Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwCSTab_GeomW4W4_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4W4_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Water4
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwCSTab_GeomW4W4_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwioffset3;
79     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0;
81     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     int              vdwjidx1;
83     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84     int              vdwjidx2;
85     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86     int              vdwjidx3;
87     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98     real             velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     int              vfitab;
105     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
106     real             *vftab;
107     int              ewitab;
108     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
109     real             *ewtab;
110
111     x                = xx[0];
112     f                = ff[0];
113
114     nri              = nlist->nri;
115     iinr             = nlist->iinr;
116     jindex           = nlist->jindex;
117     jjnr             = nlist->jjnr;
118     shiftidx         = nlist->shift;
119     gid              = nlist->gid;
120     shiftvec         = fr->shift_vec[0];
121     fshift           = fr->fshift[0];
122     facel            = fr->epsfac;
123     charge           = mdatoms->chargeA;
124     nvdwtype         = fr->ntype;
125     vdwparam         = fr->nbfp;
126     vdwtype          = mdatoms->typeA;
127
128     vftab            = kernel_data->table_vdw->data;
129     vftabscale       = kernel_data->table_vdw->scale;
130
131     sh_ewald         = fr->ic->sh_ewald;
132     ewtab            = fr->ic->tabq_coul_FDV0;
133     ewtabscale       = fr->ic->tabq_scale;
134     ewtabhalfspace   = 0.5/ewtabscale;
135
136     /* Setup water-specific parameters */
137     inr              = nlist->iinr[0];
138     iq1              = facel*charge[inr+1];
139     iq2              = facel*charge[inr+2];
140     iq3              = facel*charge[inr+3];
141     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
142
143     jq1              = charge[inr+1];
144     jq2              = charge[inr+2];
145     jq3              = charge[inr+3];
146     vdwjidx0         = 2*vdwtype[inr+0];
147     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
148     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
149     qq11             = iq1*jq1;
150     qq12             = iq1*jq2;
151     qq13             = iq1*jq3;
152     qq21             = iq2*jq1;
153     qq22             = iq2*jq2;
154     qq23             = iq2*jq3;
155     qq31             = iq3*jq1;
156     qq32             = iq3*jq2;
157     qq33             = iq3*jq3;
158
159     outeriter        = 0;
160     inneriter        = 0;
161
162     /* Start outer loop over neighborlists */
163     for(iidx=0; iidx<nri; iidx++)
164     {
165         /* Load shift vector for this list */
166         i_shift_offset   = DIM*shiftidx[iidx];
167         shX              = shiftvec[i_shift_offset+XX];
168         shY              = shiftvec[i_shift_offset+YY];
169         shZ              = shiftvec[i_shift_offset+ZZ];
170
171         /* Load limits for loop over neighbors */
172         j_index_start    = jindex[iidx];
173         j_index_end      = jindex[iidx+1];
174
175         /* Get outer coordinate index */
176         inr              = iinr[iidx];
177         i_coord_offset   = DIM*inr;
178
179         /* Load i particle coords and add shift vector */
180         ix0              = shX + x[i_coord_offset+DIM*0+XX];
181         iy0              = shY + x[i_coord_offset+DIM*0+YY];
182         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
183         ix1              = shX + x[i_coord_offset+DIM*1+XX];
184         iy1              = shY + x[i_coord_offset+DIM*1+YY];
185         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
186         ix2              = shX + x[i_coord_offset+DIM*2+XX];
187         iy2              = shY + x[i_coord_offset+DIM*2+YY];
188         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
189         ix3              = shX + x[i_coord_offset+DIM*3+XX];
190         iy3              = shY + x[i_coord_offset+DIM*3+YY];
191         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
192
193         fix0             = 0.0;
194         fiy0             = 0.0;
195         fiz0             = 0.0;
196         fix1             = 0.0;
197         fiy1             = 0.0;
198         fiz1             = 0.0;
199         fix2             = 0.0;
200         fiy2             = 0.0;
201         fiz2             = 0.0;
202         fix3             = 0.0;
203         fiy3             = 0.0;
204         fiz3             = 0.0;
205
206         /* Reset potential sums */
207         velecsum         = 0.0;
208         vvdwsum          = 0.0;
209
210         /* Start inner kernel loop */
211         for(jidx=j_index_start; jidx<j_index_end; jidx++)
212         {
213             /* Get j neighbor index, and coordinate index */
214             jnr              = jjnr[jidx];
215             j_coord_offset   = DIM*jnr;
216
217             /* load j atom coordinates */
218             jx0              = x[j_coord_offset+DIM*0+XX];
219             jy0              = x[j_coord_offset+DIM*0+YY];
220             jz0              = x[j_coord_offset+DIM*0+ZZ];
221             jx1              = x[j_coord_offset+DIM*1+XX];
222             jy1              = x[j_coord_offset+DIM*1+YY];
223             jz1              = x[j_coord_offset+DIM*1+ZZ];
224             jx2              = x[j_coord_offset+DIM*2+XX];
225             jy2              = x[j_coord_offset+DIM*2+YY];
226             jz2              = x[j_coord_offset+DIM*2+ZZ];
227             jx3              = x[j_coord_offset+DIM*3+XX];
228             jy3              = x[j_coord_offset+DIM*3+YY];
229             jz3              = x[j_coord_offset+DIM*3+ZZ];
230
231             /* Calculate displacement vector */
232             dx00             = ix0 - jx0;
233             dy00             = iy0 - jy0;
234             dz00             = iz0 - jz0;
235             dx11             = ix1 - jx1;
236             dy11             = iy1 - jy1;
237             dz11             = iz1 - jz1;
238             dx12             = ix1 - jx2;
239             dy12             = iy1 - jy2;
240             dz12             = iz1 - jz2;
241             dx13             = ix1 - jx3;
242             dy13             = iy1 - jy3;
243             dz13             = iz1 - jz3;
244             dx21             = ix2 - jx1;
245             dy21             = iy2 - jy1;
246             dz21             = iz2 - jz1;
247             dx22             = ix2 - jx2;
248             dy22             = iy2 - jy2;
249             dz22             = iz2 - jz2;
250             dx23             = ix2 - jx3;
251             dy23             = iy2 - jy3;
252             dz23             = iz2 - jz3;
253             dx31             = ix3 - jx1;
254             dy31             = iy3 - jy1;
255             dz31             = iz3 - jz1;
256             dx32             = ix3 - jx2;
257             dy32             = iy3 - jy2;
258             dz32             = iz3 - jz2;
259             dx33             = ix3 - jx3;
260             dy33             = iy3 - jy3;
261             dz33             = iz3 - jz3;
262
263             /* Calculate squared distance and things based on it */
264             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
265             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
266             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
267             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
268             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
269             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
270             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
271             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
272             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
273             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
274
275             rinv00           = gmx_invsqrt(rsq00);
276             rinv11           = gmx_invsqrt(rsq11);
277             rinv12           = gmx_invsqrt(rsq12);
278             rinv13           = gmx_invsqrt(rsq13);
279             rinv21           = gmx_invsqrt(rsq21);
280             rinv22           = gmx_invsqrt(rsq22);
281             rinv23           = gmx_invsqrt(rsq23);
282             rinv31           = gmx_invsqrt(rsq31);
283             rinv32           = gmx_invsqrt(rsq32);
284             rinv33           = gmx_invsqrt(rsq33);
285
286             rinvsq11         = rinv11*rinv11;
287             rinvsq12         = rinv12*rinv12;
288             rinvsq13         = rinv13*rinv13;
289             rinvsq21         = rinv21*rinv21;
290             rinvsq22         = rinv22*rinv22;
291             rinvsq23         = rinv23*rinv23;
292             rinvsq31         = rinv31*rinv31;
293             rinvsq32         = rinv32*rinv32;
294             rinvsq33         = rinv33*rinv33;
295
296             /**************************
297              * CALCULATE INTERACTIONS *
298              **************************/
299
300             r00              = rsq00*rinv00;
301
302             /* Calculate table index by multiplying r with table scale and truncate to integer */
303             rt               = r00*vftabscale;
304             vfitab           = rt;
305             vfeps            = rt-vfitab;
306             vfitab           = 2*4*vfitab;
307
308             /* CUBIC SPLINE TABLE DISPERSION */
309             vfitab          += 0;
310             Y                = vftab[vfitab];
311             F                = vftab[vfitab+1];
312             Geps             = vfeps*vftab[vfitab+2];
313             Heps2            = vfeps*vfeps*vftab[vfitab+3];
314             Fp               = F+Geps+Heps2;
315             VV               = Y+vfeps*Fp;
316             vvdw6            = c6_00*VV;
317             FF               = Fp+Geps+2.0*Heps2;
318             fvdw6            = c6_00*FF;
319
320             /* CUBIC SPLINE TABLE REPULSION */
321             Y                = vftab[vfitab+4];
322             F                = vftab[vfitab+5];
323             Geps             = vfeps*vftab[vfitab+6];
324             Heps2            = vfeps*vfeps*vftab[vfitab+7];
325             Fp               = F+Geps+Heps2;
326             VV               = Y+vfeps*Fp;
327             vvdw12           = c12_00*VV;
328             FF               = Fp+Geps+2.0*Heps2;
329             fvdw12           = c12_00*FF;
330             vvdw             = vvdw12+vvdw6;
331             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
332
333             /* Update potential sums from outer loop */
334             vvdwsum         += vvdw;
335
336             fscal            = fvdw;
337
338             /* Calculate temporary vectorial force */
339             tx               = fscal*dx00;
340             ty               = fscal*dy00;
341             tz               = fscal*dz00;
342
343             /* Update vectorial force */
344             fix0            += tx;
345             fiy0            += ty;
346             fiz0            += tz;
347             f[j_coord_offset+DIM*0+XX] -= tx;
348             f[j_coord_offset+DIM*0+YY] -= ty;
349             f[j_coord_offset+DIM*0+ZZ] -= tz;
350
351             /**************************
352              * CALCULATE INTERACTIONS *
353              **************************/
354
355             r11              = rsq11*rinv11;
356
357             /* EWALD ELECTROSTATICS */
358
359             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
360             ewrt             = r11*ewtabscale;
361             ewitab           = ewrt;
362             eweps            = ewrt-ewitab;
363             ewitab           = 4*ewitab;
364             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
365             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
366             felec            = qq11*rinv11*(rinvsq11-felec);
367
368             /* Update potential sums from outer loop */
369             velecsum        += velec;
370
371             fscal            = felec;
372
373             /* Calculate temporary vectorial force */
374             tx               = fscal*dx11;
375             ty               = fscal*dy11;
376             tz               = fscal*dz11;
377
378             /* Update vectorial force */
379             fix1            += tx;
380             fiy1            += ty;
381             fiz1            += tz;
382             f[j_coord_offset+DIM*1+XX] -= tx;
383             f[j_coord_offset+DIM*1+YY] -= ty;
384             f[j_coord_offset+DIM*1+ZZ] -= tz;
385
386             /**************************
387              * CALCULATE INTERACTIONS *
388              **************************/
389
390             r12              = rsq12*rinv12;
391
392             /* EWALD ELECTROSTATICS */
393
394             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
395             ewrt             = r12*ewtabscale;
396             ewitab           = ewrt;
397             eweps            = ewrt-ewitab;
398             ewitab           = 4*ewitab;
399             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
400             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
401             felec            = qq12*rinv12*(rinvsq12-felec);
402
403             /* Update potential sums from outer loop */
404             velecsum        += velec;
405
406             fscal            = felec;
407
408             /* Calculate temporary vectorial force */
409             tx               = fscal*dx12;
410             ty               = fscal*dy12;
411             tz               = fscal*dz12;
412
413             /* Update vectorial force */
414             fix1            += tx;
415             fiy1            += ty;
416             fiz1            += tz;
417             f[j_coord_offset+DIM*2+XX] -= tx;
418             f[j_coord_offset+DIM*2+YY] -= ty;
419             f[j_coord_offset+DIM*2+ZZ] -= tz;
420
421             /**************************
422              * CALCULATE INTERACTIONS *
423              **************************/
424
425             r13              = rsq13*rinv13;
426
427             /* EWALD ELECTROSTATICS */
428
429             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
430             ewrt             = r13*ewtabscale;
431             ewitab           = ewrt;
432             eweps            = ewrt-ewitab;
433             ewitab           = 4*ewitab;
434             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
435             velec            = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
436             felec            = qq13*rinv13*(rinvsq13-felec);
437
438             /* Update potential sums from outer loop */
439             velecsum        += velec;
440
441             fscal            = felec;
442
443             /* Calculate temporary vectorial force */
444             tx               = fscal*dx13;
445             ty               = fscal*dy13;
446             tz               = fscal*dz13;
447
448             /* Update vectorial force */
449             fix1            += tx;
450             fiy1            += ty;
451             fiz1            += tz;
452             f[j_coord_offset+DIM*3+XX] -= tx;
453             f[j_coord_offset+DIM*3+YY] -= ty;
454             f[j_coord_offset+DIM*3+ZZ] -= tz;
455
456             /**************************
457              * CALCULATE INTERACTIONS *
458              **************************/
459
460             r21              = rsq21*rinv21;
461
462             /* EWALD ELECTROSTATICS */
463
464             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
465             ewrt             = r21*ewtabscale;
466             ewitab           = ewrt;
467             eweps            = ewrt-ewitab;
468             ewitab           = 4*ewitab;
469             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
470             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
471             felec            = qq21*rinv21*(rinvsq21-felec);
472
473             /* Update potential sums from outer loop */
474             velecsum        += velec;
475
476             fscal            = felec;
477
478             /* Calculate temporary vectorial force */
479             tx               = fscal*dx21;
480             ty               = fscal*dy21;
481             tz               = fscal*dz21;
482
483             /* Update vectorial force */
484             fix2            += tx;
485             fiy2            += ty;
486             fiz2            += tz;
487             f[j_coord_offset+DIM*1+XX] -= tx;
488             f[j_coord_offset+DIM*1+YY] -= ty;
489             f[j_coord_offset+DIM*1+ZZ] -= tz;
490
491             /**************************
492              * CALCULATE INTERACTIONS *
493              **************************/
494
495             r22              = rsq22*rinv22;
496
497             /* EWALD ELECTROSTATICS */
498
499             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
500             ewrt             = r22*ewtabscale;
501             ewitab           = ewrt;
502             eweps            = ewrt-ewitab;
503             ewitab           = 4*ewitab;
504             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
505             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
506             felec            = qq22*rinv22*(rinvsq22-felec);
507
508             /* Update potential sums from outer loop */
509             velecsum        += velec;
510
511             fscal            = felec;
512
513             /* Calculate temporary vectorial force */
514             tx               = fscal*dx22;
515             ty               = fscal*dy22;
516             tz               = fscal*dz22;
517
518             /* Update vectorial force */
519             fix2            += tx;
520             fiy2            += ty;
521             fiz2            += tz;
522             f[j_coord_offset+DIM*2+XX] -= tx;
523             f[j_coord_offset+DIM*2+YY] -= ty;
524             f[j_coord_offset+DIM*2+ZZ] -= tz;
525
526             /**************************
527              * CALCULATE INTERACTIONS *
528              **************************/
529
530             r23              = rsq23*rinv23;
531
532             /* EWALD ELECTROSTATICS */
533
534             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
535             ewrt             = r23*ewtabscale;
536             ewitab           = ewrt;
537             eweps            = ewrt-ewitab;
538             ewitab           = 4*ewitab;
539             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
540             velec            = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
541             felec            = qq23*rinv23*(rinvsq23-felec);
542
543             /* Update potential sums from outer loop */
544             velecsum        += velec;
545
546             fscal            = felec;
547
548             /* Calculate temporary vectorial force */
549             tx               = fscal*dx23;
550             ty               = fscal*dy23;
551             tz               = fscal*dz23;
552
553             /* Update vectorial force */
554             fix2            += tx;
555             fiy2            += ty;
556             fiz2            += tz;
557             f[j_coord_offset+DIM*3+XX] -= tx;
558             f[j_coord_offset+DIM*3+YY] -= ty;
559             f[j_coord_offset+DIM*3+ZZ] -= tz;
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             r31              = rsq31*rinv31;
566
567             /* EWALD ELECTROSTATICS */
568
569             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
570             ewrt             = r31*ewtabscale;
571             ewitab           = ewrt;
572             eweps            = ewrt-ewitab;
573             ewitab           = 4*ewitab;
574             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
575             velec            = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
576             felec            = qq31*rinv31*(rinvsq31-felec);
577
578             /* Update potential sums from outer loop */
579             velecsum        += velec;
580
581             fscal            = felec;
582
583             /* Calculate temporary vectorial force */
584             tx               = fscal*dx31;
585             ty               = fscal*dy31;
586             tz               = fscal*dz31;
587
588             /* Update vectorial force */
589             fix3            += tx;
590             fiy3            += ty;
591             fiz3            += tz;
592             f[j_coord_offset+DIM*1+XX] -= tx;
593             f[j_coord_offset+DIM*1+YY] -= ty;
594             f[j_coord_offset+DIM*1+ZZ] -= tz;
595
596             /**************************
597              * CALCULATE INTERACTIONS *
598              **************************/
599
600             r32              = rsq32*rinv32;
601
602             /* EWALD ELECTROSTATICS */
603
604             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
605             ewrt             = r32*ewtabscale;
606             ewitab           = ewrt;
607             eweps            = ewrt-ewitab;
608             ewitab           = 4*ewitab;
609             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
610             velec            = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
611             felec            = qq32*rinv32*(rinvsq32-felec);
612
613             /* Update potential sums from outer loop */
614             velecsum        += velec;
615
616             fscal            = felec;
617
618             /* Calculate temporary vectorial force */
619             tx               = fscal*dx32;
620             ty               = fscal*dy32;
621             tz               = fscal*dz32;
622
623             /* Update vectorial force */
624             fix3            += tx;
625             fiy3            += ty;
626             fiz3            += tz;
627             f[j_coord_offset+DIM*2+XX] -= tx;
628             f[j_coord_offset+DIM*2+YY] -= ty;
629             f[j_coord_offset+DIM*2+ZZ] -= tz;
630
631             /**************************
632              * CALCULATE INTERACTIONS *
633              **************************/
634
635             r33              = rsq33*rinv33;
636
637             /* EWALD ELECTROSTATICS */
638
639             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
640             ewrt             = r33*ewtabscale;
641             ewitab           = ewrt;
642             eweps            = ewrt-ewitab;
643             ewitab           = 4*ewitab;
644             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
645             velec            = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
646             felec            = qq33*rinv33*(rinvsq33-felec);
647
648             /* Update potential sums from outer loop */
649             velecsum        += velec;
650
651             fscal            = felec;
652
653             /* Calculate temporary vectorial force */
654             tx               = fscal*dx33;
655             ty               = fscal*dy33;
656             tz               = fscal*dz33;
657
658             /* Update vectorial force */
659             fix3            += tx;
660             fiy3            += ty;
661             fiz3            += tz;
662             f[j_coord_offset+DIM*3+XX] -= tx;
663             f[j_coord_offset+DIM*3+YY] -= ty;
664             f[j_coord_offset+DIM*3+ZZ] -= tz;
665
666             /* Inner loop uses 415 flops */
667         }
668         /* End of innermost loop */
669
670         tx = ty = tz = 0;
671         f[i_coord_offset+DIM*0+XX] += fix0;
672         f[i_coord_offset+DIM*0+YY] += fiy0;
673         f[i_coord_offset+DIM*0+ZZ] += fiz0;
674         tx                         += fix0;
675         ty                         += fiy0;
676         tz                         += fiz0;
677         f[i_coord_offset+DIM*1+XX] += fix1;
678         f[i_coord_offset+DIM*1+YY] += fiy1;
679         f[i_coord_offset+DIM*1+ZZ] += fiz1;
680         tx                         += fix1;
681         ty                         += fiy1;
682         tz                         += fiz1;
683         f[i_coord_offset+DIM*2+XX] += fix2;
684         f[i_coord_offset+DIM*2+YY] += fiy2;
685         f[i_coord_offset+DIM*2+ZZ] += fiz2;
686         tx                         += fix2;
687         ty                         += fiy2;
688         tz                         += fiz2;
689         f[i_coord_offset+DIM*3+XX] += fix3;
690         f[i_coord_offset+DIM*3+YY] += fiy3;
691         f[i_coord_offset+DIM*3+ZZ] += fiz3;
692         tx                         += fix3;
693         ty                         += fiy3;
694         tz                         += fiz3;
695         fshift[i_shift_offset+XX]  += tx;
696         fshift[i_shift_offset+YY]  += ty;
697         fshift[i_shift_offset+ZZ]  += tz;
698
699         ggid                        = gid[iidx];
700         /* Update potential energies */
701         kernel_data->energygrp_elec[ggid] += velecsum;
702         kernel_data->energygrp_vdw[ggid] += vvdwsum;
703
704         /* Increment number of inner iterations */
705         inneriter                  += j_index_end - j_index_start;
706
707         /* Outer loop uses 41 flops */
708     }
709
710     /* Increment number of outer iterations */
711     outeriter        += nri;
712
713     /* Update outer/inner flops */
714
715     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*415);
716 }
717 /*
718  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW4W4_F_c
719  * Electrostatics interaction: Ewald
720  * VdW interaction:            CubicSplineTable
721  * Geometry:                   Water4-Water4
722  * Calculate force/pot:        Force
723  */
724 void
725 nb_kernel_ElecEw_VdwCSTab_GeomW4W4_F_c
726                     (t_nblist                    * gmx_restrict       nlist,
727                      rvec                        * gmx_restrict          xx,
728                      rvec                        * gmx_restrict          ff,
729                      t_forcerec                  * gmx_restrict          fr,
730                      t_mdatoms                   * gmx_restrict     mdatoms,
731                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
732                      t_nrnb                      * gmx_restrict        nrnb)
733 {
734     int              i_shift_offset,i_coord_offset,j_coord_offset;
735     int              j_index_start,j_index_end;
736     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
737     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
738     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
739     real             *shiftvec,*fshift,*x,*f;
740     int              vdwioffset0;
741     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
742     int              vdwioffset1;
743     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
744     int              vdwioffset2;
745     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
746     int              vdwioffset3;
747     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
748     int              vdwjidx0;
749     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
750     int              vdwjidx1;
751     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
752     int              vdwjidx2;
753     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
754     int              vdwjidx3;
755     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
756     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
757     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
758     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
759     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
760     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
761     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
762     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
763     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
764     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
765     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
766     real             velec,felec,velecsum,facel,crf,krf,krf2;
767     real             *charge;
768     int              nvdwtype;
769     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
770     int              *vdwtype;
771     real             *vdwparam;
772     int              vfitab;
773     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
774     real             *vftab;
775     int              ewitab;
776     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
777     real             *ewtab;
778
779     x                = xx[0];
780     f                = ff[0];
781
782     nri              = nlist->nri;
783     iinr             = nlist->iinr;
784     jindex           = nlist->jindex;
785     jjnr             = nlist->jjnr;
786     shiftidx         = nlist->shift;
787     gid              = nlist->gid;
788     shiftvec         = fr->shift_vec[0];
789     fshift           = fr->fshift[0];
790     facel            = fr->epsfac;
791     charge           = mdatoms->chargeA;
792     nvdwtype         = fr->ntype;
793     vdwparam         = fr->nbfp;
794     vdwtype          = mdatoms->typeA;
795
796     vftab            = kernel_data->table_vdw->data;
797     vftabscale       = kernel_data->table_vdw->scale;
798
799     sh_ewald         = fr->ic->sh_ewald;
800     ewtab            = fr->ic->tabq_coul_F;
801     ewtabscale       = fr->ic->tabq_scale;
802     ewtabhalfspace   = 0.5/ewtabscale;
803
804     /* Setup water-specific parameters */
805     inr              = nlist->iinr[0];
806     iq1              = facel*charge[inr+1];
807     iq2              = facel*charge[inr+2];
808     iq3              = facel*charge[inr+3];
809     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
810
811     jq1              = charge[inr+1];
812     jq2              = charge[inr+2];
813     jq3              = charge[inr+3];
814     vdwjidx0         = 2*vdwtype[inr+0];
815     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
816     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
817     qq11             = iq1*jq1;
818     qq12             = iq1*jq2;
819     qq13             = iq1*jq3;
820     qq21             = iq2*jq1;
821     qq22             = iq2*jq2;
822     qq23             = iq2*jq3;
823     qq31             = iq3*jq1;
824     qq32             = iq3*jq2;
825     qq33             = iq3*jq3;
826
827     outeriter        = 0;
828     inneriter        = 0;
829
830     /* Start outer loop over neighborlists */
831     for(iidx=0; iidx<nri; iidx++)
832     {
833         /* Load shift vector for this list */
834         i_shift_offset   = DIM*shiftidx[iidx];
835         shX              = shiftvec[i_shift_offset+XX];
836         shY              = shiftvec[i_shift_offset+YY];
837         shZ              = shiftvec[i_shift_offset+ZZ];
838
839         /* Load limits for loop over neighbors */
840         j_index_start    = jindex[iidx];
841         j_index_end      = jindex[iidx+1];
842
843         /* Get outer coordinate index */
844         inr              = iinr[iidx];
845         i_coord_offset   = DIM*inr;
846
847         /* Load i particle coords and add shift vector */
848         ix0              = shX + x[i_coord_offset+DIM*0+XX];
849         iy0              = shY + x[i_coord_offset+DIM*0+YY];
850         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
851         ix1              = shX + x[i_coord_offset+DIM*1+XX];
852         iy1              = shY + x[i_coord_offset+DIM*1+YY];
853         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
854         ix2              = shX + x[i_coord_offset+DIM*2+XX];
855         iy2              = shY + x[i_coord_offset+DIM*2+YY];
856         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
857         ix3              = shX + x[i_coord_offset+DIM*3+XX];
858         iy3              = shY + x[i_coord_offset+DIM*3+YY];
859         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
860
861         fix0             = 0.0;
862         fiy0             = 0.0;
863         fiz0             = 0.0;
864         fix1             = 0.0;
865         fiy1             = 0.0;
866         fiz1             = 0.0;
867         fix2             = 0.0;
868         fiy2             = 0.0;
869         fiz2             = 0.0;
870         fix3             = 0.0;
871         fiy3             = 0.0;
872         fiz3             = 0.0;
873
874         /* Start inner kernel loop */
875         for(jidx=j_index_start; jidx<j_index_end; jidx++)
876         {
877             /* Get j neighbor index, and coordinate index */
878             jnr              = jjnr[jidx];
879             j_coord_offset   = DIM*jnr;
880
881             /* load j atom coordinates */
882             jx0              = x[j_coord_offset+DIM*0+XX];
883             jy0              = x[j_coord_offset+DIM*0+YY];
884             jz0              = x[j_coord_offset+DIM*0+ZZ];
885             jx1              = x[j_coord_offset+DIM*1+XX];
886             jy1              = x[j_coord_offset+DIM*1+YY];
887             jz1              = x[j_coord_offset+DIM*1+ZZ];
888             jx2              = x[j_coord_offset+DIM*2+XX];
889             jy2              = x[j_coord_offset+DIM*2+YY];
890             jz2              = x[j_coord_offset+DIM*2+ZZ];
891             jx3              = x[j_coord_offset+DIM*3+XX];
892             jy3              = x[j_coord_offset+DIM*3+YY];
893             jz3              = x[j_coord_offset+DIM*3+ZZ];
894
895             /* Calculate displacement vector */
896             dx00             = ix0 - jx0;
897             dy00             = iy0 - jy0;
898             dz00             = iz0 - jz0;
899             dx11             = ix1 - jx1;
900             dy11             = iy1 - jy1;
901             dz11             = iz1 - jz1;
902             dx12             = ix1 - jx2;
903             dy12             = iy1 - jy2;
904             dz12             = iz1 - jz2;
905             dx13             = ix1 - jx3;
906             dy13             = iy1 - jy3;
907             dz13             = iz1 - jz3;
908             dx21             = ix2 - jx1;
909             dy21             = iy2 - jy1;
910             dz21             = iz2 - jz1;
911             dx22             = ix2 - jx2;
912             dy22             = iy2 - jy2;
913             dz22             = iz2 - jz2;
914             dx23             = ix2 - jx3;
915             dy23             = iy2 - jy3;
916             dz23             = iz2 - jz3;
917             dx31             = ix3 - jx1;
918             dy31             = iy3 - jy1;
919             dz31             = iz3 - jz1;
920             dx32             = ix3 - jx2;
921             dy32             = iy3 - jy2;
922             dz32             = iz3 - jz2;
923             dx33             = ix3 - jx3;
924             dy33             = iy3 - jy3;
925             dz33             = iz3 - jz3;
926
927             /* Calculate squared distance and things based on it */
928             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
929             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
930             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
931             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
932             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
933             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
934             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
935             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
936             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
937             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
938
939             rinv00           = gmx_invsqrt(rsq00);
940             rinv11           = gmx_invsqrt(rsq11);
941             rinv12           = gmx_invsqrt(rsq12);
942             rinv13           = gmx_invsqrt(rsq13);
943             rinv21           = gmx_invsqrt(rsq21);
944             rinv22           = gmx_invsqrt(rsq22);
945             rinv23           = gmx_invsqrt(rsq23);
946             rinv31           = gmx_invsqrt(rsq31);
947             rinv32           = gmx_invsqrt(rsq32);
948             rinv33           = gmx_invsqrt(rsq33);
949
950             rinvsq11         = rinv11*rinv11;
951             rinvsq12         = rinv12*rinv12;
952             rinvsq13         = rinv13*rinv13;
953             rinvsq21         = rinv21*rinv21;
954             rinvsq22         = rinv22*rinv22;
955             rinvsq23         = rinv23*rinv23;
956             rinvsq31         = rinv31*rinv31;
957             rinvsq32         = rinv32*rinv32;
958             rinvsq33         = rinv33*rinv33;
959
960             /**************************
961              * CALCULATE INTERACTIONS *
962              **************************/
963
964             r00              = rsq00*rinv00;
965
966             /* Calculate table index by multiplying r with table scale and truncate to integer */
967             rt               = r00*vftabscale;
968             vfitab           = rt;
969             vfeps            = rt-vfitab;
970             vfitab           = 2*4*vfitab;
971
972             /* CUBIC SPLINE TABLE DISPERSION */
973             vfitab          += 0;
974             F                = vftab[vfitab+1];
975             Geps             = vfeps*vftab[vfitab+2];
976             Heps2            = vfeps*vfeps*vftab[vfitab+3];
977             Fp               = F+Geps+Heps2;
978             FF               = Fp+Geps+2.0*Heps2;
979             fvdw6            = c6_00*FF;
980
981             /* CUBIC SPLINE TABLE REPULSION */
982             F                = vftab[vfitab+5];
983             Geps             = vfeps*vftab[vfitab+6];
984             Heps2            = vfeps*vfeps*vftab[vfitab+7];
985             Fp               = F+Geps+Heps2;
986             FF               = Fp+Geps+2.0*Heps2;
987             fvdw12           = c12_00*FF;
988             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
989
990             fscal            = fvdw;
991
992             /* Calculate temporary vectorial force */
993             tx               = fscal*dx00;
994             ty               = fscal*dy00;
995             tz               = fscal*dz00;
996
997             /* Update vectorial force */
998             fix0            += tx;
999             fiy0            += ty;
1000             fiz0            += tz;
1001             f[j_coord_offset+DIM*0+XX] -= tx;
1002             f[j_coord_offset+DIM*0+YY] -= ty;
1003             f[j_coord_offset+DIM*0+ZZ] -= tz;
1004
1005             /**************************
1006              * CALCULATE INTERACTIONS *
1007              **************************/
1008
1009             r11              = rsq11*rinv11;
1010
1011             /* EWALD ELECTROSTATICS */
1012
1013             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1014             ewrt             = r11*ewtabscale;
1015             ewitab           = ewrt;
1016             eweps            = ewrt-ewitab;
1017             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1018             felec            = qq11*rinv11*(rinvsq11-felec);
1019
1020             fscal            = felec;
1021
1022             /* Calculate temporary vectorial force */
1023             tx               = fscal*dx11;
1024             ty               = fscal*dy11;
1025             tz               = fscal*dz11;
1026
1027             /* Update vectorial force */
1028             fix1            += tx;
1029             fiy1            += ty;
1030             fiz1            += tz;
1031             f[j_coord_offset+DIM*1+XX] -= tx;
1032             f[j_coord_offset+DIM*1+YY] -= ty;
1033             f[j_coord_offset+DIM*1+ZZ] -= tz;
1034
1035             /**************************
1036              * CALCULATE INTERACTIONS *
1037              **************************/
1038
1039             r12              = rsq12*rinv12;
1040
1041             /* EWALD ELECTROSTATICS */
1042
1043             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1044             ewrt             = r12*ewtabscale;
1045             ewitab           = ewrt;
1046             eweps            = ewrt-ewitab;
1047             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1048             felec            = qq12*rinv12*(rinvsq12-felec);
1049
1050             fscal            = felec;
1051
1052             /* Calculate temporary vectorial force */
1053             tx               = fscal*dx12;
1054             ty               = fscal*dy12;
1055             tz               = fscal*dz12;
1056
1057             /* Update vectorial force */
1058             fix1            += tx;
1059             fiy1            += ty;
1060             fiz1            += tz;
1061             f[j_coord_offset+DIM*2+XX] -= tx;
1062             f[j_coord_offset+DIM*2+YY] -= ty;
1063             f[j_coord_offset+DIM*2+ZZ] -= tz;
1064
1065             /**************************
1066              * CALCULATE INTERACTIONS *
1067              **************************/
1068
1069             r13              = rsq13*rinv13;
1070
1071             /* EWALD ELECTROSTATICS */
1072
1073             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1074             ewrt             = r13*ewtabscale;
1075             ewitab           = ewrt;
1076             eweps            = ewrt-ewitab;
1077             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1078             felec            = qq13*rinv13*(rinvsq13-felec);
1079
1080             fscal            = felec;
1081
1082             /* Calculate temporary vectorial force */
1083             tx               = fscal*dx13;
1084             ty               = fscal*dy13;
1085             tz               = fscal*dz13;
1086
1087             /* Update vectorial force */
1088             fix1            += tx;
1089             fiy1            += ty;
1090             fiz1            += tz;
1091             f[j_coord_offset+DIM*3+XX] -= tx;
1092             f[j_coord_offset+DIM*3+YY] -= ty;
1093             f[j_coord_offset+DIM*3+ZZ] -= tz;
1094
1095             /**************************
1096              * CALCULATE INTERACTIONS *
1097              **************************/
1098
1099             r21              = rsq21*rinv21;
1100
1101             /* EWALD ELECTROSTATICS */
1102
1103             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1104             ewrt             = r21*ewtabscale;
1105             ewitab           = ewrt;
1106             eweps            = ewrt-ewitab;
1107             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1108             felec            = qq21*rinv21*(rinvsq21-felec);
1109
1110             fscal            = felec;
1111
1112             /* Calculate temporary vectorial force */
1113             tx               = fscal*dx21;
1114             ty               = fscal*dy21;
1115             tz               = fscal*dz21;
1116
1117             /* Update vectorial force */
1118             fix2            += tx;
1119             fiy2            += ty;
1120             fiz2            += tz;
1121             f[j_coord_offset+DIM*1+XX] -= tx;
1122             f[j_coord_offset+DIM*1+YY] -= ty;
1123             f[j_coord_offset+DIM*1+ZZ] -= tz;
1124
1125             /**************************
1126              * CALCULATE INTERACTIONS *
1127              **************************/
1128
1129             r22              = rsq22*rinv22;
1130
1131             /* EWALD ELECTROSTATICS */
1132
1133             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1134             ewrt             = r22*ewtabscale;
1135             ewitab           = ewrt;
1136             eweps            = ewrt-ewitab;
1137             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1138             felec            = qq22*rinv22*(rinvsq22-felec);
1139
1140             fscal            = felec;
1141
1142             /* Calculate temporary vectorial force */
1143             tx               = fscal*dx22;
1144             ty               = fscal*dy22;
1145             tz               = fscal*dz22;
1146
1147             /* Update vectorial force */
1148             fix2            += tx;
1149             fiy2            += ty;
1150             fiz2            += tz;
1151             f[j_coord_offset+DIM*2+XX] -= tx;
1152             f[j_coord_offset+DIM*2+YY] -= ty;
1153             f[j_coord_offset+DIM*2+ZZ] -= tz;
1154
1155             /**************************
1156              * CALCULATE INTERACTIONS *
1157              **************************/
1158
1159             r23              = rsq23*rinv23;
1160
1161             /* EWALD ELECTROSTATICS */
1162
1163             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1164             ewrt             = r23*ewtabscale;
1165             ewitab           = ewrt;
1166             eweps            = ewrt-ewitab;
1167             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1168             felec            = qq23*rinv23*(rinvsq23-felec);
1169
1170             fscal            = felec;
1171
1172             /* Calculate temporary vectorial force */
1173             tx               = fscal*dx23;
1174             ty               = fscal*dy23;
1175             tz               = fscal*dz23;
1176
1177             /* Update vectorial force */
1178             fix2            += tx;
1179             fiy2            += ty;
1180             fiz2            += tz;
1181             f[j_coord_offset+DIM*3+XX] -= tx;
1182             f[j_coord_offset+DIM*3+YY] -= ty;
1183             f[j_coord_offset+DIM*3+ZZ] -= tz;
1184
1185             /**************************
1186              * CALCULATE INTERACTIONS *
1187              **************************/
1188
1189             r31              = rsq31*rinv31;
1190
1191             /* EWALD ELECTROSTATICS */
1192
1193             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1194             ewrt             = r31*ewtabscale;
1195             ewitab           = ewrt;
1196             eweps            = ewrt-ewitab;
1197             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1198             felec            = qq31*rinv31*(rinvsq31-felec);
1199
1200             fscal            = felec;
1201
1202             /* Calculate temporary vectorial force */
1203             tx               = fscal*dx31;
1204             ty               = fscal*dy31;
1205             tz               = fscal*dz31;
1206
1207             /* Update vectorial force */
1208             fix3            += tx;
1209             fiy3            += ty;
1210             fiz3            += tz;
1211             f[j_coord_offset+DIM*1+XX] -= tx;
1212             f[j_coord_offset+DIM*1+YY] -= ty;
1213             f[j_coord_offset+DIM*1+ZZ] -= tz;
1214
1215             /**************************
1216              * CALCULATE INTERACTIONS *
1217              **************************/
1218
1219             r32              = rsq32*rinv32;
1220
1221             /* EWALD ELECTROSTATICS */
1222
1223             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1224             ewrt             = r32*ewtabscale;
1225             ewitab           = ewrt;
1226             eweps            = ewrt-ewitab;
1227             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1228             felec            = qq32*rinv32*(rinvsq32-felec);
1229
1230             fscal            = felec;
1231
1232             /* Calculate temporary vectorial force */
1233             tx               = fscal*dx32;
1234             ty               = fscal*dy32;
1235             tz               = fscal*dz32;
1236
1237             /* Update vectorial force */
1238             fix3            += tx;
1239             fiy3            += ty;
1240             fiz3            += tz;
1241             f[j_coord_offset+DIM*2+XX] -= tx;
1242             f[j_coord_offset+DIM*2+YY] -= ty;
1243             f[j_coord_offset+DIM*2+ZZ] -= tz;
1244
1245             /**************************
1246              * CALCULATE INTERACTIONS *
1247              **************************/
1248
1249             r33              = rsq33*rinv33;
1250
1251             /* EWALD ELECTROSTATICS */
1252
1253             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1254             ewrt             = r33*ewtabscale;
1255             ewitab           = ewrt;
1256             eweps            = ewrt-ewitab;
1257             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1258             felec            = qq33*rinv33*(rinvsq33-felec);
1259
1260             fscal            = felec;
1261
1262             /* Calculate temporary vectorial force */
1263             tx               = fscal*dx33;
1264             ty               = fscal*dy33;
1265             tz               = fscal*dz33;
1266
1267             /* Update vectorial force */
1268             fix3            += tx;
1269             fiy3            += ty;
1270             fiz3            += tz;
1271             f[j_coord_offset+DIM*3+XX] -= tx;
1272             f[j_coord_offset+DIM*3+YY] -= ty;
1273             f[j_coord_offset+DIM*3+ZZ] -= tz;
1274
1275             /* Inner loop uses 344 flops */
1276         }
1277         /* End of innermost loop */
1278
1279         tx = ty = tz = 0;
1280         f[i_coord_offset+DIM*0+XX] += fix0;
1281         f[i_coord_offset+DIM*0+YY] += fiy0;
1282         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1283         tx                         += fix0;
1284         ty                         += fiy0;
1285         tz                         += fiz0;
1286         f[i_coord_offset+DIM*1+XX] += fix1;
1287         f[i_coord_offset+DIM*1+YY] += fiy1;
1288         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1289         tx                         += fix1;
1290         ty                         += fiy1;
1291         tz                         += fiz1;
1292         f[i_coord_offset+DIM*2+XX] += fix2;
1293         f[i_coord_offset+DIM*2+YY] += fiy2;
1294         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1295         tx                         += fix2;
1296         ty                         += fiy2;
1297         tz                         += fiz2;
1298         f[i_coord_offset+DIM*3+XX] += fix3;
1299         f[i_coord_offset+DIM*3+YY] += fiy3;
1300         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1301         tx                         += fix3;
1302         ty                         += fiy3;
1303         tz                         += fiz3;
1304         fshift[i_shift_offset+XX]  += tx;
1305         fshift[i_shift_offset+YY]  += ty;
1306         fshift[i_shift_offset+ZZ]  += tz;
1307
1308         /* Increment number of inner iterations */
1309         inneriter                  += j_index_end - j_index_start;
1310
1311         /* Outer loop uses 39 flops */
1312     }
1313
1314     /* Increment number of outer iterations */
1315     outeriter        += nri;
1316
1317     /* Update outer/inner flops */
1318
1319     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*344);
1320 }