Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEw_VdwBham_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwBham_GeomP1P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            Buckingham
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEw_VdwBham_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     int              ewitab;
84     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
85     real             *ewtab;
86
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = fr->epsfac;
99     charge           = mdatoms->chargeA;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     sh_ewald         = fr->ic->sh_ewald;
105     ewtab            = fr->ic->tabq_coul_FDV0;
106     ewtabscale       = fr->ic->tabq_scale;
107     ewtabhalfspace   = 0.5/ewtabscale;
108
109     outeriter        = 0;
110     inneriter        = 0;
111
112     /* Start outer loop over neighborlists */
113     for(iidx=0; iidx<nri; iidx++)
114     {
115         /* Load shift vector for this list */
116         i_shift_offset   = DIM*shiftidx[iidx];
117         shX              = shiftvec[i_shift_offset+XX];
118         shY              = shiftvec[i_shift_offset+YY];
119         shZ              = shiftvec[i_shift_offset+ZZ];
120
121         /* Load limits for loop over neighbors */
122         j_index_start    = jindex[iidx];
123         j_index_end      = jindex[iidx+1];
124
125         /* Get outer coordinate index */
126         inr              = iinr[iidx];
127         i_coord_offset   = DIM*inr;
128
129         /* Load i particle coords and add shift vector */
130         ix0              = shX + x[i_coord_offset+DIM*0+XX];
131         iy0              = shY + x[i_coord_offset+DIM*0+YY];
132         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
133
134         fix0             = 0.0;
135         fiy0             = 0.0;
136         fiz0             = 0.0;
137
138         /* Load parameters for i particles */
139         iq0              = facel*charge[inr+0];
140         vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
141
142         /* Reset potential sums */
143         velecsum         = 0.0;
144         vvdwsum          = 0.0;
145
146         /* Start inner kernel loop */
147         for(jidx=j_index_start; jidx<j_index_end; jidx++)
148         {
149             /* Get j neighbor index, and coordinate index */
150             jnr              = jjnr[jidx];
151             j_coord_offset   = DIM*jnr;
152
153             /* load j atom coordinates */
154             jx0              = x[j_coord_offset+DIM*0+XX];
155             jy0              = x[j_coord_offset+DIM*0+YY];
156             jz0              = x[j_coord_offset+DIM*0+ZZ];
157
158             /* Calculate displacement vector */
159             dx00             = ix0 - jx0;
160             dy00             = iy0 - jy0;
161             dz00             = iz0 - jz0;
162
163             /* Calculate squared distance and things based on it */
164             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
165
166             rinv00           = gmx_invsqrt(rsq00);
167
168             rinvsq00         = rinv00*rinv00;
169
170             /* Load parameters for j particles */
171             jq0              = charge[jnr+0];
172             vdwjidx0         = 3*vdwtype[jnr+0];
173
174             /**************************
175              * CALCULATE INTERACTIONS *
176              **************************/
177
178             r00              = rsq00*rinv00;
179
180             qq00             = iq0*jq0;
181             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
182             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
183             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
184
185             /* EWALD ELECTROSTATICS */
186
187             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
188             ewrt             = r00*ewtabscale;
189             ewitab           = ewrt;
190             eweps            = ewrt-ewitab;
191             ewitab           = 4*ewitab;
192             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
193             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
194             felec            = qq00*rinv00*(rinvsq00-felec);
195
196             /* BUCKINGHAM DISPERSION/REPULSION */
197             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
198             vvdw6            = c6_00*rinvsix;
199             br               = cexp2_00*r00;
200             vvdwexp          = cexp1_00*exp(-br);
201             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
202             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
203
204             /* Update potential sums from outer loop */
205             velecsum        += velec;
206             vvdwsum         += vvdw;
207
208             fscal            = felec+fvdw;
209
210             /* Calculate temporary vectorial force */
211             tx               = fscal*dx00;
212             ty               = fscal*dy00;
213             tz               = fscal*dz00;
214
215             /* Update vectorial force */
216             fix0            += tx;
217             fiy0            += ty;
218             fiz0            += tz;
219             f[j_coord_offset+DIM*0+XX] -= tx;
220             f[j_coord_offset+DIM*0+YY] -= ty;
221             f[j_coord_offset+DIM*0+ZZ] -= tz;
222
223             /* Inner loop uses 79 flops */
224         }
225         /* End of innermost loop */
226
227         tx = ty = tz = 0;
228         f[i_coord_offset+DIM*0+XX] += fix0;
229         f[i_coord_offset+DIM*0+YY] += fiy0;
230         f[i_coord_offset+DIM*0+ZZ] += fiz0;
231         tx                         += fix0;
232         ty                         += fiy0;
233         tz                         += fiz0;
234         fshift[i_shift_offset+XX]  += tx;
235         fshift[i_shift_offset+YY]  += ty;
236         fshift[i_shift_offset+ZZ]  += tz;
237
238         ggid                        = gid[iidx];
239         /* Update potential energies */
240         kernel_data->energygrp_elec[ggid] += velecsum;
241         kernel_data->energygrp_vdw[ggid] += vvdwsum;
242
243         /* Increment number of inner iterations */
244         inneriter                  += j_index_end - j_index_start;
245
246         /* Outer loop uses 15 flops */
247     }
248
249     /* Increment number of outer iterations */
250     outeriter        += nri;
251
252     /* Update outer/inner flops */
253
254     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*79);
255 }
256 /*
257  * Gromacs nonbonded kernel:   nb_kernel_ElecEw_VdwBham_GeomP1P1_F_c
258  * Electrostatics interaction: Ewald
259  * VdW interaction:            Buckingham
260  * Geometry:                   Particle-Particle
261  * Calculate force/pot:        Force
262  */
263 void
264 nb_kernel_ElecEw_VdwBham_GeomP1P1_F_c
265                     (t_nblist                    * gmx_restrict       nlist,
266                      rvec                        * gmx_restrict          xx,
267                      rvec                        * gmx_restrict          ff,
268                      t_forcerec                  * gmx_restrict          fr,
269                      t_mdatoms                   * gmx_restrict     mdatoms,
270                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
271                      t_nrnb                      * gmx_restrict        nrnb)
272 {
273     int              i_shift_offset,i_coord_offset,j_coord_offset;
274     int              j_index_start,j_index_end;
275     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
276     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
277     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
278     real             *shiftvec,*fshift,*x,*f;
279     int              vdwioffset0;
280     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
281     int              vdwjidx0;
282     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
283     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
284     real             velec,felec,velecsum,facel,crf,krf,krf2;
285     real             *charge;
286     int              nvdwtype;
287     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
288     int              *vdwtype;
289     real             *vdwparam;
290     int              ewitab;
291     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
292     real             *ewtab;
293
294     x                = xx[0];
295     f                = ff[0];
296
297     nri              = nlist->nri;
298     iinr             = nlist->iinr;
299     jindex           = nlist->jindex;
300     jjnr             = nlist->jjnr;
301     shiftidx         = nlist->shift;
302     gid              = nlist->gid;
303     shiftvec         = fr->shift_vec[0];
304     fshift           = fr->fshift[0];
305     facel            = fr->epsfac;
306     charge           = mdatoms->chargeA;
307     nvdwtype         = fr->ntype;
308     vdwparam         = fr->nbfp;
309     vdwtype          = mdatoms->typeA;
310
311     sh_ewald         = fr->ic->sh_ewald;
312     ewtab            = fr->ic->tabq_coul_F;
313     ewtabscale       = fr->ic->tabq_scale;
314     ewtabhalfspace   = 0.5/ewtabscale;
315
316     outeriter        = 0;
317     inneriter        = 0;
318
319     /* Start outer loop over neighborlists */
320     for(iidx=0; iidx<nri; iidx++)
321     {
322         /* Load shift vector for this list */
323         i_shift_offset   = DIM*shiftidx[iidx];
324         shX              = shiftvec[i_shift_offset+XX];
325         shY              = shiftvec[i_shift_offset+YY];
326         shZ              = shiftvec[i_shift_offset+ZZ];
327
328         /* Load limits for loop over neighbors */
329         j_index_start    = jindex[iidx];
330         j_index_end      = jindex[iidx+1];
331
332         /* Get outer coordinate index */
333         inr              = iinr[iidx];
334         i_coord_offset   = DIM*inr;
335
336         /* Load i particle coords and add shift vector */
337         ix0              = shX + x[i_coord_offset+DIM*0+XX];
338         iy0              = shY + x[i_coord_offset+DIM*0+YY];
339         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
340
341         fix0             = 0.0;
342         fiy0             = 0.0;
343         fiz0             = 0.0;
344
345         /* Load parameters for i particles */
346         iq0              = facel*charge[inr+0];
347         vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
348
349         /* Start inner kernel loop */
350         for(jidx=j_index_start; jidx<j_index_end; jidx++)
351         {
352             /* Get j neighbor index, and coordinate index */
353             jnr              = jjnr[jidx];
354             j_coord_offset   = DIM*jnr;
355
356             /* load j atom coordinates */
357             jx0              = x[j_coord_offset+DIM*0+XX];
358             jy0              = x[j_coord_offset+DIM*0+YY];
359             jz0              = x[j_coord_offset+DIM*0+ZZ];
360
361             /* Calculate displacement vector */
362             dx00             = ix0 - jx0;
363             dy00             = iy0 - jy0;
364             dz00             = iz0 - jz0;
365
366             /* Calculate squared distance and things based on it */
367             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
368
369             rinv00           = gmx_invsqrt(rsq00);
370
371             rinvsq00         = rinv00*rinv00;
372
373             /* Load parameters for j particles */
374             jq0              = charge[jnr+0];
375             vdwjidx0         = 3*vdwtype[jnr+0];
376
377             /**************************
378              * CALCULATE INTERACTIONS *
379              **************************/
380
381             r00              = rsq00*rinv00;
382
383             qq00             = iq0*jq0;
384             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
385             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
386             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
387
388             /* EWALD ELECTROSTATICS */
389
390             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391             ewrt             = r00*ewtabscale;
392             ewitab           = ewrt;
393             eweps            = ewrt-ewitab;
394             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
395             felec            = qq00*rinv00*(rinvsq00-felec);
396
397             /* BUCKINGHAM DISPERSION/REPULSION */
398             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
399             vvdw6            = c6_00*rinvsix;
400             br               = cexp2_00*r00;
401             vvdwexp          = cexp1_00*exp(-br);
402             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
403
404             fscal            = felec+fvdw;
405
406             /* Calculate temporary vectorial force */
407             tx               = fscal*dx00;
408             ty               = fscal*dy00;
409             tz               = fscal*dz00;
410
411             /* Update vectorial force */
412             fix0            += tx;
413             fiy0            += ty;
414             fiz0            += tz;
415             f[j_coord_offset+DIM*0+XX] -= tx;
416             f[j_coord_offset+DIM*0+YY] -= ty;
417             f[j_coord_offset+DIM*0+ZZ] -= tz;
418
419             /* Inner loop uses 69 flops */
420         }
421         /* End of innermost loop */
422
423         tx = ty = tz = 0;
424         f[i_coord_offset+DIM*0+XX] += fix0;
425         f[i_coord_offset+DIM*0+YY] += fiy0;
426         f[i_coord_offset+DIM*0+ZZ] += fiz0;
427         tx                         += fix0;
428         ty                         += fiy0;
429         tz                         += fiz0;
430         fshift[i_shift_offset+XX]  += tx;
431         fshift[i_shift_offset+YY]  += ty;
432         fshift[i_shift_offset+ZZ]  += tz;
433
434         /* Increment number of inner iterations */
435         inneriter                  += j_index_end - j_index_start;
436
437         /* Outer loop uses 13 flops */
438     }
439
440     /* Increment number of outer iterations */
441     outeriter        += nri;
442
443     /* Update outer/inner flops */
444
445     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*69);
446 }