9a57186cbaceda89535191b18467b80850e968db
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwCSTab_GeomW3P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_c
49  * Electrostatics interaction: Ewald
50  * VdW interaction:            CubicSplineTable
51  * Geometry:                   Water3-Particle
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwioffset1;
73     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     int              vdwioffset2;
75     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0;
77     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
79     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
80     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
81     real             velec,felec,velecsum,facel,crf,krf,krf2;
82     real             *charge;
83     int              nvdwtype;
84     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
85     int              *vdwtype;
86     real             *vdwparam;
87     int              vfitab;
88     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
89     real             *vftab;
90     int              ewitab;
91     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
92     real             *ewtab;
93
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = fr->epsfac;
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     vftab            = kernel_data->table_vdw->data;
112     vftabscale       = kernel_data->table_vdw->scale;
113
114     sh_ewald         = fr->ic->sh_ewald;
115     ewtab            = fr->ic->tabq_coul_FDV0;
116     ewtabscale       = fr->ic->tabq_scale;
117     ewtabhalfspace   = 0.5/ewtabscale;
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq0              = facel*charge[inr+0];
122     iq1              = facel*charge[inr+1];
123     iq2              = facel*charge[inr+2];
124     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
125
126     outeriter        = 0;
127     inneriter        = 0;
128
129     /* Start outer loop over neighborlists */
130     for(iidx=0; iidx<nri; iidx++)
131     {
132         /* Load shift vector for this list */
133         i_shift_offset   = DIM*shiftidx[iidx];
134         shX              = shiftvec[i_shift_offset+XX];
135         shY              = shiftvec[i_shift_offset+YY];
136         shZ              = shiftvec[i_shift_offset+ZZ];
137
138         /* Load limits for loop over neighbors */
139         j_index_start    = jindex[iidx];
140         j_index_end      = jindex[iidx+1];
141
142         /* Get outer coordinate index */
143         inr              = iinr[iidx];
144         i_coord_offset   = DIM*inr;
145
146         /* Load i particle coords and add shift vector */
147         ix0              = shX + x[i_coord_offset+DIM*0+XX];
148         iy0              = shY + x[i_coord_offset+DIM*0+YY];
149         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
150         ix1              = shX + x[i_coord_offset+DIM*1+XX];
151         iy1              = shY + x[i_coord_offset+DIM*1+YY];
152         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
153         ix2              = shX + x[i_coord_offset+DIM*2+XX];
154         iy2              = shY + x[i_coord_offset+DIM*2+YY];
155         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
156
157         fix0             = 0.0;
158         fiy0             = 0.0;
159         fiz0             = 0.0;
160         fix1             = 0.0;
161         fiy1             = 0.0;
162         fiz1             = 0.0;
163         fix2             = 0.0;
164         fiy2             = 0.0;
165         fiz2             = 0.0;
166
167         /* Reset potential sums */
168         velecsum         = 0.0;
169         vvdwsum          = 0.0;
170
171         /* Start inner kernel loop */
172         for(jidx=j_index_start; jidx<j_index_end; jidx++)
173         {
174             /* Get j neighbor index, and coordinate index */
175             jnr              = jjnr[jidx];
176             j_coord_offset   = DIM*jnr;
177
178             /* load j atom coordinates */
179             jx0              = x[j_coord_offset+DIM*0+XX];
180             jy0              = x[j_coord_offset+DIM*0+YY];
181             jz0              = x[j_coord_offset+DIM*0+ZZ];
182
183             /* Calculate displacement vector */
184             dx00             = ix0 - jx0;
185             dy00             = iy0 - jy0;
186             dz00             = iz0 - jz0;
187             dx10             = ix1 - jx0;
188             dy10             = iy1 - jy0;
189             dz10             = iz1 - jz0;
190             dx20             = ix2 - jx0;
191             dy20             = iy2 - jy0;
192             dz20             = iz2 - jz0;
193
194             /* Calculate squared distance and things based on it */
195             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
196             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
197             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
198
199             rinv00           = gmx_invsqrt(rsq00);
200             rinv10           = gmx_invsqrt(rsq10);
201             rinv20           = gmx_invsqrt(rsq20);
202
203             rinvsq00         = rinv00*rinv00;
204             rinvsq10         = rinv10*rinv10;
205             rinvsq20         = rinv20*rinv20;
206
207             /* Load parameters for j particles */
208             jq0              = charge[jnr+0];
209             vdwjidx0         = 2*vdwtype[jnr+0];
210
211             /**************************
212              * CALCULATE INTERACTIONS *
213              **************************/
214
215             r00              = rsq00*rinv00;
216
217             qq00             = iq0*jq0;
218             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
219             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
220
221             /* Calculate table index by multiplying r with table scale and truncate to integer */
222             rt               = r00*vftabscale;
223             vfitab           = rt;
224             vfeps            = rt-vfitab;
225             vfitab           = 2*4*vfitab;
226
227             /* EWALD ELECTROSTATICS */
228
229             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
230             ewrt             = r00*ewtabscale;
231             ewitab           = ewrt;
232             eweps            = ewrt-ewitab;
233             ewitab           = 4*ewitab;
234             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
235             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
236             felec            = qq00*rinv00*(rinvsq00-felec);
237
238             /* CUBIC SPLINE TABLE DISPERSION */
239             vfitab          += 0;
240             Y                = vftab[vfitab];
241             F                = vftab[vfitab+1];
242             Geps             = vfeps*vftab[vfitab+2];
243             Heps2            = vfeps*vfeps*vftab[vfitab+3];
244             Fp               = F+Geps+Heps2;
245             VV               = Y+vfeps*Fp;
246             vvdw6            = c6_00*VV;
247             FF               = Fp+Geps+2.0*Heps2;
248             fvdw6            = c6_00*FF;
249
250             /* CUBIC SPLINE TABLE REPULSION */
251             Y                = vftab[vfitab+4];
252             F                = vftab[vfitab+5];
253             Geps             = vfeps*vftab[vfitab+6];
254             Heps2            = vfeps*vfeps*vftab[vfitab+7];
255             Fp               = F+Geps+Heps2;
256             VV               = Y+vfeps*Fp;
257             vvdw12           = c12_00*VV;
258             FF               = Fp+Geps+2.0*Heps2;
259             fvdw12           = c12_00*FF;
260             vvdw             = vvdw12+vvdw6;
261             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
262
263             /* Update potential sums from outer loop */
264             velecsum        += velec;
265             vvdwsum         += vvdw;
266
267             fscal            = felec+fvdw;
268
269             /* Calculate temporary vectorial force */
270             tx               = fscal*dx00;
271             ty               = fscal*dy00;
272             tz               = fscal*dz00;
273
274             /* Update vectorial force */
275             fix0            += tx;
276             fiy0            += ty;
277             fiz0            += tz;
278             f[j_coord_offset+DIM*0+XX] -= tx;
279             f[j_coord_offset+DIM*0+YY] -= ty;
280             f[j_coord_offset+DIM*0+ZZ] -= tz;
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             r10              = rsq10*rinv10;
287
288             qq10             = iq1*jq0;
289
290             /* EWALD ELECTROSTATICS */
291
292             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
293             ewrt             = r10*ewtabscale;
294             ewitab           = ewrt;
295             eweps            = ewrt-ewitab;
296             ewitab           = 4*ewitab;
297             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
298             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
299             felec            = qq10*rinv10*(rinvsq10-felec);
300
301             /* Update potential sums from outer loop */
302             velecsum        += velec;
303
304             fscal            = felec;
305
306             /* Calculate temporary vectorial force */
307             tx               = fscal*dx10;
308             ty               = fscal*dy10;
309             tz               = fscal*dz10;
310
311             /* Update vectorial force */
312             fix1            += tx;
313             fiy1            += ty;
314             fiz1            += tz;
315             f[j_coord_offset+DIM*0+XX] -= tx;
316             f[j_coord_offset+DIM*0+YY] -= ty;
317             f[j_coord_offset+DIM*0+ZZ] -= tz;
318
319             /**************************
320              * CALCULATE INTERACTIONS *
321              **************************/
322
323             r20              = rsq20*rinv20;
324
325             qq20             = iq2*jq0;
326
327             /* EWALD ELECTROSTATICS */
328
329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
330             ewrt             = r20*ewtabscale;
331             ewitab           = ewrt;
332             eweps            = ewrt-ewitab;
333             ewitab           = 4*ewitab;
334             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
335             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
336             felec            = qq20*rinv20*(rinvsq20-felec);
337
338             /* Update potential sums from outer loop */
339             velecsum        += velec;
340
341             fscal            = felec;
342
343             /* Calculate temporary vectorial force */
344             tx               = fscal*dx20;
345             ty               = fscal*dy20;
346             tz               = fscal*dz20;
347
348             /* Update vectorial force */
349             fix2            += tx;
350             fiy2            += ty;
351             fiz2            += tz;
352             f[j_coord_offset+DIM*0+XX] -= tx;
353             f[j_coord_offset+DIM*0+YY] -= ty;
354             f[j_coord_offset+DIM*0+ZZ] -= tz;
355
356             /* Inner loop uses 156 flops */
357         }
358         /* End of innermost loop */
359
360         tx = ty = tz = 0;
361         f[i_coord_offset+DIM*0+XX] += fix0;
362         f[i_coord_offset+DIM*0+YY] += fiy0;
363         f[i_coord_offset+DIM*0+ZZ] += fiz0;
364         tx                         += fix0;
365         ty                         += fiy0;
366         tz                         += fiz0;
367         f[i_coord_offset+DIM*1+XX] += fix1;
368         f[i_coord_offset+DIM*1+YY] += fiy1;
369         f[i_coord_offset+DIM*1+ZZ] += fiz1;
370         tx                         += fix1;
371         ty                         += fiy1;
372         tz                         += fiz1;
373         f[i_coord_offset+DIM*2+XX] += fix2;
374         f[i_coord_offset+DIM*2+YY] += fiy2;
375         f[i_coord_offset+DIM*2+ZZ] += fiz2;
376         tx                         += fix2;
377         ty                         += fiy2;
378         tz                         += fiz2;
379         fshift[i_shift_offset+XX]  += tx;
380         fshift[i_shift_offset+YY]  += ty;
381         fshift[i_shift_offset+ZZ]  += tz;
382
383         ggid                        = gid[iidx];
384         /* Update potential energies */
385         kernel_data->energygrp_elec[ggid] += velecsum;
386         kernel_data->energygrp_vdw[ggid] += vvdwsum;
387
388         /* Increment number of inner iterations */
389         inneriter                  += j_index_end - j_index_start;
390
391         /* Outer loop uses 32 flops */
392     }
393
394     /* Increment number of outer iterations */
395     outeriter        += nri;
396
397     /* Update outer/inner flops */
398
399     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*156);
400 }
401 /*
402  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_c
403  * Electrostatics interaction: Ewald
404  * VdW interaction:            CubicSplineTable
405  * Geometry:                   Water3-Particle
406  * Calculate force/pot:        Force
407  */
408 void
409 nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_c
410                     (t_nblist                    * gmx_restrict       nlist,
411                      rvec                        * gmx_restrict          xx,
412                      rvec                        * gmx_restrict          ff,
413                      t_forcerec                  * gmx_restrict          fr,
414                      t_mdatoms                   * gmx_restrict     mdatoms,
415                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
416                      t_nrnb                      * gmx_restrict        nrnb)
417 {
418     int              i_shift_offset,i_coord_offset,j_coord_offset;
419     int              j_index_start,j_index_end;
420     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
421     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
422     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
423     real             *shiftvec,*fshift,*x,*f;
424     int              vdwioffset0;
425     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
426     int              vdwioffset1;
427     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
428     int              vdwioffset2;
429     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
430     int              vdwjidx0;
431     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
432     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
433     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
434     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
435     real             velec,felec,velecsum,facel,crf,krf,krf2;
436     real             *charge;
437     int              nvdwtype;
438     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
439     int              *vdwtype;
440     real             *vdwparam;
441     int              vfitab;
442     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
443     real             *vftab;
444     int              ewitab;
445     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
446     real             *ewtab;
447
448     x                = xx[0];
449     f                = ff[0];
450
451     nri              = nlist->nri;
452     iinr             = nlist->iinr;
453     jindex           = nlist->jindex;
454     jjnr             = nlist->jjnr;
455     shiftidx         = nlist->shift;
456     gid              = nlist->gid;
457     shiftvec         = fr->shift_vec[0];
458     fshift           = fr->fshift[0];
459     facel            = fr->epsfac;
460     charge           = mdatoms->chargeA;
461     nvdwtype         = fr->ntype;
462     vdwparam         = fr->nbfp;
463     vdwtype          = mdatoms->typeA;
464
465     vftab            = kernel_data->table_vdw->data;
466     vftabscale       = kernel_data->table_vdw->scale;
467
468     sh_ewald         = fr->ic->sh_ewald;
469     ewtab            = fr->ic->tabq_coul_F;
470     ewtabscale       = fr->ic->tabq_scale;
471     ewtabhalfspace   = 0.5/ewtabscale;
472
473     /* Setup water-specific parameters */
474     inr              = nlist->iinr[0];
475     iq0              = facel*charge[inr+0];
476     iq1              = facel*charge[inr+1];
477     iq2              = facel*charge[inr+2];
478     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
479
480     outeriter        = 0;
481     inneriter        = 0;
482
483     /* Start outer loop over neighborlists */
484     for(iidx=0; iidx<nri; iidx++)
485     {
486         /* Load shift vector for this list */
487         i_shift_offset   = DIM*shiftidx[iidx];
488         shX              = shiftvec[i_shift_offset+XX];
489         shY              = shiftvec[i_shift_offset+YY];
490         shZ              = shiftvec[i_shift_offset+ZZ];
491
492         /* Load limits for loop over neighbors */
493         j_index_start    = jindex[iidx];
494         j_index_end      = jindex[iidx+1];
495
496         /* Get outer coordinate index */
497         inr              = iinr[iidx];
498         i_coord_offset   = DIM*inr;
499
500         /* Load i particle coords and add shift vector */
501         ix0              = shX + x[i_coord_offset+DIM*0+XX];
502         iy0              = shY + x[i_coord_offset+DIM*0+YY];
503         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
504         ix1              = shX + x[i_coord_offset+DIM*1+XX];
505         iy1              = shY + x[i_coord_offset+DIM*1+YY];
506         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
507         ix2              = shX + x[i_coord_offset+DIM*2+XX];
508         iy2              = shY + x[i_coord_offset+DIM*2+YY];
509         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
510
511         fix0             = 0.0;
512         fiy0             = 0.0;
513         fiz0             = 0.0;
514         fix1             = 0.0;
515         fiy1             = 0.0;
516         fiz1             = 0.0;
517         fix2             = 0.0;
518         fiy2             = 0.0;
519         fiz2             = 0.0;
520
521         /* Start inner kernel loop */
522         for(jidx=j_index_start; jidx<j_index_end; jidx++)
523         {
524             /* Get j neighbor index, and coordinate index */
525             jnr              = jjnr[jidx];
526             j_coord_offset   = DIM*jnr;
527
528             /* load j atom coordinates */
529             jx0              = x[j_coord_offset+DIM*0+XX];
530             jy0              = x[j_coord_offset+DIM*0+YY];
531             jz0              = x[j_coord_offset+DIM*0+ZZ];
532
533             /* Calculate displacement vector */
534             dx00             = ix0 - jx0;
535             dy00             = iy0 - jy0;
536             dz00             = iz0 - jz0;
537             dx10             = ix1 - jx0;
538             dy10             = iy1 - jy0;
539             dz10             = iz1 - jz0;
540             dx20             = ix2 - jx0;
541             dy20             = iy2 - jy0;
542             dz20             = iz2 - jz0;
543
544             /* Calculate squared distance and things based on it */
545             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
546             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
547             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
548
549             rinv00           = gmx_invsqrt(rsq00);
550             rinv10           = gmx_invsqrt(rsq10);
551             rinv20           = gmx_invsqrt(rsq20);
552
553             rinvsq00         = rinv00*rinv00;
554             rinvsq10         = rinv10*rinv10;
555             rinvsq20         = rinv20*rinv20;
556
557             /* Load parameters for j particles */
558             jq0              = charge[jnr+0];
559             vdwjidx0         = 2*vdwtype[jnr+0];
560
561             /**************************
562              * CALCULATE INTERACTIONS *
563              **************************/
564
565             r00              = rsq00*rinv00;
566
567             qq00             = iq0*jq0;
568             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
569             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
570
571             /* Calculate table index by multiplying r with table scale and truncate to integer */
572             rt               = r00*vftabscale;
573             vfitab           = rt;
574             vfeps            = rt-vfitab;
575             vfitab           = 2*4*vfitab;
576
577             /* EWALD ELECTROSTATICS */
578
579             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
580             ewrt             = r00*ewtabscale;
581             ewitab           = ewrt;
582             eweps            = ewrt-ewitab;
583             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
584             felec            = qq00*rinv00*(rinvsq00-felec);
585
586             /* CUBIC SPLINE TABLE DISPERSION */
587             vfitab          += 0;
588             F                = vftab[vfitab+1];
589             Geps             = vfeps*vftab[vfitab+2];
590             Heps2            = vfeps*vfeps*vftab[vfitab+3];
591             Fp               = F+Geps+Heps2;
592             FF               = Fp+Geps+2.0*Heps2;
593             fvdw6            = c6_00*FF;
594
595             /* CUBIC SPLINE TABLE REPULSION */
596             F                = vftab[vfitab+5];
597             Geps             = vfeps*vftab[vfitab+6];
598             Heps2            = vfeps*vfeps*vftab[vfitab+7];
599             Fp               = F+Geps+Heps2;
600             FF               = Fp+Geps+2.0*Heps2;
601             fvdw12           = c12_00*FF;
602             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
603
604             fscal            = felec+fvdw;
605
606             /* Calculate temporary vectorial force */
607             tx               = fscal*dx00;
608             ty               = fscal*dy00;
609             tz               = fscal*dz00;
610
611             /* Update vectorial force */
612             fix0            += tx;
613             fiy0            += ty;
614             fiz0            += tz;
615             f[j_coord_offset+DIM*0+XX] -= tx;
616             f[j_coord_offset+DIM*0+YY] -= ty;
617             f[j_coord_offset+DIM*0+ZZ] -= tz;
618
619             /**************************
620              * CALCULATE INTERACTIONS *
621              **************************/
622
623             r10              = rsq10*rinv10;
624
625             qq10             = iq1*jq0;
626
627             /* EWALD ELECTROSTATICS */
628
629             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
630             ewrt             = r10*ewtabscale;
631             ewitab           = ewrt;
632             eweps            = ewrt-ewitab;
633             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
634             felec            = qq10*rinv10*(rinvsq10-felec);
635
636             fscal            = felec;
637
638             /* Calculate temporary vectorial force */
639             tx               = fscal*dx10;
640             ty               = fscal*dy10;
641             tz               = fscal*dz10;
642
643             /* Update vectorial force */
644             fix1            += tx;
645             fiy1            += ty;
646             fiz1            += tz;
647             f[j_coord_offset+DIM*0+XX] -= tx;
648             f[j_coord_offset+DIM*0+YY] -= ty;
649             f[j_coord_offset+DIM*0+ZZ] -= tz;
650
651             /**************************
652              * CALCULATE INTERACTIONS *
653              **************************/
654
655             r20              = rsq20*rinv20;
656
657             qq20             = iq2*jq0;
658
659             /* EWALD ELECTROSTATICS */
660
661             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
662             ewrt             = r20*ewtabscale;
663             ewitab           = ewrt;
664             eweps            = ewrt-ewitab;
665             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
666             felec            = qq20*rinv20*(rinvsq20-felec);
667
668             fscal            = felec;
669
670             /* Calculate temporary vectorial force */
671             tx               = fscal*dx20;
672             ty               = fscal*dy20;
673             tz               = fscal*dz20;
674
675             /* Update vectorial force */
676             fix2            += tx;
677             fiy2            += ty;
678             fiz2            += tz;
679             f[j_coord_offset+DIM*0+XX] -= tx;
680             f[j_coord_offset+DIM*0+YY] -= ty;
681             f[j_coord_offset+DIM*0+ZZ] -= tz;
682
683             /* Inner loop uses 127 flops */
684         }
685         /* End of innermost loop */
686
687         tx = ty = tz = 0;
688         f[i_coord_offset+DIM*0+XX] += fix0;
689         f[i_coord_offset+DIM*0+YY] += fiy0;
690         f[i_coord_offset+DIM*0+ZZ] += fiz0;
691         tx                         += fix0;
692         ty                         += fiy0;
693         tz                         += fiz0;
694         f[i_coord_offset+DIM*1+XX] += fix1;
695         f[i_coord_offset+DIM*1+YY] += fiy1;
696         f[i_coord_offset+DIM*1+ZZ] += fiz1;
697         tx                         += fix1;
698         ty                         += fiy1;
699         tz                         += fiz1;
700         f[i_coord_offset+DIM*2+XX] += fix2;
701         f[i_coord_offset+DIM*2+YY] += fiy2;
702         f[i_coord_offset+DIM*2+ZZ] += fiz2;
703         tx                         += fix2;
704         ty                         += fiy2;
705         tz                         += fiz2;
706         fshift[i_shift_offset+XX]  += tx;
707         fshift[i_shift_offset+YY]  += ty;
708         fshift[i_shift_offset+ZZ]  += tz;
709
710         /* Increment number of inner iterations */
711         inneriter                  += j_index_end - j_index_start;
712
713         /* Outer loop uses 30 flops */
714     }
715
716     /* Increment number of outer iterations */
717     outeriter        += nri;
718
719     /* Update outer/inner flops */
720
721     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*127);
722 }