2ea105900d311d02592881e24052935103b7d1f3
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwLJ_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_c
49  * Electrostatics interaction: Ewald
50  * VdW interaction:            LennardJones
51  * Geometry:                   Particle-Particle
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecEw_VdwLJ_GeomP1P1_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0;
73     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
75     real             velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     int              ewitab;
82     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
83     real             *ewtab;
84
85     x                = xx[0];
86     f                = ff[0];
87
88     nri              = nlist->nri;
89     iinr             = nlist->iinr;
90     jindex           = nlist->jindex;
91     jjnr             = nlist->jjnr;
92     shiftidx         = nlist->shift;
93     gid              = nlist->gid;
94     shiftvec         = fr->shift_vec[0];
95     fshift           = fr->fshift[0];
96     facel            = fr->epsfac;
97     charge           = mdatoms->chargeA;
98     nvdwtype         = fr->ntype;
99     vdwparam         = fr->nbfp;
100     vdwtype          = mdatoms->typeA;
101
102     sh_ewald         = fr->ic->sh_ewald;
103     ewtab            = fr->ic->tabq_coul_FDV0;
104     ewtabscale       = fr->ic->tabq_scale;
105     ewtabhalfspace   = 0.5/ewtabscale;
106
107     outeriter        = 0;
108     inneriter        = 0;
109
110     /* Start outer loop over neighborlists */
111     for(iidx=0; iidx<nri; iidx++)
112     {
113         /* Load shift vector for this list */
114         i_shift_offset   = DIM*shiftidx[iidx];
115         shX              = shiftvec[i_shift_offset+XX];
116         shY              = shiftvec[i_shift_offset+YY];
117         shZ              = shiftvec[i_shift_offset+ZZ];
118
119         /* Load limits for loop over neighbors */
120         j_index_start    = jindex[iidx];
121         j_index_end      = jindex[iidx+1];
122
123         /* Get outer coordinate index */
124         inr              = iinr[iidx];
125         i_coord_offset   = DIM*inr;
126
127         /* Load i particle coords and add shift vector */
128         ix0              = shX + x[i_coord_offset+DIM*0+XX];
129         iy0              = shY + x[i_coord_offset+DIM*0+YY];
130         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
131
132         fix0             = 0.0;
133         fiy0             = 0.0;
134         fiz0             = 0.0;
135
136         /* Load parameters for i particles */
137         iq0              = facel*charge[inr+0];
138         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140         /* Reset potential sums */
141         velecsum         = 0.0;
142         vvdwsum          = 0.0;
143
144         /* Start inner kernel loop */
145         for(jidx=j_index_start; jidx<j_index_end; jidx++)
146         {
147             /* Get j neighbor index, and coordinate index */
148             jnr              = jjnr[jidx];
149             j_coord_offset   = DIM*jnr;
150
151             /* load j atom coordinates */
152             jx0              = x[j_coord_offset+DIM*0+XX];
153             jy0              = x[j_coord_offset+DIM*0+YY];
154             jz0              = x[j_coord_offset+DIM*0+ZZ];
155
156             /* Calculate displacement vector */
157             dx00             = ix0 - jx0;
158             dy00             = iy0 - jy0;
159             dz00             = iz0 - jz0;
160
161             /* Calculate squared distance and things based on it */
162             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
163
164             rinv00           = gmx_invsqrt(rsq00);
165
166             rinvsq00         = rinv00*rinv00;
167
168             /* Load parameters for j particles */
169             jq0              = charge[jnr+0];
170             vdwjidx0         = 2*vdwtype[jnr+0];
171
172             /**************************
173              * CALCULATE INTERACTIONS *
174              **************************/
175
176             r00              = rsq00*rinv00;
177
178             qq00             = iq0*jq0;
179             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
180             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
181
182             /* EWALD ELECTROSTATICS */
183
184             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
185             ewrt             = r00*ewtabscale;
186             ewitab           = ewrt;
187             eweps            = ewrt-ewitab;
188             ewitab           = 4*ewitab;
189             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
190             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
191             felec            = qq00*rinv00*(rinvsq00-felec);
192
193             /* LENNARD-JONES DISPERSION/REPULSION */
194
195             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
196             vvdw6            = c6_00*rinvsix;
197             vvdw12           = c12_00*rinvsix*rinvsix;
198             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
199             fvdw             = (vvdw12-vvdw6)*rinvsq00;
200
201             /* Update potential sums from outer loop */
202             velecsum        += velec;
203             vvdwsum         += vvdw;
204
205             fscal            = felec+fvdw;
206
207             /* Calculate temporary vectorial force */
208             tx               = fscal*dx00;
209             ty               = fscal*dy00;
210             tz               = fscal*dz00;
211
212             /* Update vectorial force */
213             fix0            += tx;
214             fiy0            += ty;
215             fiz0            += tz;
216             f[j_coord_offset+DIM*0+XX] -= tx;
217             f[j_coord_offset+DIM*0+YY] -= ty;
218             f[j_coord_offset+DIM*0+ZZ] -= tz;
219
220             /* Inner loop uses 53 flops */
221         }
222         /* End of innermost loop */
223
224         tx = ty = tz = 0;
225         f[i_coord_offset+DIM*0+XX] += fix0;
226         f[i_coord_offset+DIM*0+YY] += fiy0;
227         f[i_coord_offset+DIM*0+ZZ] += fiz0;
228         tx                         += fix0;
229         ty                         += fiy0;
230         tz                         += fiz0;
231         fshift[i_shift_offset+XX]  += tx;
232         fshift[i_shift_offset+YY]  += ty;
233         fshift[i_shift_offset+ZZ]  += tz;
234
235         ggid                        = gid[iidx];
236         /* Update potential energies */
237         kernel_data->energygrp_elec[ggid] += velecsum;
238         kernel_data->energygrp_vdw[ggid] += vvdwsum;
239
240         /* Increment number of inner iterations */
241         inneriter                  += j_index_end - j_index_start;
242
243         /* Outer loop uses 15 flops */
244     }
245
246     /* Increment number of outer iterations */
247     outeriter        += nri;
248
249     /* Update outer/inner flops */
250
251     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*53);
252 }
253 /*
254  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_c
255  * Electrostatics interaction: Ewald
256  * VdW interaction:            LennardJones
257  * Geometry:                   Particle-Particle
258  * Calculate force/pot:        Force
259  */
260 void
261 nb_kernel_ElecEw_VdwLJ_GeomP1P1_F_c
262                     (t_nblist                    * gmx_restrict       nlist,
263                      rvec                        * gmx_restrict          xx,
264                      rvec                        * gmx_restrict          ff,
265                      t_forcerec                  * gmx_restrict          fr,
266                      t_mdatoms                   * gmx_restrict     mdatoms,
267                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
268                      t_nrnb                      * gmx_restrict        nrnb)
269 {
270     int              i_shift_offset,i_coord_offset,j_coord_offset;
271     int              j_index_start,j_index_end;
272     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
273     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
274     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
275     real             *shiftvec,*fshift,*x,*f;
276     int              vdwioffset0;
277     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
278     int              vdwjidx0;
279     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
280     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
281     real             velec,felec,velecsum,facel,crf,krf,krf2;
282     real             *charge;
283     int              nvdwtype;
284     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
285     int              *vdwtype;
286     real             *vdwparam;
287     int              ewitab;
288     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
289     real             *ewtab;
290
291     x                = xx[0];
292     f                = ff[0];
293
294     nri              = nlist->nri;
295     iinr             = nlist->iinr;
296     jindex           = nlist->jindex;
297     jjnr             = nlist->jjnr;
298     shiftidx         = nlist->shift;
299     gid              = nlist->gid;
300     shiftvec         = fr->shift_vec[0];
301     fshift           = fr->fshift[0];
302     facel            = fr->epsfac;
303     charge           = mdatoms->chargeA;
304     nvdwtype         = fr->ntype;
305     vdwparam         = fr->nbfp;
306     vdwtype          = mdatoms->typeA;
307
308     sh_ewald         = fr->ic->sh_ewald;
309     ewtab            = fr->ic->tabq_coul_F;
310     ewtabscale       = fr->ic->tabq_scale;
311     ewtabhalfspace   = 0.5/ewtabscale;
312
313     outeriter        = 0;
314     inneriter        = 0;
315
316     /* Start outer loop over neighborlists */
317     for(iidx=0; iidx<nri; iidx++)
318     {
319         /* Load shift vector for this list */
320         i_shift_offset   = DIM*shiftidx[iidx];
321         shX              = shiftvec[i_shift_offset+XX];
322         shY              = shiftvec[i_shift_offset+YY];
323         shZ              = shiftvec[i_shift_offset+ZZ];
324
325         /* Load limits for loop over neighbors */
326         j_index_start    = jindex[iidx];
327         j_index_end      = jindex[iidx+1];
328
329         /* Get outer coordinate index */
330         inr              = iinr[iidx];
331         i_coord_offset   = DIM*inr;
332
333         /* Load i particle coords and add shift vector */
334         ix0              = shX + x[i_coord_offset+DIM*0+XX];
335         iy0              = shY + x[i_coord_offset+DIM*0+YY];
336         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
337
338         fix0             = 0.0;
339         fiy0             = 0.0;
340         fiz0             = 0.0;
341
342         /* Load parameters for i particles */
343         iq0              = facel*charge[inr+0];
344         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
345
346         /* Start inner kernel loop */
347         for(jidx=j_index_start; jidx<j_index_end; jidx++)
348         {
349             /* Get j neighbor index, and coordinate index */
350             jnr              = jjnr[jidx];
351             j_coord_offset   = DIM*jnr;
352
353             /* load j atom coordinates */
354             jx0              = x[j_coord_offset+DIM*0+XX];
355             jy0              = x[j_coord_offset+DIM*0+YY];
356             jz0              = x[j_coord_offset+DIM*0+ZZ];
357
358             /* Calculate displacement vector */
359             dx00             = ix0 - jx0;
360             dy00             = iy0 - jy0;
361             dz00             = iz0 - jz0;
362
363             /* Calculate squared distance and things based on it */
364             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
365
366             rinv00           = gmx_invsqrt(rsq00);
367
368             rinvsq00         = rinv00*rinv00;
369
370             /* Load parameters for j particles */
371             jq0              = charge[jnr+0];
372             vdwjidx0         = 2*vdwtype[jnr+0];
373
374             /**************************
375              * CALCULATE INTERACTIONS *
376              **************************/
377
378             r00              = rsq00*rinv00;
379
380             qq00             = iq0*jq0;
381             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
382             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
383
384             /* EWALD ELECTROSTATICS */
385
386             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
387             ewrt             = r00*ewtabscale;
388             ewitab           = ewrt;
389             eweps            = ewrt-ewitab;
390             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
391             felec            = qq00*rinv00*(rinvsq00-felec);
392
393             /* LENNARD-JONES DISPERSION/REPULSION */
394
395             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
396             fvdw             = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
397
398             fscal            = felec+fvdw;
399
400             /* Calculate temporary vectorial force */
401             tx               = fscal*dx00;
402             ty               = fscal*dy00;
403             tz               = fscal*dz00;
404
405             /* Update vectorial force */
406             fix0            += tx;
407             fiy0            += ty;
408             fiz0            += tz;
409             f[j_coord_offset+DIM*0+XX] -= tx;
410             f[j_coord_offset+DIM*0+YY] -= ty;
411             f[j_coord_offset+DIM*0+ZZ] -= tz;
412
413             /* Inner loop uses 41 flops */
414         }
415         /* End of innermost loop */
416
417         tx = ty = tz = 0;
418         f[i_coord_offset+DIM*0+XX] += fix0;
419         f[i_coord_offset+DIM*0+YY] += fiy0;
420         f[i_coord_offset+DIM*0+ZZ] += fiz0;
421         tx                         += fix0;
422         ty                         += fiy0;
423         tz                         += fiz0;
424         fshift[i_shift_offset+XX]  += tx;
425         fshift[i_shift_offset+YY]  += ty;
426         fshift[i_shift_offset+ZZ]  += tz;
427
428         /* Increment number of inner iterations */
429         inneriter                  += j_index_end - j_index_start;
430
431         /* Outer loop uses 13 flops */
432     }
433
434     /* Increment number of outer iterations */
435     outeriter        += nri;
436
437     /* Update outer/inner flops */
438
439     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*41);
440 }