906d91b40c042f0a294ed88186e06003d2674ff4
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwLJEw_GeomW3P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83     real             velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     real             c6grid_00;
90     real             c6grid_10;
91     real             c6grid_20;
92     real             ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
93     real             *vdwgridparam;
94     int              ewitab;
95     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
96     real             *ewtab;
97
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = fr->epsfac;
110     charge           = mdatoms->chargeA;
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114     vdwgridparam     = fr->ljpme_c6grid;
115     ewclj            = fr->ewaldcoeff_lj;
116     sh_lj_ewald      = fr->ic->sh_lj_ewald;
117     ewclj2           = ewclj*ewclj;
118     ewclj6           = ewclj2*ewclj2*ewclj2;
119
120     sh_ewald         = fr->ic->sh_ewald;
121     ewtab            = fr->ic->tabq_coul_FDV0;
122     ewtabscale       = fr->ic->tabq_scale;
123     ewtabhalfspace   = 0.5/ewtabscale;
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq0              = facel*charge[inr+0];
128     iq1              = facel*charge[inr+1];
129     iq2              = facel*charge[inr+2];
130     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140         shX              = shiftvec[i_shift_offset+XX];
141         shY              = shiftvec[i_shift_offset+YY];
142         shZ              = shiftvec[i_shift_offset+ZZ];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         ix0              = shX + x[i_coord_offset+DIM*0+XX];
154         iy0              = shY + x[i_coord_offset+DIM*0+YY];
155         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
156         ix1              = shX + x[i_coord_offset+DIM*1+XX];
157         iy1              = shY + x[i_coord_offset+DIM*1+YY];
158         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
159         ix2              = shX + x[i_coord_offset+DIM*2+XX];
160         iy2              = shY + x[i_coord_offset+DIM*2+YY];
161         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
162
163         fix0             = 0.0;
164         fiy0             = 0.0;
165         fiz0             = 0.0;
166         fix1             = 0.0;
167         fiy1             = 0.0;
168         fiz1             = 0.0;
169         fix2             = 0.0;
170         fiy2             = 0.0;
171         fiz2             = 0.0;
172
173         /* Reset potential sums */
174         velecsum         = 0.0;
175         vvdwsum          = 0.0;
176
177         /* Start inner kernel loop */
178         for(jidx=j_index_start; jidx<j_index_end; jidx++)
179         {
180             /* Get j neighbor index, and coordinate index */
181             jnr              = jjnr[jidx];
182             j_coord_offset   = DIM*jnr;
183
184             /* load j atom coordinates */
185             jx0              = x[j_coord_offset+DIM*0+XX];
186             jy0              = x[j_coord_offset+DIM*0+YY];
187             jz0              = x[j_coord_offset+DIM*0+ZZ];
188
189             /* Calculate displacement vector */
190             dx00             = ix0 - jx0;
191             dy00             = iy0 - jy0;
192             dz00             = iz0 - jz0;
193             dx10             = ix1 - jx0;
194             dy10             = iy1 - jy0;
195             dz10             = iz1 - jz0;
196             dx20             = ix2 - jx0;
197             dy20             = iy2 - jy0;
198             dz20             = iz2 - jz0;
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
202             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
203             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
204
205             rinv00           = gmx_invsqrt(rsq00);
206             rinv10           = gmx_invsqrt(rsq10);
207             rinv20           = gmx_invsqrt(rsq20);
208
209             rinvsq00         = rinv00*rinv00;
210             rinvsq10         = rinv10*rinv10;
211             rinvsq20         = rinv20*rinv20;
212
213             /* Load parameters for j particles */
214             jq0              = charge[jnr+0];
215             vdwjidx0         = 2*vdwtype[jnr+0];
216
217             /**************************
218              * CALCULATE INTERACTIONS *
219              **************************/
220
221             r00              = rsq00*rinv00;
222
223             qq00             = iq0*jq0;
224             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
225             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
226             c6grid_00        = vdwgridparam[vdwioffset0+vdwjidx0];
227
228             /* EWALD ELECTROSTATICS */
229
230             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
231             ewrt             = r00*ewtabscale;
232             ewitab           = ewrt;
233             eweps            = ewrt-ewitab;
234             ewitab           = 4*ewitab;
235             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
236             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
237             felec            = qq00*rinv00*(rinvsq00-felec);
238
239             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
240             ewcljrsq         = ewclj2*rsq00;
241             exponent         = exp(-ewcljrsq);
242             poly             = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
243             vvdw6            = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
244             vvdw12           = c12_00*rinvsix*rinvsix;
245             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
246             fvdw             = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
247
248             /* Update potential sums from outer loop */
249             velecsum        += velec;
250             vvdwsum         += vvdw;
251
252             fscal            = felec+fvdw;
253
254             /* Calculate temporary vectorial force */
255             tx               = fscal*dx00;
256             ty               = fscal*dy00;
257             tz               = fscal*dz00;
258
259             /* Update vectorial force */
260             fix0            += tx;
261             fiy0            += ty;
262             fiz0            += tz;
263             f[j_coord_offset+DIM*0+XX] -= tx;
264             f[j_coord_offset+DIM*0+YY] -= ty;
265             f[j_coord_offset+DIM*0+ZZ] -= tz;
266
267             /**************************
268              * CALCULATE INTERACTIONS *
269              **************************/
270
271             r10              = rsq10*rinv10;
272
273             qq10             = iq1*jq0;
274
275             /* EWALD ELECTROSTATICS */
276
277             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
278             ewrt             = r10*ewtabscale;
279             ewitab           = ewrt;
280             eweps            = ewrt-ewitab;
281             ewitab           = 4*ewitab;
282             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
283             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
284             felec            = qq10*rinv10*(rinvsq10-felec);
285
286             /* Update potential sums from outer loop */
287             velecsum        += velec;
288
289             fscal            = felec;
290
291             /* Calculate temporary vectorial force */
292             tx               = fscal*dx10;
293             ty               = fscal*dy10;
294             tz               = fscal*dz10;
295
296             /* Update vectorial force */
297             fix1            += tx;
298             fiy1            += ty;
299             fiz1            += tz;
300             f[j_coord_offset+DIM*0+XX] -= tx;
301             f[j_coord_offset+DIM*0+YY] -= ty;
302             f[j_coord_offset+DIM*0+ZZ] -= tz;
303
304             /**************************
305              * CALCULATE INTERACTIONS *
306              **************************/
307
308             r20              = rsq20*rinv20;
309
310             qq20             = iq2*jq0;
311
312             /* EWALD ELECTROSTATICS */
313
314             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
315             ewrt             = r20*ewtabscale;
316             ewitab           = ewrt;
317             eweps            = ewrt-ewitab;
318             ewitab           = 4*ewitab;
319             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
320             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
321             felec            = qq20*rinv20*(rinvsq20-felec);
322
323             /* Update potential sums from outer loop */
324             velecsum        += velec;
325
326             fscal            = felec;
327
328             /* Calculate temporary vectorial force */
329             tx               = fscal*dx20;
330             ty               = fscal*dy20;
331             tz               = fscal*dz20;
332
333             /* Update vectorial force */
334             fix2            += tx;
335             fiy2            += ty;
336             fiz2            += tz;
337             f[j_coord_offset+DIM*0+XX] -= tx;
338             f[j_coord_offset+DIM*0+YY] -= ty;
339             f[j_coord_offset+DIM*0+ZZ] -= tz;
340
341             /* Inner loop uses 149 flops */
342         }
343         /* End of innermost loop */
344
345         tx = ty = tz = 0;
346         f[i_coord_offset+DIM*0+XX] += fix0;
347         f[i_coord_offset+DIM*0+YY] += fiy0;
348         f[i_coord_offset+DIM*0+ZZ] += fiz0;
349         tx                         += fix0;
350         ty                         += fiy0;
351         tz                         += fiz0;
352         f[i_coord_offset+DIM*1+XX] += fix1;
353         f[i_coord_offset+DIM*1+YY] += fiy1;
354         f[i_coord_offset+DIM*1+ZZ] += fiz1;
355         tx                         += fix1;
356         ty                         += fiy1;
357         tz                         += fiz1;
358         f[i_coord_offset+DIM*2+XX] += fix2;
359         f[i_coord_offset+DIM*2+YY] += fiy2;
360         f[i_coord_offset+DIM*2+ZZ] += fiz2;
361         tx                         += fix2;
362         ty                         += fiy2;
363         tz                         += fiz2;
364         fshift[i_shift_offset+XX]  += tx;
365         fshift[i_shift_offset+YY]  += ty;
366         fshift[i_shift_offset+ZZ]  += tz;
367
368         ggid                        = gid[iidx];
369         /* Update potential energies */
370         kernel_data->energygrp_elec[ggid] += velecsum;
371         kernel_data->energygrp_vdw[ggid] += vvdwsum;
372
373         /* Increment number of inner iterations */
374         inneriter                  += j_index_end - j_index_start;
375
376         /* Outer loop uses 32 flops */
377     }
378
379     /* Increment number of outer iterations */
380     outeriter        += nri;
381
382     /* Update outer/inner flops */
383
384     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*149);
385 }
386 /*
387  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_c
388  * Electrostatics interaction: Ewald
389  * VdW interaction:            LJEwald
390  * Geometry:                   Water3-Particle
391  * Calculate force/pot:        Force
392  */
393 void
394 nb_kernel_ElecEw_VdwLJEw_GeomW3P1_F_c
395                     (t_nblist                    * gmx_restrict       nlist,
396                      rvec                        * gmx_restrict          xx,
397                      rvec                        * gmx_restrict          ff,
398                      t_forcerec                  * gmx_restrict          fr,
399                      t_mdatoms                   * gmx_restrict     mdatoms,
400                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
401                      t_nrnb                      * gmx_restrict        nrnb)
402 {
403     int              i_shift_offset,i_coord_offset,j_coord_offset;
404     int              j_index_start,j_index_end;
405     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
406     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
407     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
408     real             *shiftvec,*fshift,*x,*f;
409     int              vdwioffset0;
410     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
411     int              vdwioffset1;
412     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
413     int              vdwioffset2;
414     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
415     int              vdwjidx0;
416     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
417     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
418     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
419     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
420     real             velec,felec,velecsum,facel,crf,krf,krf2;
421     real             *charge;
422     int              nvdwtype;
423     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
424     int              *vdwtype;
425     real             *vdwparam;
426     real             c6grid_00;
427     real             c6grid_10;
428     real             c6grid_20;
429     real             ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
430     real             *vdwgridparam;
431     int              ewitab;
432     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
433     real             *ewtab;
434
435     x                = xx[0];
436     f                = ff[0];
437
438     nri              = nlist->nri;
439     iinr             = nlist->iinr;
440     jindex           = nlist->jindex;
441     jjnr             = nlist->jjnr;
442     shiftidx         = nlist->shift;
443     gid              = nlist->gid;
444     shiftvec         = fr->shift_vec[0];
445     fshift           = fr->fshift[0];
446     facel            = fr->epsfac;
447     charge           = mdatoms->chargeA;
448     nvdwtype         = fr->ntype;
449     vdwparam         = fr->nbfp;
450     vdwtype          = mdatoms->typeA;
451     vdwgridparam     = fr->ljpme_c6grid;
452     ewclj            = fr->ewaldcoeff_lj;
453     sh_lj_ewald      = fr->ic->sh_lj_ewald;
454     ewclj2           = ewclj*ewclj;
455     ewclj6           = ewclj2*ewclj2*ewclj2;
456
457     sh_ewald         = fr->ic->sh_ewald;
458     ewtab            = fr->ic->tabq_coul_F;
459     ewtabscale       = fr->ic->tabq_scale;
460     ewtabhalfspace   = 0.5/ewtabscale;
461
462     /* Setup water-specific parameters */
463     inr              = nlist->iinr[0];
464     iq0              = facel*charge[inr+0];
465     iq1              = facel*charge[inr+1];
466     iq2              = facel*charge[inr+2];
467     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
468
469     outeriter        = 0;
470     inneriter        = 0;
471
472     /* Start outer loop over neighborlists */
473     for(iidx=0; iidx<nri; iidx++)
474     {
475         /* Load shift vector for this list */
476         i_shift_offset   = DIM*shiftidx[iidx];
477         shX              = shiftvec[i_shift_offset+XX];
478         shY              = shiftvec[i_shift_offset+YY];
479         shZ              = shiftvec[i_shift_offset+ZZ];
480
481         /* Load limits for loop over neighbors */
482         j_index_start    = jindex[iidx];
483         j_index_end      = jindex[iidx+1];
484
485         /* Get outer coordinate index */
486         inr              = iinr[iidx];
487         i_coord_offset   = DIM*inr;
488
489         /* Load i particle coords and add shift vector */
490         ix0              = shX + x[i_coord_offset+DIM*0+XX];
491         iy0              = shY + x[i_coord_offset+DIM*0+YY];
492         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
493         ix1              = shX + x[i_coord_offset+DIM*1+XX];
494         iy1              = shY + x[i_coord_offset+DIM*1+YY];
495         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
496         ix2              = shX + x[i_coord_offset+DIM*2+XX];
497         iy2              = shY + x[i_coord_offset+DIM*2+YY];
498         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
499
500         fix0             = 0.0;
501         fiy0             = 0.0;
502         fiz0             = 0.0;
503         fix1             = 0.0;
504         fiy1             = 0.0;
505         fiz1             = 0.0;
506         fix2             = 0.0;
507         fiy2             = 0.0;
508         fiz2             = 0.0;
509
510         /* Start inner kernel loop */
511         for(jidx=j_index_start; jidx<j_index_end; jidx++)
512         {
513             /* Get j neighbor index, and coordinate index */
514             jnr              = jjnr[jidx];
515             j_coord_offset   = DIM*jnr;
516
517             /* load j atom coordinates */
518             jx0              = x[j_coord_offset+DIM*0+XX];
519             jy0              = x[j_coord_offset+DIM*0+YY];
520             jz0              = x[j_coord_offset+DIM*0+ZZ];
521
522             /* Calculate displacement vector */
523             dx00             = ix0 - jx0;
524             dy00             = iy0 - jy0;
525             dz00             = iz0 - jz0;
526             dx10             = ix1 - jx0;
527             dy10             = iy1 - jy0;
528             dz10             = iz1 - jz0;
529             dx20             = ix2 - jx0;
530             dy20             = iy2 - jy0;
531             dz20             = iz2 - jz0;
532
533             /* Calculate squared distance and things based on it */
534             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
535             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
536             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
537
538             rinv00           = gmx_invsqrt(rsq00);
539             rinv10           = gmx_invsqrt(rsq10);
540             rinv20           = gmx_invsqrt(rsq20);
541
542             rinvsq00         = rinv00*rinv00;
543             rinvsq10         = rinv10*rinv10;
544             rinvsq20         = rinv20*rinv20;
545
546             /* Load parameters for j particles */
547             jq0              = charge[jnr+0];
548             vdwjidx0         = 2*vdwtype[jnr+0];
549
550             /**************************
551              * CALCULATE INTERACTIONS *
552              **************************/
553
554             r00              = rsq00*rinv00;
555
556             qq00             = iq0*jq0;
557             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
558             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
559             c6grid_00        = vdwgridparam[vdwioffset0+vdwjidx0];
560
561             /* EWALD ELECTROSTATICS */
562
563             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
564             ewrt             = r00*ewtabscale;
565             ewitab           = ewrt;
566             eweps            = ewrt-ewitab;
567             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
568             felec            = qq00*rinv00*(rinvsq00-felec);
569
570             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
571             ewcljrsq         = ewclj2*rsq00;
572             exponent         = exp(-ewcljrsq);
573             poly             = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
574             fvdw             = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
575
576             fscal            = felec+fvdw;
577
578             /* Calculate temporary vectorial force */
579             tx               = fscal*dx00;
580             ty               = fscal*dy00;
581             tz               = fscal*dz00;
582
583             /* Update vectorial force */
584             fix0            += tx;
585             fiy0            += ty;
586             fiz0            += tz;
587             f[j_coord_offset+DIM*0+XX] -= tx;
588             f[j_coord_offset+DIM*0+YY] -= ty;
589             f[j_coord_offset+DIM*0+ZZ] -= tz;
590
591             /**************************
592              * CALCULATE INTERACTIONS *
593              **************************/
594
595             r10              = rsq10*rinv10;
596
597             qq10             = iq1*jq0;
598
599             /* EWALD ELECTROSTATICS */
600
601             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
602             ewrt             = r10*ewtabscale;
603             ewitab           = ewrt;
604             eweps            = ewrt-ewitab;
605             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
606             felec            = qq10*rinv10*(rinvsq10-felec);
607
608             fscal            = felec;
609
610             /* Calculate temporary vectorial force */
611             tx               = fscal*dx10;
612             ty               = fscal*dy10;
613             tz               = fscal*dz10;
614
615             /* Update vectorial force */
616             fix1            += tx;
617             fiy1            += ty;
618             fiz1            += tz;
619             f[j_coord_offset+DIM*0+XX] -= tx;
620             f[j_coord_offset+DIM*0+YY] -= ty;
621             f[j_coord_offset+DIM*0+ZZ] -= tz;
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             r20              = rsq20*rinv20;
628
629             qq20             = iq2*jq0;
630
631             /* EWALD ELECTROSTATICS */
632
633             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
634             ewrt             = r20*ewtabscale;
635             ewitab           = ewrt;
636             eweps            = ewrt-ewitab;
637             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
638             felec            = qq20*rinv20*(rinvsq20-felec);
639
640             fscal            = felec;
641
642             /* Calculate temporary vectorial force */
643             tx               = fscal*dx20;
644             ty               = fscal*dy20;
645             tz               = fscal*dz20;
646
647             /* Update vectorial force */
648             fix2            += tx;
649             fiy2            += ty;
650             fiz2            += tz;
651             f[j_coord_offset+DIM*0+XX] -= tx;
652             f[j_coord_offset+DIM*0+YY] -= ty;
653             f[j_coord_offset+DIM*0+ZZ] -= tz;
654
655             /* Inner loop uses 123 flops */
656         }
657         /* End of innermost loop */
658
659         tx = ty = tz = 0;
660         f[i_coord_offset+DIM*0+XX] += fix0;
661         f[i_coord_offset+DIM*0+YY] += fiy0;
662         f[i_coord_offset+DIM*0+ZZ] += fiz0;
663         tx                         += fix0;
664         ty                         += fiy0;
665         tz                         += fiz0;
666         f[i_coord_offset+DIM*1+XX] += fix1;
667         f[i_coord_offset+DIM*1+YY] += fiy1;
668         f[i_coord_offset+DIM*1+ZZ] += fiz1;
669         tx                         += fix1;
670         ty                         += fiy1;
671         tz                         += fiz1;
672         f[i_coord_offset+DIM*2+XX] += fix2;
673         f[i_coord_offset+DIM*2+YY] += fiy2;
674         f[i_coord_offset+DIM*2+ZZ] += fiz2;
675         tx                         += fix2;
676         ty                         += fiy2;
677         tz                         += fiz2;
678         fshift[i_shift_offset+XX]  += tx;
679         fshift[i_shift_offset+YY]  += ty;
680         fshift[i_shift_offset+ZZ]  += tz;
681
682         /* Increment number of inner iterations */
683         inneriter                  += j_index_end - j_index_start;
684
685         /* Outer loop uses 30 flops */
686     }
687
688     /* Increment number of outer iterations */
689     outeriter        += nri;
690
691     /* Update outer/inner flops */
692
693     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*123);
694 }