIM*0+XX] -= tx;
317             f[j_coord_offset+DIM*0+YY] -= ty;
318             f[j_coord_offset+DIM*0+ZZ] -= tz;
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             r11              = rsq11*rinv11;
325
326             /* EWALD ELECTROSTATICS */
327
328             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
329             ewrt             = r11*ewtabscale;
330             ewitab           = ewrt;
331             eweps            = ewrt-ewitab;
332             ewitab           = 4*ewitab;
333             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
334             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
335             felec            = qq11*rinv11*(rinvsq11-felec);
336
337             /* Update potential sums from outer loop */
338             velecsum        += velec;
339
340             fscal            = felec;
341
342             /* Calculate temporary vectorial force */
343             tx               = fscal*dx11;
344             ty               = fscal*dy11;
345             tz               = fscal*dz11;
346
347             /* Update vectorial force */
348             fix1            += tx;
349             fiy1            += ty;
350             fiz1            += tz;
351             f[j_coord_offset+DIM*1+XX] -= tx;
352             f[j_coord_offset+DIM*1+YY] -= ty;
353             f[j_coord_offset+DIM*1+ZZ] -= tz;
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             r12              = rsq12*rinv12;
360
361             /* EWALD ELECTROSTATICS */
362
363             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
364             ewrt             = r12*ewtabscale;
365             ewitab           = ewrt;
366             eweps            = ewrt-ewitab;
367             ewitab           = 4*ewitab;
368             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
369             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
370             felec            = qq12*rinv12*(rinvsq12-felec);
371
372             /* Update potential sums from outer loop */
373             velecsum        += velec;
374
375             fscal            = felec;
376
377             /* Calculate temporary vectorial force */
378             tx               = fscal*dx12;
379             ty               = fscal*dy12;
380             tz               = fscal*dz12;
381
382             /* Update vectorial force */
383             fix1            += tx;
384             fiy1            += ty;
385             fiz1            += tz;
386             f[j_coord_offset+DIM*2+XX] -= tx;
387             f[j_coord_offset+DIM*2+YY] -= ty;
388             f[j_coord_offset+DIM*2+ZZ] -= tz;
389
390             /**************************
391              * CALCULATE INTERACTIONS *
392              **************************/
393
394             r13              = rsq13*rinv13;
395
396             /* EWALD ELECTROSTATICS */
397
398             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
399             ewrt             = r13*ewtabscale;
400             ewitab           = ewrt;
401             eweps            = ewrt-ewitab;
402             ewitab           = 4*ewitab;
403             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
404             velec            = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
405             felec            = qq13*rinv13*(rinvsq13-felec);
406
407             /* Update potential sums from outer loop */
408             velecsum        += velec;
409
410             fscal            = felec;
411
412             /* Calculate temporary vectorial force */
413             tx               = fscal*dx13;
414             ty               = fscal*dy13;
415             tz               = fscal*dz13;
416
417             /* Update vectorial force */
418             fix1            += tx;
419             fiy1            += ty;
420             fiz1            += tz;
421             f[j_coord_offset+DIM*3+XX] -= tx;
422             f[j_coord_offset+DIM*3+YY] -= ty;
423             f[j_coord_offset+DIM*3+ZZ] -= tz;
424
425             /**************************
426              * CALCULATE INTERACTIONS *
427              **************************/
428
429             r21              = rsq21*rinv21;
430
431             /* EWALD ELECTROSTATICS */
432
433             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
434             ewrt             = r21*ewtabscale;
435             ewitab           = ewrt;
436             eweps            = ewrt-ewitab;
437             ewitab           = 4*ewitab;
438             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
439             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
440             felec            = qq21*rinv21*(rinvsq21-felec);
441
442             /* Update potential sums from outer loop */
443             velecsum        += velec;
444
445             fscal            = felec;
446
447             /* Calculate temporary vectorial force */
448             tx               = fscal*dx21;
449             ty               = fscal*dy21;
450             tz               = fscal*dz21;
451
452             /* Update vectorial force */
453             fix2            += tx;
454             fiy2            += ty;
455             fiz2            += tz;
456             f[j_coord_offset+DIM*1+XX] -= tx;
457             f[j_coord_offset+DIM*1+YY] -= ty;
458             f[j_coord_offset+DIM*1+ZZ] -= tz;
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             r22              = rsq22*rinv22;
465
466             /* EWALD ELECTROSTATICS */
467
468             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
469             ewrt             = r22*ewtabscale;
470             ewitab           = ewrt;
471             eweps            = ewrt-ewitab;
472             ewitab           = 4*ewitab;
473             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
474             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
475             felec            = qq22*rinv22*(rinvsq22-felec);
476
477             /* Update potential sums from outer loop */
478             velecsum        += velec;
479
480             fscal            = felec;
481
482             /* Calculate temporary vectorial force */
483             tx               = fscal*dx22;
484             ty               = fscal*dy22;
485             tz               = fscal*dz22;
486
487             /* Update vectorial force */
488             fix2            += tx;
489             fiy2            += ty;
490             fiz2            += tz;
491             f[j_coord_offset+DIM*2+XX] -= tx;
492             f[j_coord_offset+DIM*2+YY] -= ty;
493             f[j_coord_offset+DIM*2+ZZ] -= tz;
494
495             /**************************
496              * CALCULATE INTERACTIONS *
497              **************************/
498
499             r23              = rsq23*rinv23;
500
501             /* EWALD ELECTROSTATICS */
502
503             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
504             ewrt             = r23*ewtabscale;
505             ewitab           = ewrt;
506             eweps            = ewrt-ewitab;
507             ewitab           = 4*ewitab;
508             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
509             velec            = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
510             felec            = qq23*rinv23*(rinvsq23-felec);
511
512             /* Update potential sums from outer loop */
513             velecsum        += velec;
514
515             fscal            = felec;
516
517             /* Calculate temporary vectorial force */
518             tx               = fscal*dx23;
519             ty               = fscal*dy23;
520             tz               = fscal*dz23;
521
522             /* Update vectorial force */
523             fix2            += tx;
524             fiy2            += ty;
525             fiz2            += tz;
526             f[j_coord_offset+DIM*3+XX] -= tx;
527             f[j_coord_offset+DIM*3+YY] -= ty;
528             f[j_coord_offset+DIM*3+ZZ] -= tz;
529
530             /**************************
531              * CALCULATE INTERACTIONS *
532              **************************/
533
534             r31              = rsq31*rinv31;
535
536             /* EWALD ELECTROSTATICS */
537
538             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
539             ewrt             = r31*ewtabscale;
540             ewitab           = ewrt;
541             eweps            = ewrt-ewitab;
542             ewitab           = 4*ewitab;
543             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
544             velec            = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
545             felec            = qq31*rinv31*(rinvsq31-felec);
546
547             /* Update potential sums from outer loop */
548             velecsum        += velec;
549
550             fscal            = felec;
551
552             /* Calculate temporary vectorial force */
553             tx               = fscal*dx31;
554             ty               = fscal*dy31;
555             tz               = fscal*dz31;
556
557             /* Update vectorial force */
558             fix3            += tx;
559             fiy3            += ty;
560             fiz3            += tz;
561             f[j_coord_offset+DIM*1+XX] -= tx;
562             f[j_coord_offset+DIM*1+YY] -= ty;
563             f[j_coord_offset+DIM*1+ZZ] -= tz;
564
565             /**************************
566              * CALCULATE INTERACTIONS *
567              **************************/
568
569             r32              = rsq32*rinv32;
570
571             /* EWALD ELECTROSTATICS */
572
573             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
574             ewrt             = r32*ewtabscale;
575             ewitab           = ewrt;
576             eweps            = ewrt-ewitab;
577             ewitab           = 4*ewitab;
578             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
579             velec            = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
580             felec            = qq32*rinv32*(rinvsq32-felec);
581
582             /* Update potential sums from outer loop */
583             velecsum        += velec;
584
585             fscal            = felec;
586
587             /* Calculate temporary vectorial force */
588             tx               = fscal*dx32;
589             ty               = fscal*dy32;
590             tz               = fscal*dz32;
591
592             /* Update vectorial force */
593             fix3            += tx;
594             fiy3            += ty;
595             fiz3            += tz;
596             f[j_coord_offset+DIM*2+XX] -= tx;
597             f[j_coord_offset+DIM*2+YY] -= ty;
598             f[j_coord_offset+DIM*2+ZZ] -= tz;
599
600             /**************************
601              * CALCULATE INTERACTIONS *
602              **************************/
603
604             r33              = rsq33*rinv33;
605
606             /* EWALD ELECTROSTATICS */
607
608             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
609             ewrt             = r33*ewtabscale;
610             ewitab           = ewrt;
611             eweps            = ewrt-ewitab;
612             ewitab           = 4*ewitab;
613             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
614             velec            = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
615             felec            = qq33*rinv33*(rinvsq33-felec);
616
617             /* Update potential sums from outer loop */
618             velecsum        += velec;
619
620             fscal            = felec;
621
622             /* Calculate temporary vectorial force */
623             tx               = fscal*dx33;
624             ty               = fscal*dy33;
625             tz               = fscal*dz33;
626
627             /* Update vectorial force */
628             fix3            += tx;
629             fiy3            += ty;
630             fiz3            += tz;
631             f[j_coord_offset+DIM*3+XX] -= tx;
632             f[j_coord_offset+DIM*3+YY] -= ty;
633             f[j_coord_offset+DIM*3+ZZ] -= tz;
634
635             /* Inner loop uses 392 flops */
636         }
637         /* End of innermost loop */
638
639         tx = ty = tz = 0;
640         f[i_coord_offset+DIM*0+XX] += fix0;
641         f[i_coord_offset+DIM*0+YY] += fiy0;
642         f[i_coord_offset+DIM*0+ZZ] += fiz0;
643         tx                         += fix0;
644         ty                         += fiy0;
645         tz                         += fiz0;
646         f[i_coord_offset+DIM*1+XX] += fix1;
647         f[i_coord_offset+DIM*1+YY] += fiy1;
648         f[i_coord_offset+DIM*1+ZZ] += fiz1;
649         tx                         += fix1;
650         ty                         += fiy1;
651         tz                         += fiz1;
652         f[i_coord_offset+DIM*2+XX] += fix2;
653         f[i_coord_offset+DIM*2+YY] += fiy2;
654         f[i_coord_offset+DIM*2+ZZ] += fiz2;
655         tx                         += fix2;
656         ty                         += fiy2;
657         tz                         += fiz2;
658         f[i_coord_offset+DIM*3+XX] += fix3;
659         f[i_coord_offset+DIM*3+YY] += fiy3;
660         f[i_coord_offset+DIM*3+ZZ] += fiz3;
661         tx                         += fix3;
662         ty                         += fiy3;
663         tz                         += fiz3;
664         fshift[i_shift_offset+XX]  += tx;
665         fshift[i_shift_offset+YY]  += ty;
666         fshift[i_shift_offset+ZZ]  += tz;
667
668         ggid                        = gid[iidx];
669         /* Update potential energies */
670         kernel_data->energygrp_elec[ggid] += velecsum;
671         kernel_data->energygrp_vdw[ggid] += vvdwsum;
672
673         /* Increment number of inner iterations */
674         inneriter                  += j_index_end - j_index_start;
675
676         /* Outer loop uses 41 flops */
677     }
678
679     /* Increment number of outer iterations */
680     outeriter        += nri;
681
682     /* Update outer/inner flops */
683
684     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*392);
685 }
686 /*
687  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomW4W4_F_c
688  * Electrostatics interaction: Ewald
689  * VdW interaction:            LennardJones
690  * Geometry:                   Water4-Water4
691  * Calculate force/pot:        Force
692  */
693 void
694 nb_kernel_ElecEw_VdwLJ_GeomW4W4_F_c
695                     (t_nblist                    * gmx_restrict       nlist,
696                      rvec                        * gmx_restrict          xx,
697                      rvec                        * gmx_restrict          ff,
698                      t_forcerec                  * gmx_restrict          fr,
699                      t_mdatoms                   * gmx_restrict     mdatoms,
700                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
701                      t_nrnb                      * gmx_restrict        nrnb)
702 {
703     int              i_shift_offset,i_coord_offset,j_coord_offset;
704     int              j_index_start,j_index_end;
705     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
706     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
707     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
708     real             *shiftvec,*fshift,*x,*f;
709     int              vdwioffset0;
710     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
711     int              vdwioffset1;
712     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
713     int              vdwioffset2;
714     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
715     int              vdwioffset3;
716     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
717     int              vdwjidx0;
718     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
719     int              vdwjidx1;
720     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
721     int              vdwjidx2;
722     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
723     int              vdwjidx3;
724     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
725     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
726     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
727     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
728     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
729     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
730     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
731     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
732     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
733     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
734     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
735     real             velec,felec,velecsum,facel,crf,krf,krf2;
736     real             *charge;
737     int              nvdwtype;
738     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
739     int              *vdwtype;
740     real             *vdwparam;
741     int              ewitab;
742     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
743     real             *ewtab;
744
745     x                = xx[0];
746     f                = ff[0];
747
748     nri              = nlist->nri;
749     iinr             = nlist->iinr;
750     jindex           = nlist->jindex;
751     jjnr             = nlist->jjnr;
752     shiftidx         = nlist->shift;
753     gid              = nlist->gid;
754     shiftvec         = fr->shift_vec[0];
755     fshift           = fr->fshift[0];
756     facel            = fr->epsfac;
757     charge           = mdatoms->chargeA;
758     nvdwtype         = fr->ntype;
759     vdwparam         = fr->nbfp;
760     vdwtype          = mdatoms->typeA;
761
762     sh_ewald         = fr->ic->sh_ewald;
763     ewtab            = fr->ic->tabq_coul_F;
764     ewtabscale       = fr->ic->tabq_scale;
765     ewtabhalfspace   = 0.5/ewtabscale;
766
767     /* Setup water-specific parameters */
768     inr              = nlist->iinr[0];
769     iq1              = facel*charge[inr+1];
770     iq2              = facel*charge[inr+2];
771     iq3              = facel*charge[inr+3];
772     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
773
774     jq1              = charge[inr+1];
775     jq2              = charge[inr+2];
776     jq3              = charge[inr+3];
777     vdwjidx0         = 2*vdwtype[inr+0];
778     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
779     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
780     qq11             = iq1*jq1;
781     qq12             = iq1*jq2;
782     qq13             = iq1*jq3;
783     qq21             = iq2*jq1;
784     qq22             = iq2*jq2;
785     qq23             = iq2*jq3;
786     qq31             = iq3*jq1;
787     qq32             = iq3*jq2;
788     qq33             = iq3*jq3;
789
790     outeriter        = 0;
791     inneriter        = 0;
792
793     /* Start outer loop over neighborlists */
794     for(iidx=0; iidx<nri; iidx++)
795     {
796         /* Load shift vector for this list */
797         i_shift_offset   = DIM*shiftidx[iidx];
798         shX              = shiftvec[i_shift_offset+XX];
799         shY              = shiftvec[i_shift_offset+YY];
800         shZ              = shiftvec[i_shift_offset+ZZ];
801
802         /* Load limits for loop over neighbors */
803         j_index_start    = jindex[iidx];
804         j_index_end      = jindex[iidx+1];
805
806         /* Get outer coordinate index */
807         inr              = iinr[iidx];
808         i_coord_offset   = DIM*inr;
809
810         /* Load i particle coords and add shift vector */
811         ix0              = shX + x[i_coord_offset+DIM*0+XX];
812         iy0              = shY + x[i_coord_offset+DIM*0+YY];
813         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
814         ix1              = shX + x[i_coord_offset+DIM*1+XX];
815         iy1              = shY + x[i_coord_offset+DIM*1+YY];
816         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
817         ix2              = shX + x[i_coord_offset+DIM*2+XX];
818         iy2              = shY + x[i_coord_offset+DIM*2+YY];
819         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
820         ix3              = shX + x[i_coord_offset+DIM*3+XX];
821         iy3              = shY + x[i_coord_offset+DIM*3+YY];
822         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
823
824         fix0             = 0.0;
825         fiy0             = 0.0;
826         fiz0             = 0.0;
827         fix1             = 0.0;
828         fiy1             = 0.0;
829         fiz1             = 0.0;
830         fix2             = 0.0;
831         fiy2             = 0.0;
832         fiz2             = 0.0;
833         fix3             = 0.0;
834         fiy3             = 0.0;
835         fiz3             = 0.0;
836
837         /* Start inner kernel loop */
838         for(jidx=j_index_start; jidx<j_index_end; jidx++)
839         {
840             /* Get j neighbor index, and coordinate index */
841             jnr              = jjnr[jidx];
842             j_coord_offset   = DIM*jnr;
843
844             /* load j atom coordinates */
845             jx0              = x[j_coord_offset+DIM*0+XX];
846             jy0              = x[j_coord_offset+DIM*0+YY];
847             jz0              = x[j_coord_offset+DIM*0+ZZ];
848             jx1              = x[j_coord_offset+DIM*1+XX];
849             jy1              = x[j_coord_offset+DIM*1+YY];
850             jz1              = x[j_coord_offset+DIM*1+ZZ];
851             jx2              = x[j_coord_offset+DIM*2+XX];
852             jy2              = x[j_coord_offset+DIM*2+YY];
853             jz2              = x[j_coord_offset+DIM*2+ZZ];
854             jx3              = x[j_coord_offset+DIM*3+XX];
855             jy3              = x[j_coord_offset+DIM*3+YY];
856             jz3              = x[j_coord_offset+DIM*3+ZZ];
857
858             /* Calculate displacement vector */
859             dx00             = ix0 - jx0;
860             dy00             = iy0 - jy0;
861             dz00             = iz0 - jz0;
862             dx11             = ix1 - jx1;
863             dy11             = iy1 - jy1;
864             dz11             = iz1 - jz1;
865             dx12             = ix1 - jx2;
866             dy12             = iy1 - jy2;
867             dz12             = iz1 - jz2;
868             dx13             = ix1 - jx3;
869             dy13             = iy1 - jy3;
870             dz13             = iz1 - jz3;
871             dx21             = ix2 - jx1;
872             dy21             = iy2 - jy1;
873             dz21             = iz2 - jz1;
874             dx22             = ix2 - jx2;
875             dy22             = iy2 - jy2;
876             dz22             = iz2 - jz2;
877             dx23             = ix2 - jx3;
878             dy23             = iy2 - jy3;
879             dz23             = iz2 - jz3;
880             dx31             = ix3 - jx1;
881             dy31             = iy3 - jy1;
882             dz31             = iz3 - jz1;
883             dx32             = ix3 - jx2;
884             dy32             = iy3 - jy2;
885             dz32             = iz3 - jz2;
886             dx33             = ix3 - jx3;
887             dy33             = iy3 - jy3;
888             dz33             = iz3 - jz3;
889
890             /* Calculate squared distance and things based on it */
891             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
892             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
893             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
894             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
895             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
896             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
897             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
898             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
899             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
900             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
901
902             rinv11           = gmx_invsqrt(rsq11);
903             rinv12           = gmx_invsqrt(rsq12);
904             rinv13           = gmx_invsqrt(rsq13);
905             rinv21           = gmx_invsqrt(rsq21);
906             rinv22           = gmx_invsqrt(rsq22);
907             rinv23           = gmx_invsqrt(rsq23);
908             rinv31           = gmx_invsqrt(rsq31);
909             rinv32           = gmx_invsqrt(rsq32);
910             rinv33           = gmx_invsqrt(rsq33);
911
912             rinvsq00         = 1.0/rsq00;
913             rinvsq11         = rinv11*rinv11;
914             rinvsq12         = rinv12*rinv12;
915             rinvsq13         = rinv13*rinv13;
916             rinvsq21         = rinv21*rinv21;
917             rinvsq22         = rinv22*rinv22;
918             rinvsq23         = rinv23*rinv23;
919             rinvsq31         = rinv31*rinv31;
920             rinvsq32         = rinv32*rinv32;
921             rinvsq33         = rinv33*rinv33;
922
923             /**************************
924              * CALCULATE INTERACTIONS *
925              **************************/
926
927             /* LENNARD-JONES DISPERSION/REPULSION */
928
929             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
930             fvdw             = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
931
932             fscal            = fvdw;
933
934             /* Calculate temporary vectorial force */
935             tx               = fscal*dx00;
936             ty               = fscal*dy00;
937             tz               = fscal*dz00;
938
939             /* Update vectorial force */
940             fix0            += tx;
941             fiy0            += ty;
942             fiz0            += tz;
943             f[j_coord_offset+DIM*0+XX] -= tx;
944             f[j_coord_offset+DIM*0+YY] -= ty;
945             f[j_coord_offset+DIM*0+ZZ] -= tz;
946
947             /**************************
948              * CALCULATE INTERACTIONS *
949              **************************/
950
951             r11              = rsq11*rinv11;
952
953             /* EWALD ELECTROSTATICS */
954
955             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
956             ewrt             = r11*ewtabscale;
957             ewitab           = ewrt;
958             eweps            = ewrt-ewitab;
959             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
960             felec            = qq11*rinv11*(rinvsq11-felec);
961
962             fscal            = felec;
963
964             /* Calculate temporary vectorial force */
965             tx               = fscal*dx11;
966             ty               = fscal*dy11;
967             tz               = fscal*dz11;
968
969             /* Update vectorial force */
970             fix1            += tx;
971             fiy1            += ty;
972             fiz1            += tz;
973             f[j_coord_offset+DIM*1+XX] -= tx;
974             f[j_coord_offset+DIM*1+YY] -= ty;
975             f[j_coord_offset+DIM*1+ZZ] -= tz;
976
977             /**************************
978              * CALCULATE INTERACTIONS *
979              **************************/
980
981             r12              = rsq12*rinv12;
982
983             /* EWALD ELECTROSTATICS */
984
985             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
986             ewrt             = r12*ewtabscale;
987             ewitab           = ewrt;
988             eweps            = ewrt-ewitab;
989             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
990             felec            = qq12*rinv12*(rinvsq12-felec);
991
992             fscal            = felec;
993
994             /* Calculate temporary vectorial force */
995             tx               = fscal*dx12;
996             ty               = fscal*dy12;
997             tz               = fscal*dz12;
998
999             /* Update vectorial force */
1000             fix1            += tx;
1001             fiy1            += ty;
1002             fiz1            += tz;
1003             f[j_coord_offset+DIM*2+XX] -= tx;
1004             f[j_coord_offset+DIM*2+YY] -= ty;
1005             f[j_coord_offset+DIM*2+ZZ] -= tz;
1006
1007             /**************************
1008              * CALCULATE INTERACTIONS *
1009              **************************/
1010
1011             r13              = rsq13*rinv13;
1012
1013             /* EWALD ELECTROSTATICS */
1014
1015             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1016             ewrt             = r13*ewtabscale;
1017             ewitab           = ewrt;
1018             eweps            = ewrt-ewitab;
1019             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1020             felec            = qq13*rinv13*(rinvsq13-felec);
1021
1022             fscal            = felec;
1023
1024             /* Calculate temporary vectorial force */
1025             tx               = fscal*dx13;
1026             ty               = fscal*dy13;
1027             tz               = fscal*dz13;
1028
1029             /* Update vectorial force */
1030             fix1            += tx;
1031             fiy1            += ty;
1032             fiz1            += tz;
1033             f[j_coord_offset+DIM*3+XX] -= tx;
1034             f[j_coord_offset+DIM*3+YY] -= ty;
1035             f[j_coord_offset+DIM*3+ZZ] -= tz;
1036
1037             /**************************
1038              * CALCULATE INTERACTIONS *
1039              **************************/
1040
1041             r21              = rsq21*rinv21;
1042
1043             /* EWALD ELECTROSTATICS */
1044
1045             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1046             ewrt             = r21*ewtabscale;
1047             ewitab           = ewrt;
1048             eweps            = ewrt-ewitab;
1049             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1050             felec            = qq21*rinv21*(rinvsq21-felec);
1051
1052             fscal            = felec;
1053
1054             /* Calculate temporary vectorial force */
1055             tx               = fscal*dx21;
1056             ty               = fscal*dy21;
1057             tz               = fscal*dz21;
1058
1059             /* Update vectorial force */
1060             fix2            += tx;
1061             fiy2            += ty;
1062             fiz2            += tz;
1063             f[j_coord_offset+DIM*1+XX] -= tx;
1064             f[j_coord_offset+DIM*1+YY] -= ty;
1065             f[j_coord_offset+DIM*1+ZZ] -= tz;
1066
1067             /**************************
1068              * CALCULATE INTERACTIONS *
1069              **************************/
1070
1071             r22              = rsq22*rinv22;
1072
1073             /* EWALD ELECTROSTATICS */
1074
1075             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1076             ewrt             = r22*ewtabscale;
1077             ewitab           = ewrt;
1078             eweps            = ewrt-ewitab;
1079             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1080             felec            = qq22*rinv22*(rinvsq22-felec);
1081
1082             fscal            = felec;
1083
1084             /* Calculate temporary vectorial force */
1085             tx               = fscal*dx22;
1086             ty               = fscal*dy22;
1087             tz               = fscal*dz22;
1088
1089             /* Update vectorial force */
1090             fix2            += tx;
1091             fiy2            += ty;
1092             fiz2            += tz;
1093             f[j_coord_offset+DIM*2+XX] -= tx;
1094             f[j_coord_offset+DIM*2+YY] -= ty;
1095             f[j_coord_offset+DIM*2+ZZ] -= tz;
1096
1097             /**************************
1098              * CALCULATE INTERACTIONS *
1099              **************************/
1100
1101             r23              = rsq23*rinv23;
1102
1103             /* EWALD ELECTROSTATICS */
1104
1105             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1106             ewrt             = r23*ewtabscale;
1107             ewitab           = ewrt;
1108             eweps            = ewrt-ewitab;
1109             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1110             felec            = qq23*rinv23*(rinvsq23-felec);
1111
1112             fscal            = felec;
1113
1114             /* Calculate temporary vectorial force */
1115             tx               = fscal*dx23;
1116             ty               = fscal*dy23;
1117             tz               = fscal*dz23;
1118
1119             /* Update vectorial force */
1120             fix2            += tx;
1121             fiy2            += ty;
1122             fiz2            += tz;
1123             f[j_coord_offset+DIM*3+XX] -= tx;
1124             f[j_coord_offset+DIM*3+YY] -= ty;
1125             f[j_coord_offset+DIM*3+ZZ] -= tz;
1126
1127             /**************************
1128              * CALCULATE INTERACTIONS *
1129              **************************/
1130
1131             r31              = rsq31*rinv31;
1132
1133             /* EWALD ELECTROSTATICS */
1134
1135             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1136             ewrt             = r31*ewtabscale;
1137             ewitab           = ewrt;
1138             eweps            = ewrt-ewitab;
1139             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1140             felec            = qq31*rinv31*(rinvsq31-felec);
1141
1142             fscal            = felec;
1143
1144             /* Calculate temporary vectorial force */
1145             tx               = fscal*dx31;
1146             ty               = fscal*dy31;
1147             tz               = fscal*dz31;
1148
1149             /* Update vectorial force */
1150             fix3            += tx;
1151             fiy3            += ty;
1152             fiz3            += tz;
1153             f[j_coord_offset+DIM*1+XX] -= tx;
1154             f[j_coord_offset+DIM*1+YY] -= ty;
1155             f[j_coord_offset+DIM*1+ZZ] -= tz;
1156
1157             /**************************
1158              * CALCULATE INTERACTIONS *
1159              **************************/
1160
1161             r32              = rsq32*rinv32;
1162
1163             /* EWALD ELECTROSTATICS */
1164
1165             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1166             ewrt             = r32*ewtabscale;
1167             ewitab           = ewrt;
1168             eweps            = ewrt-ewitab;
1169             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1170             felec            = qq32*rinv32*(rinvsq32-felec);
1171
1172             fscal            = felec;
1173
1174             /* Calculate temporary vectorial force */
1175             tx               = fscal*dx32;
1176             ty               = fscal*dy32;
1177             tz               = fscal*dz32;
1178
1179             /* Update vectorial force */
1180             fix3            += tx;
1181             fiy3            += ty;
1182             fiz3            += tz;
1183             f[j_coord_offset+DIM*2+XX] -= tx;
1184             f[j_coord_offset+DIM*2+YY] -= ty;
1185             f[j_coord_offset+DIM*2+ZZ] -= tz;
1186
1187             /**************************
1188              * CALCULATE INTERACTIONS *
1189              **************************/
1190
1191             r33              = rsq33*rinv33;
1192
1193             /* EWALD ELECTROSTATICS */
1194
1195             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1196             ewrt             = r33*ewtabscale;
1197             ewitab           = ewrt;
1198             eweps            = ewrt-ewitab;
1199             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1200             felec            = qq33*rinv33*(rinvsq33-felec);
1201
1202             fscal            = felec;
1203
1204             /* Calculate temporary vectorial force */
1205             tx               = fscal*dx33;
1206             ty               = fscal*dy33;
1207             tz               = fscal*dz33;
1208
1209             /* Update vectorial force */
1210             fix3            += tx;
1211             fiy3            += ty;
1212             fiz3            += tz;
1213             f[j_coord_offset+DIM*3+XX] -= tx;
1214             f[j_coord_offset+DIM*3+YY] -= ty;
1215             f[j_coord_offset+DIM*3+ZZ] -= tz;
1216
1217             /* Inner loop uses 324 flops */
1218         }
1219         /* End of innermost loop */
1220
1221         tx = ty = tz = 0;
1222         f[i_coord_offset+DIM*0+XX] += fix0;
1223         f[i_coord_offset+DIM*0+YY] += fiy0;
1224         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1225         tx                         += fix0;
1226         ty                         += fiy0;
1227         tz                         += fiz0;
1228         f[i_coord_offset+DIM*1+XX] += fix1;
1229         f[i_coord_offset+DIM*1+YY] += fiy1;
1230         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1231         tx                         += fix1;
1232         ty                         += fiy1;
1233         tz                         += fiz1;
1234         f[i_coord_offset+DIM*2+XX] += fix2;
1235         f[i_coord_offset+DIM*2+YY] += fiy2;
1236         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1237         tx                         += fix2;
1238         ty                         += fiy2;
1239         tz                         += fiz2;
1240         f[i_coord_offset+DIM*3+XX] += fix3;
1241         f[i_coord_offset+DIM*3+YY] += fiy3;
1242         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1243         tx                         += fix3;
1244         ty                         += fiy3;
1245         tz                         += fiz3;
1246         fshift[i_shift_offset+XX]  += tx;
1247         fshift[i_shift_offset+YY]  += ty;
1248         fshift[i_shift_offset+ZZ]  += tz;
1249
1250         /* Increment number of inner iterations */
1251         inneriter                  += j_index_end - j_index_start;
1252
1253         /* Outer loop uses 39 flops */
1254     }
1255
1256     /* Increment number of outer iterations */
1257     outeriter        += nri;
1258
1259     /* Update outer/inner flops */
1260
1261     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*324);
1262 }