bfb77e5fbfbba01a0fc107a5fabc9e1b2978eb1b
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     real             c6grid_00;
84     real             ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
85     real             *vdwgridparam;
86     int              ewitab;
87     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
88     real             *ewtab;
89
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = fr->epsfac;
102     charge           = mdatoms->chargeA;
103     nvdwtype         = fr->ntype;
104     vdwparam         = fr->nbfp;
105     vdwtype          = mdatoms->typeA;
106     vdwgridparam     = fr->ljpme_c6grid;
107     ewclj            = fr->ewaldcoeff_lj;
108     sh_lj_ewald      = fr->ic->sh_lj_ewald;
109     ewclj2           = ewclj*ewclj;
110     ewclj6           = ewclj2*ewclj2*ewclj2;
111
112     sh_ewald         = fr->ic->sh_ewald;
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = fr->ic->tabq_scale;
115     ewtabhalfspace   = 0.5/ewtabscale;
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     /* Start outer loop over neighborlists */
121     for(iidx=0; iidx<nri; iidx++)
122     {
123         /* Load shift vector for this list */
124         i_shift_offset   = DIM*shiftidx[iidx];
125         shX              = shiftvec[i_shift_offset+XX];
126         shY              = shiftvec[i_shift_offset+YY];
127         shZ              = shiftvec[i_shift_offset+ZZ];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         ix0              = shX + x[i_coord_offset+DIM*0+XX];
139         iy0              = shY + x[i_coord_offset+DIM*0+YY];
140         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
141
142         fix0             = 0.0;
143         fiy0             = 0.0;
144         fiz0             = 0.0;
145
146         /* Load parameters for i particles */
147         iq0              = facel*charge[inr+0];
148         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
149
150         /* Reset potential sums */
151         velecsum         = 0.0;
152         vvdwsum          = 0.0;
153
154         /* Start inner kernel loop */
155         for(jidx=j_index_start; jidx<j_index_end; jidx++)
156         {
157             /* Get j neighbor index, and coordinate index */
158             jnr              = jjnr[jidx];
159             j_coord_offset   = DIM*jnr;
160
161             /* load j atom coordinates */
162             jx0              = x[j_coord_offset+DIM*0+XX];
163             jy0              = x[j_coord_offset+DIM*0+YY];
164             jz0              = x[j_coord_offset+DIM*0+ZZ];
165
166             /* Calculate displacement vector */
167             dx00             = ix0 - jx0;
168             dy00             = iy0 - jy0;
169             dz00             = iz0 - jz0;
170
171             /* Calculate squared distance and things based on it */
172             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
173
174             rinv00           = gmx_invsqrt(rsq00);
175
176             rinvsq00         = rinv00*rinv00;
177
178             /* Load parameters for j particles */
179             jq0              = charge[jnr+0];
180             vdwjidx0         = 2*vdwtype[jnr+0];
181
182             /**************************
183              * CALCULATE INTERACTIONS *
184              **************************/
185
186             r00              = rsq00*rinv00;
187
188             qq00             = iq0*jq0;
189             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
190             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
191             c6grid_00        = vdwgridparam[vdwioffset0+vdwjidx0];
192
193             /* EWALD ELECTROSTATICS */
194
195             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
196             ewrt             = r00*ewtabscale;
197             ewitab           = ewrt;
198             eweps            = ewrt-ewitab;
199             ewitab           = 4*ewitab;
200             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
201             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
202             felec            = qq00*rinv00*(rinvsq00-felec);
203
204             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
205             ewcljrsq         = ewclj2*rsq00;
206             exponent         = exp(-ewcljrsq);
207             poly             = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
208             vvdw6            = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
209             vvdw12           = c12_00*rinvsix*rinvsix;
210             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
211             fvdw             = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
212
213             /* Update potential sums from outer loop */
214             velecsum        += velec;
215             vvdwsum         += vvdw;
216
217             fscal            = felec+fvdw;
218
219             /* Calculate temporary vectorial force */
220             tx               = fscal*dx00;
221             ty               = fscal*dy00;
222             tz               = fscal*dz00;
223
224             /* Update vectorial force */
225             fix0            += tx;
226             fiy0            += ty;
227             fiz0            += tz;
228             f[j_coord_offset+DIM*0+XX] -= tx;
229             f[j_coord_offset+DIM*0+YY] -= ty;
230             f[j_coord_offset+DIM*0+ZZ] -= tz;
231
232             /* Inner loop uses 67 flops */
233         }
234         /* End of innermost loop */
235
236         tx = ty = tz = 0;
237         f[i_coord_offset+DIM*0+XX] += fix0;
238         f[i_coord_offset+DIM*0+YY] += fiy0;
239         f[i_coord_offset+DIM*0+ZZ] += fiz0;
240         tx                         += fix0;
241         ty                         += fiy0;
242         tz                         += fiz0;
243         fshift[i_shift_offset+XX]  += tx;
244         fshift[i_shift_offset+YY]  += ty;
245         fshift[i_shift_offset+ZZ]  += tz;
246
247         ggid                        = gid[iidx];
248         /* Update potential energies */
249         kernel_data->energygrp_elec[ggid] += velecsum;
250         kernel_data->energygrp_vdw[ggid] += vvdwsum;
251
252         /* Increment number of inner iterations */
253         inneriter                  += j_index_end - j_index_start;
254
255         /* Outer loop uses 15 flops */
256     }
257
258     /* Increment number of outer iterations */
259     outeriter        += nri;
260
261     /* Update outer/inner flops */
262
263     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*67);
264 }
265 /*
266  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_c
267  * Electrostatics interaction: Ewald
268  * VdW interaction:            LJEwald
269  * Geometry:                   Particle-Particle
270  * Calculate force/pot:        Force
271  */
272 void
273 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_c
274                     (t_nblist                    * gmx_restrict       nlist,
275                      rvec                        * gmx_restrict          xx,
276                      rvec                        * gmx_restrict          ff,
277                      t_forcerec                  * gmx_restrict          fr,
278                      t_mdatoms                   * gmx_restrict     mdatoms,
279                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
280                      t_nrnb                      * gmx_restrict        nrnb)
281 {
282     int              i_shift_offset,i_coord_offset,j_coord_offset;
283     int              j_index_start,j_index_end;
284     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
285     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
286     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
287     real             *shiftvec,*fshift,*x,*f;
288     int              vdwioffset0;
289     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
290     int              vdwjidx0;
291     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
292     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
293     real             velec,felec,velecsum,facel,crf,krf,krf2;
294     real             *charge;
295     int              nvdwtype;
296     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
297     int              *vdwtype;
298     real             *vdwparam;
299     real             c6grid_00;
300     real             ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
301     real             *vdwgridparam;
302     int              ewitab;
303     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
304     real             *ewtab;
305
306     x                = xx[0];
307     f                = ff[0];
308
309     nri              = nlist->nri;
310     iinr             = nlist->iinr;
311     jindex           = nlist->jindex;
312     jjnr             = nlist->jjnr;
313     shiftidx         = nlist->shift;
314     gid              = nlist->gid;
315     shiftvec         = fr->shift_vec[0];
316     fshift           = fr->fshift[0];
317     facel            = fr->epsfac;
318     charge           = mdatoms->chargeA;
319     nvdwtype         = fr->ntype;
320     vdwparam         = fr->nbfp;
321     vdwtype          = mdatoms->typeA;
322     vdwgridparam     = fr->ljpme_c6grid;
323     ewclj            = fr->ewaldcoeff_lj;
324     sh_lj_ewald      = fr->ic->sh_lj_ewald;
325     ewclj2           = ewclj*ewclj;
326     ewclj6           = ewclj2*ewclj2*ewclj2;
327
328     sh_ewald         = fr->ic->sh_ewald;
329     ewtab            = fr->ic->tabq_coul_F;
330     ewtabscale       = fr->ic->tabq_scale;
331     ewtabhalfspace   = 0.5/ewtabscale;
332
333     outeriter        = 0;
334     inneriter        = 0;
335
336     /* Start outer loop over neighborlists */
337     for(iidx=0; iidx<nri; iidx++)
338     {
339         /* Load shift vector for this list */
340         i_shift_offset   = DIM*shiftidx[iidx];
341         shX              = shiftvec[i_shift_offset+XX];
342         shY              = shiftvec[i_shift_offset+YY];
343         shZ              = shiftvec[i_shift_offset+ZZ];
344
345         /* Load limits for loop over neighbors */
346         j_index_start    = jindex[iidx];
347         j_index_end      = jindex[iidx+1];
348
349         /* Get outer coordinate index */
350         inr              = iinr[iidx];
351         i_coord_offset   = DIM*inr;
352
353         /* Load i particle coords and add shift vector */
354         ix0              = shX + x[i_coord_offset+DIM*0+XX];
355         iy0              = shY + x[i_coord_offset+DIM*0+YY];
356         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
357
358         fix0             = 0.0;
359         fiy0             = 0.0;
360         fiz0             = 0.0;
361
362         /* Load parameters for i particles */
363         iq0              = facel*charge[inr+0];
364         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
365
366         /* Start inner kernel loop */
367         for(jidx=j_index_start; jidx<j_index_end; jidx++)
368         {
369             /* Get j neighbor index, and coordinate index */
370             jnr              = jjnr[jidx];
371             j_coord_offset   = DIM*jnr;
372
373             /* load j atom coordinates */
374             jx0              = x[j_coord_offset+DIM*0+XX];
375             jy0              = x[j_coord_offset+DIM*0+YY];
376             jz0              = x[j_coord_offset+DIM*0+ZZ];
377
378             /* Calculate displacement vector */
379             dx00             = ix0 - jx0;
380             dy00             = iy0 - jy0;
381             dz00             = iz0 - jz0;
382
383             /* Calculate squared distance and things based on it */
384             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
385
386             rinv00           = gmx_invsqrt(rsq00);
387
388             rinvsq00         = rinv00*rinv00;
389
390             /* Load parameters for j particles */
391             jq0              = charge[jnr+0];
392             vdwjidx0         = 2*vdwtype[jnr+0];
393
394             /**************************
395              * CALCULATE INTERACTIONS *
396              **************************/
397
398             r00              = rsq00*rinv00;
399
400             qq00             = iq0*jq0;
401             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
402             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
403             c6grid_00        = vdwgridparam[vdwioffset0+vdwjidx0];
404
405             /* EWALD ELECTROSTATICS */
406
407             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
408             ewrt             = r00*ewtabscale;
409             ewitab           = ewrt;
410             eweps            = ewrt-ewitab;
411             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
412             felec            = qq00*rinv00*(rinvsq00-felec);
413
414             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
415             ewcljrsq         = ewclj2*rsq00;
416             exponent         = exp(-ewcljrsq);
417             poly             = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
418             fvdw             = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
419
420             fscal            = felec+fvdw;
421
422             /* Calculate temporary vectorial force */
423             tx               = fscal*dx00;
424             ty               = fscal*dy00;
425             tz               = fscal*dz00;
426
427             /* Update vectorial force */
428             fix0            += tx;
429             fiy0            += ty;
430             fiz0            += tz;
431             f[j_coord_offset+DIM*0+XX] -= tx;
432             f[j_coord_offset+DIM*0+YY] -= ty;
433             f[j_coord_offset+DIM*0+ZZ] -= tz;
434
435             /* Inner loop uses 55 flops */
436         }
437         /* End of innermost loop */
438
439         tx = ty = tz = 0;
440         f[i_coord_offset+DIM*0+XX] += fix0;
441         f[i_coord_offset+DIM*0+YY] += fiy0;
442         f[i_coord_offset+DIM*0+ZZ] += fiz0;
443         tx                         += fix0;
444         ty                         += fiy0;
445         tz                         += fiz0;
446         fshift[i_shift_offset+XX]  += tx;
447         fshift[i_shift_offset+YY]  += ty;
448         fshift[i_shift_offset+ZZ]  += tz;
449
450         /* Increment number of inner iterations */
451         inneriter                  += j_index_end - j_index_start;
452
453         /* Outer loop uses 13 flops */
454     }
455
456     /* Increment number of outer iterations */
457     outeriter        += nri;
458
459     /* Update outer/inner flops */
460
461     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*55);
462 }