Use full path for legacyheaders
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwLJEw_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_c
49  * Electrostatics interaction: Ewald
50  * VdW interaction:            LJEwald
51  * Geometry:                   Particle-Particle
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0;
73     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
75     real             velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     real             c6grid_00;
82     real             ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
83     real             *vdwgridparam;
84     int              ewitab;
85     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
86     real             *ewtab;
87
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = fr->epsfac;
100     charge           = mdatoms->chargeA;
101     nvdwtype         = fr->ntype;
102     vdwparam         = fr->nbfp;
103     vdwtype          = mdatoms->typeA;
104     vdwgridparam     = fr->ljpme_c6grid;
105     ewclj            = fr->ewaldcoeff_lj;
106     sh_lj_ewald      = fr->ic->sh_lj_ewald;
107     ewclj2           = ewclj*ewclj;
108     ewclj6           = ewclj2*ewclj2*ewclj2;
109
110     sh_ewald         = fr->ic->sh_ewald;
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = fr->ic->tabq_scale;
113     ewtabhalfspace   = 0.5/ewtabscale;
114
115     outeriter        = 0;
116     inneriter        = 0;
117
118     /* Start outer loop over neighborlists */
119     for(iidx=0; iidx<nri; iidx++)
120     {
121         /* Load shift vector for this list */
122         i_shift_offset   = DIM*shiftidx[iidx];
123         shX              = shiftvec[i_shift_offset+XX];
124         shY              = shiftvec[i_shift_offset+YY];
125         shZ              = shiftvec[i_shift_offset+ZZ];
126
127         /* Load limits for loop over neighbors */
128         j_index_start    = jindex[iidx];
129         j_index_end      = jindex[iidx+1];
130
131         /* Get outer coordinate index */
132         inr              = iinr[iidx];
133         i_coord_offset   = DIM*inr;
134
135         /* Load i particle coords and add shift vector */
136         ix0              = shX + x[i_coord_offset+DIM*0+XX];
137         iy0              = shY + x[i_coord_offset+DIM*0+YY];
138         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
139
140         fix0             = 0.0;
141         fiy0             = 0.0;
142         fiz0             = 0.0;
143
144         /* Load parameters for i particles */
145         iq0              = facel*charge[inr+0];
146         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
147
148         /* Reset potential sums */
149         velecsum         = 0.0;
150         vvdwsum          = 0.0;
151
152         /* Start inner kernel loop */
153         for(jidx=j_index_start; jidx<j_index_end; jidx++)
154         {
155             /* Get j neighbor index, and coordinate index */
156             jnr              = jjnr[jidx];
157             j_coord_offset   = DIM*jnr;
158
159             /* load j atom coordinates */
160             jx0              = x[j_coord_offset+DIM*0+XX];
161             jy0              = x[j_coord_offset+DIM*0+YY];
162             jz0              = x[j_coord_offset+DIM*0+ZZ];
163
164             /* Calculate displacement vector */
165             dx00             = ix0 - jx0;
166             dy00             = iy0 - jy0;
167             dz00             = iz0 - jz0;
168
169             /* Calculate squared distance and things based on it */
170             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
171
172             rinv00           = gmx_invsqrt(rsq00);
173
174             rinvsq00         = rinv00*rinv00;
175
176             /* Load parameters for j particles */
177             jq0              = charge[jnr+0];
178             vdwjidx0         = 2*vdwtype[jnr+0];
179
180             /**************************
181              * CALCULATE INTERACTIONS *
182              **************************/
183
184             r00              = rsq00*rinv00;
185
186             qq00             = iq0*jq0;
187             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
188             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
189             c6grid_00        = vdwgridparam[vdwioffset0+vdwjidx0];
190
191             /* EWALD ELECTROSTATICS */
192
193             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
194             ewrt             = r00*ewtabscale;
195             ewitab           = ewrt;
196             eweps            = ewrt-ewitab;
197             ewitab           = 4*ewitab;
198             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
199             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
200             felec            = qq00*rinv00*(rinvsq00-felec);
201
202             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
203             ewcljrsq         = ewclj2*rsq00;
204             exponent         = exp(-ewcljrsq);
205             poly             = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
206             vvdw6            = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
207             vvdw12           = c12_00*rinvsix*rinvsix;
208             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
209             fvdw             = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
210
211             /* Update potential sums from outer loop */
212             velecsum        += velec;
213             vvdwsum         += vvdw;
214
215             fscal            = felec+fvdw;
216
217             /* Calculate temporary vectorial force */
218             tx               = fscal*dx00;
219             ty               = fscal*dy00;
220             tz               = fscal*dz00;
221
222             /* Update vectorial force */
223             fix0            += tx;
224             fiy0            += ty;
225             fiz0            += tz;
226             f[j_coord_offset+DIM*0+XX] -= tx;
227             f[j_coord_offset+DIM*0+YY] -= ty;
228             f[j_coord_offset+DIM*0+ZZ] -= tz;
229
230             /* Inner loop uses 67 flops */
231         }
232         /* End of innermost loop */
233
234         tx = ty = tz = 0;
235         f[i_coord_offset+DIM*0+XX] += fix0;
236         f[i_coord_offset+DIM*0+YY] += fiy0;
237         f[i_coord_offset+DIM*0+ZZ] += fiz0;
238         tx                         += fix0;
239         ty                         += fiy0;
240         tz                         += fiz0;
241         fshift[i_shift_offset+XX]  += tx;
242         fshift[i_shift_offset+YY]  += ty;
243         fshift[i_shift_offset+ZZ]  += tz;
244
245         ggid                        = gid[iidx];
246         /* Update potential energies */
247         kernel_data->energygrp_elec[ggid] += velecsum;
248         kernel_data->energygrp_vdw[ggid] += vvdwsum;
249
250         /* Increment number of inner iterations */
251         inneriter                  += j_index_end - j_index_start;
252
253         /* Outer loop uses 15 flops */
254     }
255
256     /* Increment number of outer iterations */
257     outeriter        += nri;
258
259     /* Update outer/inner flops */
260
261     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*67);
262 }
263 /*
264  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_c
265  * Electrostatics interaction: Ewald
266  * VdW interaction:            LJEwald
267  * Geometry:                   Particle-Particle
268  * Calculate force/pot:        Force
269  */
270 void
271 nb_kernel_ElecEw_VdwLJEw_GeomP1P1_F_c
272                     (t_nblist                    * gmx_restrict       nlist,
273                      rvec                        * gmx_restrict          xx,
274                      rvec                        * gmx_restrict          ff,
275                      t_forcerec                  * gmx_restrict          fr,
276                      t_mdatoms                   * gmx_restrict     mdatoms,
277                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
278                      t_nrnb                      * gmx_restrict        nrnb)
279 {
280     int              i_shift_offset,i_coord_offset,j_coord_offset;
281     int              j_index_start,j_index_end;
282     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
283     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
284     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
285     real             *shiftvec,*fshift,*x,*f;
286     int              vdwioffset0;
287     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
288     int              vdwjidx0;
289     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
290     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
291     real             velec,felec,velecsum,facel,crf,krf,krf2;
292     real             *charge;
293     int              nvdwtype;
294     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
295     int              *vdwtype;
296     real             *vdwparam;
297     real             c6grid_00;
298     real             ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
299     real             *vdwgridparam;
300     int              ewitab;
301     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
302     real             *ewtab;
303
304     x                = xx[0];
305     f                = ff[0];
306
307     nri              = nlist->nri;
308     iinr             = nlist->iinr;
309     jindex           = nlist->jindex;
310     jjnr             = nlist->jjnr;
311     shiftidx         = nlist->shift;
312     gid              = nlist->gid;
313     shiftvec         = fr->shift_vec[0];
314     fshift           = fr->fshift[0];
315     facel            = fr->epsfac;
316     charge           = mdatoms->chargeA;
317     nvdwtype         = fr->ntype;
318     vdwparam         = fr->nbfp;
319     vdwtype          = mdatoms->typeA;
320     vdwgridparam     = fr->ljpme_c6grid;
321     ewclj            = fr->ewaldcoeff_lj;
322     sh_lj_ewald      = fr->ic->sh_lj_ewald;
323     ewclj2           = ewclj*ewclj;
324     ewclj6           = ewclj2*ewclj2*ewclj2;
325
326     sh_ewald         = fr->ic->sh_ewald;
327     ewtab            = fr->ic->tabq_coul_F;
328     ewtabscale       = fr->ic->tabq_scale;
329     ewtabhalfspace   = 0.5/ewtabscale;
330
331     outeriter        = 0;
332     inneriter        = 0;
333
334     /* Start outer loop over neighborlists */
335     for(iidx=0; iidx<nri; iidx++)
336     {
337         /* Load shift vector for this list */
338         i_shift_offset   = DIM*shiftidx[iidx];
339         shX              = shiftvec[i_shift_offset+XX];
340         shY              = shiftvec[i_shift_offset+YY];
341         shZ              = shiftvec[i_shift_offset+ZZ];
342
343         /* Load limits for loop over neighbors */
344         j_index_start    = jindex[iidx];
345         j_index_end      = jindex[iidx+1];
346
347         /* Get outer coordinate index */
348         inr              = iinr[iidx];
349         i_coord_offset   = DIM*inr;
350
351         /* Load i particle coords and add shift vector */
352         ix0              = shX + x[i_coord_offset+DIM*0+XX];
353         iy0              = shY + x[i_coord_offset+DIM*0+YY];
354         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
355
356         fix0             = 0.0;
357         fiy0             = 0.0;
358         fiz0             = 0.0;
359
360         /* Load parameters for i particles */
361         iq0              = facel*charge[inr+0];
362         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
363
364         /* Start inner kernel loop */
365         for(jidx=j_index_start; jidx<j_index_end; jidx++)
366         {
367             /* Get j neighbor index, and coordinate index */
368             jnr              = jjnr[jidx];
369             j_coord_offset   = DIM*jnr;
370
371             /* load j atom coordinates */
372             jx0              = x[j_coord_offset+DIM*0+XX];
373             jy0              = x[j_coord_offset+DIM*0+YY];
374             jz0              = x[j_coord_offset+DIM*0+ZZ];
375
376             /* Calculate displacement vector */
377             dx00             = ix0 - jx0;
378             dy00             = iy0 - jy0;
379             dz00             = iz0 - jz0;
380
381             /* Calculate squared distance and things based on it */
382             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
383
384             rinv00           = gmx_invsqrt(rsq00);
385
386             rinvsq00         = rinv00*rinv00;
387
388             /* Load parameters for j particles */
389             jq0              = charge[jnr+0];
390             vdwjidx0         = 2*vdwtype[jnr+0];
391
392             /**************************
393              * CALCULATE INTERACTIONS *
394              **************************/
395
396             r00              = rsq00*rinv00;
397
398             qq00             = iq0*jq0;
399             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
400             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
401             c6grid_00        = vdwgridparam[vdwioffset0+vdwjidx0];
402
403             /* EWALD ELECTROSTATICS */
404
405             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
406             ewrt             = r00*ewtabscale;
407             ewitab           = ewrt;
408             eweps            = ewrt-ewitab;
409             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
410             felec            = qq00*rinv00*(rinvsq00-felec);
411
412             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
413             ewcljrsq         = ewclj2*rsq00;
414             exponent         = exp(-ewcljrsq);
415             poly             = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
416             fvdw             = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
417
418             fscal            = felec+fvdw;
419
420             /* Calculate temporary vectorial force */
421             tx               = fscal*dx00;
422             ty               = fscal*dy00;
423             tz               = fscal*dz00;
424
425             /* Update vectorial force */
426             fix0            += tx;
427             fiy0            += ty;
428             fiz0            += tz;
429             f[j_coord_offset+DIM*0+XX] -= tx;
430             f[j_coord_offset+DIM*0+YY] -= ty;
431             f[j_coord_offset+DIM*0+ZZ] -= tz;
432
433             /* Inner loop uses 55 flops */
434         }
435         /* End of innermost loop */
436
437         tx = ty = tz = 0;
438         f[i_coord_offset+DIM*0+XX] += fix0;
439         f[i_coord_offset+DIM*0+YY] += fiy0;
440         f[i_coord_offset+DIM*0+ZZ] += fiz0;
441         tx                         += fix0;
442         ty                         += fiy0;
443         tz                         += fiz0;
444         fshift[i_shift_offset+XX]  += tx;
445         fshift[i_shift_offset+YY]  += ty;
446         fshift[i_shift_offset+ZZ]  += tz;
447
448         /* Increment number of inner iterations */
449         inneriter                  += j_index_end - j_index_start;
450
451         /* Outer loop uses 13 flops */
452     }
453
454     /* Increment number of outer iterations */
455     outeriter        += nri;
456
457     /* Update outer/inner flops */
458
459     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*55);
460 }