Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwLJ_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     int              ewitab;
84     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
85     real             *ewtab;
86
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = fr->epsfac;
99     charge           = mdatoms->chargeA;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     sh_ewald         = fr->ic->sh_ewald;
105     ewtab            = fr->ic->tabq_coul_FDV0;
106     ewtabscale       = fr->ic->tabq_scale;
107     ewtabhalfspace   = 0.5/ewtabscale;
108
109     outeriter        = 0;
110     inneriter        = 0;
111
112     /* Start outer loop over neighborlists */
113     for(iidx=0; iidx<nri; iidx++)
114     {
115         /* Load shift vector for this list */
116         i_shift_offset   = DIM*shiftidx[iidx];
117         shX              = shiftvec[i_shift_offset+XX];
118         shY              = shiftvec[i_shift_offset+YY];
119         shZ              = shiftvec[i_shift_offset+ZZ];
120
121         /* Load limits for loop over neighbors */
122         j_index_start    = jindex[iidx];
123         j_index_end      = jindex[iidx+1];
124
125         /* Get outer coordinate index */
126         inr              = iinr[iidx];
127         i_coord_offset   = DIM*inr;
128
129         /* Load i particle coords and add shift vector */
130         ix0              = shX + x[i_coord_offset+DIM*0+XX];
131         iy0              = shY + x[i_coord_offset+DIM*0+YY];
132         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
133
134         fix0             = 0.0;
135         fiy0             = 0.0;
136         fiz0             = 0.0;
137
138         /* Load parameters for i particles */
139         iq0              = facel*charge[inr+0];
140         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
141
142         /* Reset potential sums */
143         velecsum         = 0.0;
144         vvdwsum          = 0.0;
145
146         /* Start inner kernel loop */
147         for(jidx=j_index_start; jidx<j_index_end; jidx++)
148         {
149             /* Get j neighbor index, and coordinate index */
150             jnr              = jjnr[jidx];
151             j_coord_offset   = DIM*jnr;
152
153             /* load j atom coordinates */
154             jx0              = x[j_coord_offset+DIM*0+XX];
155             jy0              = x[j_coord_offset+DIM*0+YY];
156             jz0              = x[j_coord_offset+DIM*0+ZZ];
157
158             /* Calculate displacement vector */
159             dx00             = ix0 - jx0;
160             dy00             = iy0 - jy0;
161             dz00             = iz0 - jz0;
162
163             /* Calculate squared distance and things based on it */
164             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
165
166             rinv00           = gmx_invsqrt(rsq00);
167
168             rinvsq00         = rinv00*rinv00;
169
170             /* Load parameters for j particles */
171             jq0              = charge[jnr+0];
172             vdwjidx0         = 2*vdwtype[jnr+0];
173
174             /**************************
175              * CALCULATE INTERACTIONS *
176              **************************/
177
178             r00              = rsq00*rinv00;
179
180             qq00             = iq0*jq0;
181             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
182             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
183
184             /* EWALD ELECTROSTATICS */
185
186             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
187             ewrt             = r00*ewtabscale;
188             ewitab           = ewrt;
189             eweps            = ewrt-ewitab;
190             ewitab           = 4*ewitab;
191             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
192             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
193             felec            = qq00*rinv00*(rinvsq00-felec);
194
195             /* LENNARD-JONES DISPERSION/REPULSION */
196
197             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
198             vvdw6            = c6_00*rinvsix;
199             vvdw12           = c12_00*rinvsix*rinvsix;
200             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
201             fvdw             = (vvdw12-vvdw6)*rinvsq00;
202
203             /* Update potential sums from outer loop */
204             velecsum        += velec;
205             vvdwsum         += vvdw;
206
207             fscal            = felec+fvdw;
208
209             /* Calculate temporary vectorial force */
210             tx               = fscal*dx00;
211             ty               = fscal*dy00;
212             tz               = fscal*dz00;
213
214             /* Update vectorial force */
215             fix0            += tx;
216             fiy0            += ty;
217             fiz0            += tz;
218             f[j_coord_offset+DIM*0+XX] -= tx;
219             f[j_coord_offset+DIM*0+YY] -= ty;
220             f[j_coord_offset+DIM*0+ZZ] -= tz;
221
222             /* Inner loop uses 53 flops */
223         }
224         /* End of innermost loop */
225
226         tx = ty = tz = 0;
227         f[i_coord_offset+DIM*0+XX] += fix0;
228         f[i_coord_offset+DIM*0+YY] += fiy0;
229         f[i_coord_offset+DIM*0+ZZ] += fiz0;
230         tx                         += fix0;
231         ty                         += fiy0;
232         tz                         += fiz0;
233         fshift[i_shift_offset+XX]  += tx;
234         fshift[i_shift_offset+YY]  += ty;
235         fshift[i_shift_offset+ZZ]  += tz;
236
237         ggid                        = gid[iidx];
238         /* Update potential energies */
239         kernel_data->energygrp_elec[ggid] += velecsum;
240         kernel_data->energygrp_vdw[ggid] += vvdwsum;
241
242         /* Increment number of inner iterations */
243         inneriter                  += j_index_end - j_index_start;
244
245         /* Outer loop uses 15 flops */
246     }
247
248     /* Increment number of outer iterations */
249     outeriter        += nri;
250
251     /* Update outer/inner flops */
252
253     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*53);
254 }
255 /*
256  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_c
257  * Electrostatics interaction: Ewald
258  * VdW interaction:            LennardJones
259  * Geometry:                   Particle-Particle
260  * Calculate force/pot:        Force
261  */
262 void
263 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_c
264                     (t_nblist                    * gmx_restrict       nlist,
265                      rvec                        * gmx_restrict          xx,
266                      rvec                        * gmx_restrict          ff,
267                      t_forcerec                  * gmx_restrict          fr,
268                      t_mdatoms                   * gmx_restrict     mdatoms,
269                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
270                      t_nrnb                      * gmx_restrict        nrnb)
271 {
272     int              i_shift_offset,i_coord_offset,j_coord_offset;
273     int              j_index_start,j_index_end;
274     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
275     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
276     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
277     real             *shiftvec,*fshift,*x,*f;
278     int              vdwioffset0;
279     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
280     int              vdwjidx0;
281     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
282     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
283     real             velec,felec,velecsum,facel,crf,krf,krf2;
284     real             *charge;
285     int              nvdwtype;
286     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
287     int              *vdwtype;
288     real             *vdwparam;
289     int              ewitab;
290     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
291     real             *ewtab;
292
293     x                = xx[0];
294     f                = ff[0];
295
296     nri              = nlist->nri;
297     iinr             = nlist->iinr;
298     jindex           = nlist->jindex;
299     jjnr             = nlist->jjnr;
300     shiftidx         = nlist->shift;
301     gid              = nlist->gid;
302     shiftvec         = fr->shift_vec[0];
303     fshift           = fr->fshift[0];
304     facel            = fr->epsfac;
305     charge           = mdatoms->chargeA;
306     nvdwtype         = fr->ntype;
307     vdwparam         = fr->nbfp;
308     vdwtype          = mdatoms->typeA;
309
310     sh_ewald         = fr->ic->sh_ewald;
311     ewtab            = fr->ic->tabq_coul_F;
312     ewtabscale       = fr->ic->tabq_scale;
313     ewtabhalfspace   = 0.5/ewtabscale;
314
315     outeriter        = 0;
316     inneriter        = 0;
317
318     /* Start outer loop over neighborlists */
319     for(iidx=0; iidx<nri; iidx++)
320     {
321         /* Load shift vector for this list */
322         i_shift_offset   = DIM*shiftidx[iidx];
323         shX              = shiftvec[i_shift_offset+XX];
324         shY              = shiftvec[i_shift_offset+YY];
325         shZ              = shiftvec[i_shift_offset+ZZ];
326
327         /* Load limits for loop over neighbors */
328         j_index_start    = jindex[iidx];
329         j_index_end      = jindex[iidx+1];
330
331         /* Get outer coordinate index */
332         inr              = iinr[iidx];
333         i_coord_offset   = DIM*inr;
334
335         /* Load i particle coords and add shift vector */
336         ix0              = shX + x[i_coord_offset+DIM*0+XX];
337         iy0              = shY + x[i_coord_offset+DIM*0+YY];
338         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
339
340         fix0             = 0.0;
341         fiy0             = 0.0;
342         fiz0             = 0.0;
343
344         /* Load parameters for i particles */
345         iq0              = facel*charge[inr+0];
346         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
347
348         /* Start inner kernel loop */
349         for(jidx=j_index_start; jidx<j_index_end; jidx++)
350         {
351             /* Get j neighbor index, and coordinate index */
352             jnr              = jjnr[jidx];
353             j_coord_offset   = DIM*jnr;
354
355             /* load j atom coordinates */
356             jx0              = x[j_coord_offset+DIM*0+XX];
357             jy0              = x[j_coord_offset+DIM*0+YY];
358             jz0              = x[j_coord_offset+DIM*0+ZZ];
359
360             /* Calculate displacement vector */
361             dx00             = ix0 - jx0;
362             dy00             = iy0 - jy0;
363             dz00             = iz0 - jz0;
364
365             /* Calculate squared distance and things based on it */
366             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
367
368             rinv00           = gmx_invsqrt(rsq00);
369
370             rinvsq00         = rinv00*rinv00;
371
372             /* Load parameters for j particles */
373             jq0              = charge[jnr+0];
374             vdwjidx0         = 2*vdwtype[jnr+0];
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             r00              = rsq00*rinv00;
381
382             qq00             = iq0*jq0;
383             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
384             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
385
386             /* EWALD ELECTROSTATICS */
387
388             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
389             ewrt             = r00*ewtabscale;
390             ewitab           = ewrt;
391             eweps            = ewrt-ewitab;
392             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
393             felec            = qq00*rinv00*(rinvsq00-felec);
394
395             /* LENNARD-JONES DISPERSION/REPULSION */
396
397             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
398             fvdw             = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
399
400             fscal            = felec+fvdw;
401
402             /* Calculate temporary vectorial force */
403             tx               = fscal*dx00;
404             ty               = fscal*dy00;
405             tz               = fscal*dz00;
406
407             /* Update vectorial force */
408             fix0            += tx;
409             fiy0            += ty;
410             fiz0            += tz;
411             f[j_coord_offset+DIM*0+XX] -= tx;
412             f[j_coord_offset+DIM*0+YY] -= ty;
413             f[j_coord_offset+DIM*0+ZZ] -= tz;
414
415             /* Inner loop uses 41 flops */
416         }
417         /* End of innermost loop */
418
419         tx = ty = tz = 0;
420         f[i_coord_offset+DIM*0+XX] += fix0;
421         f[i_coord_offset+DIM*0+YY] += fiy0;
422         f[i_coord_offset+DIM*0+ZZ] += fiz0;
423         tx                         += fix0;
424         ty                         += fiy0;
425         tz                         += fiz0;
426         fshift[i_shift_offset+XX]  += tx;
427         fshift[i_shift_offset+YY]  += ty;
428         fshift[i_shift_offset+ZZ]  += tz;
429
430         /* Increment number of inner iterations */
431         inneriter                  += j_index_end - j_index_start;
432
433         /* Outer loop uses 13 flops */
434     }
435
436     /* Increment number of outer iterations */
437     outeriter        += nri;
438
439     /* Update outer/inner flops */
440
441     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*41);
442 }