Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwNone_GeomW4W4_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4W4_VF_c
49  * Electrostatics interaction: Ewald
50  * VdW interaction:            None
51  * Geometry:                   Water4-Water4
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecEwSw_VdwNone_GeomW4W4_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset1;
71     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
72     int              vdwioffset2;
73     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
74     int              vdwioffset3;
75     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
76     int              vdwjidx1;
77     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
78     int              vdwjidx2;
79     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
80     int              vdwjidx3;
81     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
82     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
83     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
84     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
85     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
86     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
87     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
88     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
89     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
90     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
91     real             velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              ewitab;
94     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
95     real             *ewtab;
96     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
97
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = fr->epsfac;
110     charge           = mdatoms->chargeA;
111
112     sh_ewald         = fr->ic->sh_ewald;
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = fr->ic->tabq_scale;
115     ewtabhalfspace   = 0.5/ewtabscale;
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq1              = facel*charge[inr+1];
120     iq2              = facel*charge[inr+2];
121     iq3              = facel*charge[inr+3];
122
123     jq1              = charge[inr+1];
124     jq2              = charge[inr+2];
125     jq3              = charge[inr+3];
126     qq11             = iq1*jq1;
127     qq12             = iq1*jq2;
128     qq13             = iq1*jq3;
129     qq21             = iq2*jq1;
130     qq22             = iq2*jq2;
131     qq23             = iq2*jq3;
132     qq31             = iq3*jq1;
133     qq32             = iq3*jq2;
134     qq33             = iq3*jq3;
135
136     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137     rcutoff          = fr->rcoulomb;
138     rcutoff2         = rcutoff*rcutoff;
139
140     rswitch          = fr->rcoulomb_switch;
141     /* Setup switch parameters */
142     d                = rcutoff-rswitch;
143     swV3             = -10.0/(d*d*d);
144     swV4             =  15.0/(d*d*d*d);
145     swV5             =  -6.0/(d*d*d*d*d);
146     swF2             = -30.0/(d*d*d);
147     swF3             =  60.0/(d*d*d*d);
148     swF4             = -30.0/(d*d*d*d*d);
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158         shX              = shiftvec[i_shift_offset+XX];
159         shY              = shiftvec[i_shift_offset+YY];
160         shZ              = shiftvec[i_shift_offset+ZZ];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         ix1              = shX + x[i_coord_offset+DIM*1+XX];
172         iy1              = shY + x[i_coord_offset+DIM*1+YY];
173         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
174         ix2              = shX + x[i_coord_offset+DIM*2+XX];
175         iy2              = shY + x[i_coord_offset+DIM*2+YY];
176         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
177         ix3              = shX + x[i_coord_offset+DIM*3+XX];
178         iy3              = shY + x[i_coord_offset+DIM*3+YY];
179         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
180
181         fix1             = 0.0;
182         fiy1             = 0.0;
183         fiz1             = 0.0;
184         fix2             = 0.0;
185         fiy2             = 0.0;
186         fiz2             = 0.0;
187         fix3             = 0.0;
188         fiy3             = 0.0;
189         fiz3             = 0.0;
190
191         /* Reset potential sums */
192         velecsum         = 0.0;
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end; jidx++)
196         {
197             /* Get j neighbor index, and coordinate index */
198             jnr              = jjnr[jidx];
199             j_coord_offset   = DIM*jnr;
200
201             /* load j atom coordinates */
202             jx1              = x[j_coord_offset+DIM*1+XX];
203             jy1              = x[j_coord_offset+DIM*1+YY];
204             jz1              = x[j_coord_offset+DIM*1+ZZ];
205             jx2              = x[j_coord_offset+DIM*2+XX];
206             jy2              = x[j_coord_offset+DIM*2+YY];
207             jz2              = x[j_coord_offset+DIM*2+ZZ];
208             jx3              = x[j_coord_offset+DIM*3+XX];
209             jy3              = x[j_coord_offset+DIM*3+YY];
210             jz3              = x[j_coord_offset+DIM*3+ZZ];
211
212             /* Calculate displacement vector */
213             dx11             = ix1 - jx1;
214             dy11             = iy1 - jy1;
215             dz11             = iz1 - jz1;
216             dx12             = ix1 - jx2;
217             dy12             = iy1 - jy2;
218             dz12             = iz1 - jz2;
219             dx13             = ix1 - jx3;
220             dy13             = iy1 - jy3;
221             dz13             = iz1 - jz3;
222             dx21             = ix2 - jx1;
223             dy21             = iy2 - jy1;
224             dz21             = iz2 - jz1;
225             dx22             = ix2 - jx2;
226             dy22             = iy2 - jy2;
227             dz22             = iz2 - jz2;
228             dx23             = ix2 - jx3;
229             dy23             = iy2 - jy3;
230             dz23             = iz2 - jz3;
231             dx31             = ix3 - jx1;
232             dy31             = iy3 - jy1;
233             dz31             = iz3 - jz1;
234             dx32             = ix3 - jx2;
235             dy32             = iy3 - jy2;
236             dz32             = iz3 - jz2;
237             dx33             = ix3 - jx3;
238             dy33             = iy3 - jy3;
239             dz33             = iz3 - jz3;
240
241             /* Calculate squared distance and things based on it */
242             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
243             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
244             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
245             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
246             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
247             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
248             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
249             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
250             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
251
252             rinv11           = gmx_invsqrt(rsq11);
253             rinv12           = gmx_invsqrt(rsq12);
254             rinv13           = gmx_invsqrt(rsq13);
255             rinv21           = gmx_invsqrt(rsq21);
256             rinv22           = gmx_invsqrt(rsq22);
257             rinv23           = gmx_invsqrt(rsq23);
258             rinv31           = gmx_invsqrt(rsq31);
259             rinv32           = gmx_invsqrt(rsq32);
260             rinv33           = gmx_invsqrt(rsq33);
261
262             rinvsq11         = rinv11*rinv11;
263             rinvsq12         = rinv12*rinv12;
264             rinvsq13         = rinv13*rinv13;
265             rinvsq21         = rinv21*rinv21;
266             rinvsq22         = rinv22*rinv22;
267             rinvsq23         = rinv23*rinv23;
268             rinvsq31         = rinv31*rinv31;
269             rinvsq32         = rinv32*rinv32;
270             rinvsq33         = rinv33*rinv33;
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             if (rsq11<rcutoff2)
277             {
278
279             r11              = rsq11*rinv11;
280
281             /* EWALD ELECTROSTATICS */
282
283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
284             ewrt             = r11*ewtabscale;
285             ewitab           = ewrt;
286             eweps            = ewrt-ewitab;
287             ewitab           = 4*ewitab;
288             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
289             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
290             felec            = qq11*rinv11*(rinvsq11-felec);
291
292             d                = r11-rswitch;
293             d                = (d>0.0) ? d : 0.0;
294             d2               = d*d;
295             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
296
297             dsw              = d2*(swF2+d*(swF3+d*swF4));
298
299             /* Evaluate switch function */
300             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
301             felec            = felec*sw - rinv11*velec*dsw;
302             velec           *= sw;
303
304             /* Update potential sums from outer loop */
305             velecsum        += velec;
306
307             fscal            = felec;
308
309             /* Calculate temporary vectorial force */
310             tx               = fscal*dx11;
311             ty               = fscal*dy11;
312             tz               = fscal*dz11;
313
314             /* Update vectorial force */
315             fix1            += tx;
316             fiy1            += ty;
317             fiz1            += tz;
318             f[j_coord_offset+DIM*1+XX] -= tx;
319             f[j_coord_offset+DIM*1+YY] -= ty;
320             f[j_coord_offset+DIM*1+ZZ] -= tz;
321
322             }
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             if (rsq12<rcutoff2)
329             {
330
331             r12              = rsq12*rinv12;
332
333             /* EWALD ELECTROSTATICS */
334
335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
336             ewrt             = r12*ewtabscale;
337             ewitab           = ewrt;
338             eweps            = ewrt-ewitab;
339             ewitab           = 4*ewitab;
340             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
341             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
342             felec            = qq12*rinv12*(rinvsq12-felec);
343
344             d                = r12-rswitch;
345             d                = (d>0.0) ? d : 0.0;
346             d2               = d*d;
347             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
348
349             dsw              = d2*(swF2+d*(swF3+d*swF4));
350
351             /* Evaluate switch function */
352             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
353             felec            = felec*sw - rinv12*velec*dsw;
354             velec           *= sw;
355
356             /* Update potential sums from outer loop */
357             velecsum        += velec;
358
359             fscal            = felec;
360
361             /* Calculate temporary vectorial force */
362             tx               = fscal*dx12;
363             ty               = fscal*dy12;
364             tz               = fscal*dz12;
365
366             /* Update vectorial force */
367             fix1            += tx;
368             fiy1            += ty;
369             fiz1            += tz;
370             f[j_coord_offset+DIM*2+XX] -= tx;
371             f[j_coord_offset+DIM*2+YY] -= ty;
372             f[j_coord_offset+DIM*2+ZZ] -= tz;
373
374             }
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             if (rsq13<rcutoff2)
381             {
382
383             r13              = rsq13*rinv13;
384
385             /* EWALD ELECTROSTATICS */
386
387             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
388             ewrt             = r13*ewtabscale;
389             ewitab           = ewrt;
390             eweps            = ewrt-ewitab;
391             ewitab           = 4*ewitab;
392             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
393             velec            = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
394             felec            = qq13*rinv13*(rinvsq13-felec);
395
396             d                = r13-rswitch;
397             d                = (d>0.0) ? d : 0.0;
398             d2               = d*d;
399             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
400
401             dsw              = d2*(swF2+d*(swF3+d*swF4));
402
403             /* Evaluate switch function */
404             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
405             felec            = felec*sw - rinv13*velec*dsw;
406             velec           *= sw;
407
408             /* Update potential sums from outer loop */
409             velecsum        += velec;
410
411             fscal            = felec;
412
413             /* Calculate temporary vectorial force */
414             tx               = fscal*dx13;
415             ty               = fscal*dy13;
416             tz               = fscal*dz13;
417
418             /* Update vectorial force */
419             fix1            += tx;
420             fiy1            += ty;
421             fiz1            += tz;
422             f[j_coord_offset+DIM*3+XX] -= tx;
423             f[j_coord_offset+DIM*3+YY] -= ty;
424             f[j_coord_offset+DIM*3+ZZ] -= tz;
425
426             }
427
428             /**************************
429              * CALCULATE INTERACTIONS *
430              **************************/
431
432             if (rsq21<rcutoff2)
433             {
434
435             r21              = rsq21*rinv21;
436
437             /* EWALD ELECTROSTATICS */
438
439             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
440             ewrt             = r21*ewtabscale;
441             ewitab           = ewrt;
442             eweps            = ewrt-ewitab;
443             ewitab           = 4*ewitab;
444             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
445             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
446             felec            = qq21*rinv21*(rinvsq21-felec);
447
448             d                = r21-rswitch;
449             d                = (d>0.0) ? d : 0.0;
450             d2               = d*d;
451             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
452
453             dsw              = d2*(swF2+d*(swF3+d*swF4));
454
455             /* Evaluate switch function */
456             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
457             felec            = felec*sw - rinv21*velec*dsw;
458             velec           *= sw;
459
460             /* Update potential sums from outer loop */
461             velecsum        += velec;
462
463             fscal            = felec;
464
465             /* Calculate temporary vectorial force */
466             tx               = fscal*dx21;
467             ty               = fscal*dy21;
468             tz               = fscal*dz21;
469
470             /* Update vectorial force */
471             fix2            += tx;
472             fiy2            += ty;
473             fiz2            += tz;
474             f[j_coord_offset+DIM*1+XX] -= tx;
475             f[j_coord_offset+DIM*1+YY] -= ty;
476             f[j_coord_offset+DIM*1+ZZ] -= tz;
477
478             }
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             if (rsq22<rcutoff2)
485             {
486
487             r22              = rsq22*rinv22;
488
489             /* EWALD ELECTROSTATICS */
490
491             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
492             ewrt             = r22*ewtabscale;
493             ewitab           = ewrt;
494             eweps            = ewrt-ewitab;
495             ewitab           = 4*ewitab;
496             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
497             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
498             felec            = qq22*rinv22*(rinvsq22-felec);
499
500             d                = r22-rswitch;
501             d                = (d>0.0) ? d : 0.0;
502             d2               = d*d;
503             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
504
505             dsw              = d2*(swF2+d*(swF3+d*swF4));
506
507             /* Evaluate switch function */
508             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
509             felec            = felec*sw - rinv22*velec*dsw;
510             velec           *= sw;
511
512             /* Update potential sums from outer loop */
513             velecsum        += velec;
514
515             fscal            = felec;
516
517             /* Calculate temporary vectorial force */
518             tx               = fscal*dx22;
519             ty               = fscal*dy22;
520             tz               = fscal*dz22;
521
522             /* Update vectorial force */
523             fix2            += tx;
524             fiy2            += ty;
525             fiz2            += tz;
526             f[j_coord_offset+DIM*2+XX] -= tx;
527             f[j_coord_offset+DIM*2+YY] -= ty;
528             f[j_coord_offset+DIM*2+ZZ] -= tz;
529
530             }
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             if (rsq23<rcutoff2)
537             {
538
539             r23              = rsq23*rinv23;
540
541             /* EWALD ELECTROSTATICS */
542
543             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
544             ewrt             = r23*ewtabscale;
545             ewitab           = ewrt;
546             eweps            = ewrt-ewitab;
547             ewitab           = 4*ewitab;
548             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
549             velec            = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
550             felec            = qq23*rinv23*(rinvsq23-felec);
551
552             d                = r23-rswitch;
553             d                = (d>0.0) ? d : 0.0;
554             d2               = d*d;
555             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
556
557             dsw              = d2*(swF2+d*(swF3+d*swF4));
558
559             /* Evaluate switch function */
560             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
561             felec            = felec*sw - rinv23*velec*dsw;
562             velec           *= sw;
563
564             /* Update potential sums from outer loop */
565             velecsum        += velec;
566
567             fscal            = felec;
568
569             /* Calculate temporary vectorial force */
570             tx               = fscal*dx23;
571             ty               = fscal*dy23;
572             tz               = fscal*dz23;
573
574             /* Update vectorial force */
575             fix2            += tx;
576             fiy2            += ty;
577             fiz2            += tz;
578             f[j_coord_offset+DIM*3+XX] -= tx;
579             f[j_coord_offset+DIM*3+YY] -= ty;
580             f[j_coord_offset+DIM*3+ZZ] -= tz;
581
582             }
583
584             /**************************
585              * CALCULATE INTERACTIONS *
586              **************************/
587
588             if (rsq31<rcutoff2)
589             {
590
591             r31              = rsq31*rinv31;
592
593             /* EWALD ELECTROSTATICS */
594
595             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
596             ewrt             = r31*ewtabscale;
597             ewitab           = ewrt;
598             eweps            = ewrt-ewitab;
599             ewitab           = 4*ewitab;
600             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
601             velec            = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
602             felec            = qq31*rinv31*(rinvsq31-felec);
603
604             d                = r31-rswitch;
605             d                = (d>0.0) ? d : 0.0;
606             d2               = d*d;
607             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
608
609             dsw              = d2*(swF2+d*(swF3+d*swF4));
610
611             /* Evaluate switch function */
612             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
613             felec            = felec*sw - rinv31*velec*dsw;
614             velec           *= sw;
615
616             /* Update potential sums from outer loop */
617             velecsum        += velec;
618
619             fscal            = felec;
620
621             /* Calculate temporary vectorial force */
622             tx               = fscal*dx31;
623             ty               = fscal*dy31;
624             tz               = fscal*dz31;
625
626             /* Update vectorial force */
627             fix3            += tx;
628             fiy3            += ty;
629             fiz3            += tz;
630             f[j_coord_offset+DIM*1+XX] -= tx;
631             f[j_coord_offset+DIM*1+YY] -= ty;
632             f[j_coord_offset+DIM*1+ZZ] -= tz;
633
634             }
635
636             /**************************
637              * CALCULATE INTERACTIONS *
638              **************************/
639
640             if (rsq32<rcutoff2)
641             {
642
643             r32              = rsq32*rinv32;
644
645             /* EWALD ELECTROSTATICS */
646
647             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
648             ewrt             = r32*ewtabscale;
649             ewitab           = ewrt;
650             eweps            = ewrt-ewitab;
651             ewitab           = 4*ewitab;
652             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
653             velec            = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
654             felec            = qq32*rinv32*(rinvsq32-felec);
655
656             d                = r32-rswitch;
657             d                = (d>0.0) ? d : 0.0;
658             d2               = d*d;
659             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
660
661             dsw              = d2*(swF2+d*(swF3+d*swF4));
662
663             /* Evaluate switch function */
664             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
665             felec            = felec*sw - rinv32*velec*dsw;
666             velec           *= sw;
667
668             /* Update potential sums from outer loop */
669             velecsum        += velec;
670
671             fscal            = felec;
672
673             /* Calculate temporary vectorial force */
674             tx               = fscal*dx32;
675             ty               = fscal*dy32;
676             tz               = fscal*dz32;
677
678             /* Update vectorial force */
679             fix3            += tx;
680             fiy3            += ty;
681             fiz3            += tz;
682             f[j_coord_offset+DIM*2+XX] -= tx;
683             f[j_coord_offset+DIM*2+YY] -= ty;
684             f[j_coord_offset+DIM*2+ZZ] -= tz;
685
686             }
687
688             /**************************
689              * CALCULATE INTERACTIONS *
690              **************************/
691
692             if (rsq33<rcutoff2)
693             {
694
695             r33              = rsq33*rinv33;
696
697             /* EWALD ELECTROSTATICS */
698
699             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
700             ewrt             = r33*ewtabscale;
701             ewitab           = ewrt;
702             eweps            = ewrt-ewitab;
703             ewitab           = 4*ewitab;
704             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
705             velec            = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
706             felec            = qq33*rinv33*(rinvsq33-felec);
707
708             d                = r33-rswitch;
709             d                = (d>0.0) ? d : 0.0;
710             d2               = d*d;
711             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
712
713             dsw              = d2*(swF2+d*(swF3+d*swF4));
714
715             /* Evaluate switch function */
716             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
717             felec            = felec*sw - rinv33*velec*dsw;
718             velec           *= sw;
719
720             /* Update potential sums from outer loop */
721             velecsum        += velec;
722
723             fscal            = felec;
724
725             /* Calculate temporary vectorial force */
726             tx               = fscal*dx33;
727             ty               = fscal*dy33;
728             tz               = fscal*dz33;
729
730             /* Update vectorial force */
731             fix3            += tx;
732             fiy3            += ty;
733             fiz3            += tz;
734             f[j_coord_offset+DIM*3+XX] -= tx;
735             f[j_coord_offset+DIM*3+YY] -= ty;
736             f[j_coord_offset+DIM*3+ZZ] -= tz;
737
738             }
739
740             /* Inner loop uses 522 flops */
741         }
742         /* End of innermost loop */
743
744         tx = ty = tz = 0;
745         f[i_coord_offset+DIM*1+XX] += fix1;
746         f[i_coord_offset+DIM*1+YY] += fiy1;
747         f[i_coord_offset+DIM*1+ZZ] += fiz1;
748         tx                         += fix1;
749         ty                         += fiy1;
750         tz                         += fiz1;
751         f[i_coord_offset+DIM*2+XX] += fix2;
752         f[i_coord_offset+DIM*2+YY] += fiy2;
753         f[i_coord_offset+DIM*2+ZZ] += fiz2;
754         tx                         += fix2;
755         ty                         += fiy2;
756         tz                         += fiz2;
757         f[i_coord_offset+DIM*3+XX] += fix3;
758         f[i_coord_offset+DIM*3+YY] += fiy3;
759         f[i_coord_offset+DIM*3+ZZ] += fiz3;
760         tx                         += fix3;
761         ty                         += fiy3;
762         tz                         += fiz3;
763         fshift[i_shift_offset+XX]  += tx;
764         fshift[i_shift_offset+YY]  += ty;
765         fshift[i_shift_offset+ZZ]  += tz;
766
767         ggid                        = gid[iidx];
768         /* Update potential energies */
769         kernel_data->energygrp_elec[ggid] += velecsum;
770
771         /* Increment number of inner iterations */
772         inneriter                  += j_index_end - j_index_start;
773
774         /* Outer loop uses 31 flops */
775     }
776
777     /* Increment number of outer iterations */
778     outeriter        += nri;
779
780     /* Update outer/inner flops */
781
782     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_VF,outeriter*31 + inneriter*522);
783 }
784 /*
785  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW4W4_F_c
786  * Electrostatics interaction: Ewald
787  * VdW interaction:            None
788  * Geometry:                   Water4-Water4
789  * Calculate force/pot:        Force
790  */
791 void
792 nb_kernel_ElecEwSw_VdwNone_GeomW4W4_F_c
793                     (t_nblist                    * gmx_restrict       nlist,
794                      rvec                        * gmx_restrict          xx,
795                      rvec                        * gmx_restrict          ff,
796                      t_forcerec                  * gmx_restrict          fr,
797                      t_mdatoms                   * gmx_restrict     mdatoms,
798                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
799                      t_nrnb                      * gmx_restrict        nrnb)
800 {
801     int              i_shift_offset,i_coord_offset,j_coord_offset;
802     int              j_index_start,j_index_end;
803     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
804     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
805     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
806     real             *shiftvec,*fshift,*x,*f;
807     int              vdwioffset1;
808     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
809     int              vdwioffset2;
810     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
811     int              vdwioffset3;
812     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
813     int              vdwjidx1;
814     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
815     int              vdwjidx2;
816     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
817     int              vdwjidx3;
818     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
819     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
820     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
821     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
822     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
823     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
824     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
825     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
826     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
827     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
828     real             velec,felec,velecsum,facel,crf,krf,krf2;
829     real             *charge;
830     int              ewitab;
831     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
832     real             *ewtab;
833     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
834
835     x                = xx[0];
836     f                = ff[0];
837
838     nri              = nlist->nri;
839     iinr             = nlist->iinr;
840     jindex           = nlist->jindex;
841     jjnr             = nlist->jjnr;
842     shiftidx         = nlist->shift;
843     gid              = nlist->gid;
844     shiftvec         = fr->shift_vec[0];
845     fshift           = fr->fshift[0];
846     facel            = fr->epsfac;
847     charge           = mdatoms->chargeA;
848
849     sh_ewald         = fr->ic->sh_ewald;
850     ewtab            = fr->ic->tabq_coul_FDV0;
851     ewtabscale       = fr->ic->tabq_scale;
852     ewtabhalfspace   = 0.5/ewtabscale;
853
854     /* Setup water-specific parameters */
855     inr              = nlist->iinr[0];
856     iq1              = facel*charge[inr+1];
857     iq2              = facel*charge[inr+2];
858     iq3              = facel*charge[inr+3];
859
860     jq1              = charge[inr+1];
861     jq2              = charge[inr+2];
862     jq3              = charge[inr+3];
863     qq11             = iq1*jq1;
864     qq12             = iq1*jq2;
865     qq13             = iq1*jq3;
866     qq21             = iq2*jq1;
867     qq22             = iq2*jq2;
868     qq23             = iq2*jq3;
869     qq31             = iq3*jq1;
870     qq32             = iq3*jq2;
871     qq33             = iq3*jq3;
872
873     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
874     rcutoff          = fr->rcoulomb;
875     rcutoff2         = rcutoff*rcutoff;
876
877     rswitch          = fr->rcoulomb_switch;
878     /* Setup switch parameters */
879     d                = rcutoff-rswitch;
880     swV3             = -10.0/(d*d*d);
881     swV4             =  15.0/(d*d*d*d);
882     swV5             =  -6.0/(d*d*d*d*d);
883     swF2             = -30.0/(d*d*d);
884     swF3             =  60.0/(d*d*d*d);
885     swF4             = -30.0/(d*d*d*d*d);
886
887     outeriter        = 0;
888     inneriter        = 0;
889
890     /* Start outer loop over neighborlists */
891     for(iidx=0; iidx<nri; iidx++)
892     {
893         /* Load shift vector for this list */
894         i_shift_offset   = DIM*shiftidx[iidx];
895         shX              = shiftvec[i_shift_offset+XX];
896         shY              = shiftvec[i_shift_offset+YY];
897         shZ              = shiftvec[i_shift_offset+ZZ];
898
899         /* Load limits for loop over neighbors */
900         j_index_start    = jindex[iidx];
901         j_index_end      = jindex[iidx+1];
902
903         /* Get outer coordinate index */
904         inr              = iinr[iidx];
905         i_coord_offset   = DIM*inr;
906
907         /* Load i particle coords and add shift vector */
908         ix1              = shX + x[i_coord_offset+DIM*1+XX];
909         iy1              = shY + x[i_coord_offset+DIM*1+YY];
910         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
911         ix2              = shX + x[i_coord_offset+DIM*2+XX];
912         iy2              = shY + x[i_coord_offset+DIM*2+YY];
913         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
914         ix3              = shX + x[i_coord_offset+DIM*3+XX];
915         iy3              = shY + x[i_coord_offset+DIM*3+YY];
916         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
917
918         fix1             = 0.0;
919         fiy1             = 0.0;
920         fiz1             = 0.0;
921         fix2             = 0.0;
922         fiy2             = 0.0;
923         fiz2             = 0.0;
924         fix3             = 0.0;
925         fiy3             = 0.0;
926         fiz3             = 0.0;
927
928         /* Start inner kernel loop */
929         for(jidx=j_index_start; jidx<j_index_end; jidx++)
930         {
931             /* Get j neighbor index, and coordinate index */
932             jnr              = jjnr[jidx];
933             j_coord_offset   = DIM*jnr;
934
935             /* load j atom coordinates */
936             jx1              = x[j_coord_offset+DIM*1+XX];
937             jy1              = x[j_coord_offset+DIM*1+YY];
938             jz1              = x[j_coord_offset+DIM*1+ZZ];
939             jx2              = x[j_coord_offset+DIM*2+XX];
940             jy2              = x[j_coord_offset+DIM*2+YY];
941             jz2              = x[j_coord_offset+DIM*2+ZZ];
942             jx3              = x[j_coord_offset+DIM*3+XX];
943             jy3              = x[j_coord_offset+DIM*3+YY];
944             jz3              = x[j_coord_offset+DIM*3+ZZ];
945
946             /* Calculate displacement vector */
947             dx11             = ix1 - jx1;
948             dy11             = iy1 - jy1;
949             dz11             = iz1 - jz1;
950             dx12             = ix1 - jx2;
951             dy12             = iy1 - jy2;
952             dz12             = iz1 - jz2;
953             dx13             = ix1 - jx3;
954             dy13             = iy1 - jy3;
955             dz13             = iz1 - jz3;
956             dx21             = ix2 - jx1;
957             dy21             = iy2 - jy1;
958             dz21             = iz2 - jz1;
959             dx22             = ix2 - jx2;
960             dy22             = iy2 - jy2;
961             dz22             = iz2 - jz2;
962             dx23             = ix2 - jx3;
963             dy23             = iy2 - jy3;
964             dz23             = iz2 - jz3;
965             dx31             = ix3 - jx1;
966             dy31             = iy3 - jy1;
967             dz31             = iz3 - jz1;
968             dx32             = ix3 - jx2;
969             dy32             = iy3 - jy2;
970             dz32             = iz3 - jz2;
971             dx33             = ix3 - jx3;
972             dy33             = iy3 - jy3;
973             dz33             = iz3 - jz3;
974
975             /* Calculate squared distance and things based on it */
976             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
977             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
978             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
979             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
980             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
981             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
982             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
983             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
984             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
985
986             rinv11           = gmx_invsqrt(rsq11);
987             rinv12           = gmx_invsqrt(rsq12);
988             rinv13           = gmx_invsqrt(rsq13);
989             rinv21           = gmx_invsqrt(rsq21);
990             rinv22           = gmx_invsqrt(rsq22);
991             rinv23           = gmx_invsqrt(rsq23);
992             rinv31           = gmx_invsqrt(rsq31);
993             rinv32           = gmx_invsqrt(rsq32);
994             rinv33           = gmx_invsqrt(rsq33);
995
996             rinvsq11         = rinv11*rinv11;
997             rinvsq12         = rinv12*rinv12;
998             rinvsq13         = rinv13*rinv13;
999             rinvsq21         = rinv21*rinv21;
1000             rinvsq22         = rinv22*rinv22;
1001             rinvsq23         = rinv23*rinv23;
1002             rinvsq31         = rinv31*rinv31;
1003             rinvsq32         = rinv32*rinv32;
1004             rinvsq33         = rinv33*rinv33;
1005
1006             /**************************
1007              * CALCULATE INTERACTIONS *
1008              **************************/
1009
1010             if (rsq11<rcutoff2)
1011             {
1012
1013             r11              = rsq11*rinv11;
1014
1015             /* EWALD ELECTROSTATICS */
1016
1017             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1018             ewrt             = r11*ewtabscale;
1019             ewitab           = ewrt;
1020             eweps            = ewrt-ewitab;
1021             ewitab           = 4*ewitab;
1022             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1023             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1024             felec            = qq11*rinv11*(rinvsq11-felec);
1025
1026             d                = r11-rswitch;
1027             d                = (d>0.0) ? d : 0.0;
1028             d2               = d*d;
1029             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1030
1031             dsw              = d2*(swF2+d*(swF3+d*swF4));
1032
1033             /* Evaluate switch function */
1034             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1035             felec            = felec*sw - rinv11*velec*dsw;
1036
1037             fscal            = felec;
1038
1039             /* Calculate temporary vectorial force */
1040             tx               = fscal*dx11;
1041             ty               = fscal*dy11;
1042             tz               = fscal*dz11;
1043
1044             /* Update vectorial force */
1045             fix1            += tx;
1046             fiy1            += ty;
1047             fiz1            += tz;
1048             f[j_coord_offset+DIM*1+XX] -= tx;
1049             f[j_coord_offset+DIM*1+YY] -= ty;
1050             f[j_coord_offset+DIM*1+ZZ] -= tz;
1051
1052             }
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             if (rsq12<rcutoff2)
1059             {
1060
1061             r12              = rsq12*rinv12;
1062
1063             /* EWALD ELECTROSTATICS */
1064
1065             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1066             ewrt             = r12*ewtabscale;
1067             ewitab           = ewrt;
1068             eweps            = ewrt-ewitab;
1069             ewitab           = 4*ewitab;
1070             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1071             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1072             felec            = qq12*rinv12*(rinvsq12-felec);
1073
1074             d                = r12-rswitch;
1075             d                = (d>0.0) ? d : 0.0;
1076             d2               = d*d;
1077             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1078
1079             dsw              = d2*(swF2+d*(swF3+d*swF4));
1080
1081             /* Evaluate switch function */
1082             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1083             felec            = felec*sw - rinv12*velec*dsw;
1084
1085             fscal            = felec;
1086
1087             /* Calculate temporary vectorial force */
1088             tx               = fscal*dx12;
1089             ty               = fscal*dy12;
1090             tz               = fscal*dz12;
1091
1092             /* Update vectorial force */
1093             fix1            += tx;
1094             fiy1            += ty;
1095             fiz1            += tz;
1096             f[j_coord_offset+DIM*2+XX] -= tx;
1097             f[j_coord_offset+DIM*2+YY] -= ty;
1098             f[j_coord_offset+DIM*2+ZZ] -= tz;
1099
1100             }
1101
1102             /**************************
1103              * CALCULATE INTERACTIONS *
1104              **************************/
1105
1106             if (rsq13<rcutoff2)
1107             {
1108
1109             r13              = rsq13*rinv13;
1110
1111             /* EWALD ELECTROSTATICS */
1112
1113             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1114             ewrt             = r13*ewtabscale;
1115             ewitab           = ewrt;
1116             eweps            = ewrt-ewitab;
1117             ewitab           = 4*ewitab;
1118             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1119             velec            = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1120             felec            = qq13*rinv13*(rinvsq13-felec);
1121
1122             d                = r13-rswitch;
1123             d                = (d>0.0) ? d : 0.0;
1124             d2               = d*d;
1125             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1126
1127             dsw              = d2*(swF2+d*(swF3+d*swF4));
1128
1129             /* Evaluate switch function */
1130             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1131             felec            = felec*sw - rinv13*velec*dsw;
1132
1133             fscal            = felec;
1134
1135             /* Calculate temporary vectorial force */
1136             tx               = fscal*dx13;
1137             ty               = fscal*dy13;
1138             tz               = fscal*dz13;
1139
1140             /* Update vectorial force */
1141             fix1            += tx;
1142             fiy1            += ty;
1143             fiz1            += tz;
1144             f[j_coord_offset+DIM*3+XX] -= tx;
1145             f[j_coord_offset+DIM*3+YY] -= ty;
1146             f[j_coord_offset+DIM*3+ZZ] -= tz;
1147
1148             }
1149
1150             /**************************
1151              * CALCULATE INTERACTIONS *
1152              **************************/
1153
1154             if (rsq21<rcutoff2)
1155             {
1156
1157             r21              = rsq21*rinv21;
1158
1159             /* EWALD ELECTROSTATICS */
1160
1161             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1162             ewrt             = r21*ewtabscale;
1163             ewitab           = ewrt;
1164             eweps            = ewrt-ewitab;
1165             ewitab           = 4*ewitab;
1166             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1167             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1168             felec            = qq21*rinv21*(rinvsq21-felec);
1169
1170             d                = r21-rswitch;
1171             d                = (d>0.0) ? d : 0.0;
1172             d2               = d*d;
1173             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1174
1175             dsw              = d2*(swF2+d*(swF3+d*swF4));
1176
1177             /* Evaluate switch function */
1178             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1179             felec            = felec*sw - rinv21*velec*dsw;
1180
1181             fscal            = felec;
1182
1183             /* Calculate temporary vectorial force */
1184             tx               = fscal*dx21;
1185             ty               = fscal*dy21;
1186             tz               = fscal*dz21;
1187
1188             /* Update vectorial force */
1189             fix2            += tx;
1190             fiy2            += ty;
1191             fiz2            += tz;
1192             f[j_coord_offset+DIM*1+XX] -= tx;
1193             f[j_coord_offset+DIM*1+YY] -= ty;
1194             f[j_coord_offset+DIM*1+ZZ] -= tz;
1195
1196             }
1197
1198             /**************************
1199              * CALCULATE INTERACTIONS *
1200              **************************/
1201
1202             if (rsq22<rcutoff2)
1203             {
1204
1205             r22              = rsq22*rinv22;
1206
1207             /* EWALD ELECTROSTATICS */
1208
1209             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1210             ewrt             = r22*ewtabscale;
1211             ewitab           = ewrt;
1212             eweps            = ewrt-ewitab;
1213             ewitab           = 4*ewitab;
1214             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1215             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1216             felec            = qq22*rinv22*(rinvsq22-felec);
1217
1218             d                = r22-rswitch;
1219             d                = (d>0.0) ? d : 0.0;
1220             d2               = d*d;
1221             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1222
1223             dsw              = d2*(swF2+d*(swF3+d*swF4));
1224
1225             /* Evaluate switch function */
1226             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1227             felec            = felec*sw - rinv22*velec*dsw;
1228
1229             fscal            = felec;
1230
1231             /* Calculate temporary vectorial force */
1232             tx               = fscal*dx22;
1233             ty               = fscal*dy22;
1234             tz               = fscal*dz22;
1235
1236             /* Update vectorial force */
1237             fix2            += tx;
1238             fiy2            += ty;
1239             fiz2            += tz;
1240             f[j_coord_offset+DIM*2+XX] -= tx;
1241             f[j_coord_offset+DIM*2+YY] -= ty;
1242             f[j_coord_offset+DIM*2+ZZ] -= tz;
1243
1244             }
1245
1246             /**************************
1247              * CALCULATE INTERACTIONS *
1248              **************************/
1249
1250             if (rsq23<rcutoff2)
1251             {
1252
1253             r23              = rsq23*rinv23;
1254
1255             /* EWALD ELECTROSTATICS */
1256
1257             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1258             ewrt             = r23*ewtabscale;
1259             ewitab           = ewrt;
1260             eweps            = ewrt-ewitab;
1261             ewitab           = 4*ewitab;
1262             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1263             velec            = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1264             felec            = qq23*rinv23*(rinvsq23-felec);
1265
1266             d                = r23-rswitch;
1267             d                = (d>0.0) ? d : 0.0;
1268             d2               = d*d;
1269             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1270
1271             dsw              = d2*(swF2+d*(swF3+d*swF4));
1272
1273             /* Evaluate switch function */
1274             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1275             felec            = felec*sw - rinv23*velec*dsw;
1276
1277             fscal            = felec;
1278
1279             /* Calculate temporary vectorial force */
1280             tx               = fscal*dx23;
1281             ty               = fscal*dy23;
1282             tz               = fscal*dz23;
1283
1284             /* Update vectorial force */
1285             fix2            += tx;
1286             fiy2            += ty;
1287             fiz2            += tz;
1288             f[j_coord_offset+DIM*3+XX] -= tx;
1289             f[j_coord_offset+DIM*3+YY] -= ty;
1290             f[j_coord_offset+DIM*3+ZZ] -= tz;
1291
1292             }
1293
1294             /**************************
1295              * CALCULATE INTERACTIONS *
1296              **************************/
1297
1298             if (rsq31<rcutoff2)
1299             {
1300
1301             r31              = rsq31*rinv31;
1302
1303             /* EWALD ELECTROSTATICS */
1304
1305             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1306             ewrt             = r31*ewtabscale;
1307             ewitab           = ewrt;
1308             eweps            = ewrt-ewitab;
1309             ewitab           = 4*ewitab;
1310             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1311             velec            = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1312             felec            = qq31*rinv31*(rinvsq31-felec);
1313
1314             d                = r31-rswitch;
1315             d                = (d>0.0) ? d : 0.0;
1316             d2               = d*d;
1317             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1318
1319             dsw              = d2*(swF2+d*(swF3+d*swF4));
1320
1321             /* Evaluate switch function */
1322             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1323             felec            = felec*sw - rinv31*velec*dsw;
1324
1325             fscal            = felec;
1326
1327             /* Calculate temporary vectorial force */
1328             tx               = fscal*dx31;
1329             ty               = fscal*dy31;
1330             tz               = fscal*dz31;
1331
1332             /* Update vectorial force */
1333             fix3            += tx;
1334             fiy3            += ty;
1335             fiz3            += tz;
1336             f[j_coord_offset+DIM*1+XX] -= tx;
1337             f[j_coord_offset+DIM*1+YY] -= ty;
1338             f[j_coord_offset+DIM*1+ZZ] -= tz;
1339
1340             }
1341
1342             /**************************
1343              * CALCULATE INTERACTIONS *
1344              **************************/
1345
1346             if (rsq32<rcutoff2)
1347             {
1348
1349             r32              = rsq32*rinv32;
1350
1351             /* EWALD ELECTROSTATICS */
1352
1353             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1354             ewrt             = r32*ewtabscale;
1355             ewitab           = ewrt;
1356             eweps            = ewrt-ewitab;
1357             ewitab           = 4*ewitab;
1358             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1359             velec            = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1360             felec            = qq32*rinv32*(rinvsq32-felec);
1361
1362             d                = r32-rswitch;
1363             d                = (d>0.0) ? d : 0.0;
1364             d2               = d*d;
1365             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1366
1367             dsw              = d2*(swF2+d*(swF3+d*swF4));
1368
1369             /* Evaluate switch function */
1370             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1371             felec            = felec*sw - rinv32*velec*dsw;
1372
1373             fscal            = felec;
1374
1375             /* Calculate temporary vectorial force */
1376             tx               = fscal*dx32;
1377             ty               = fscal*dy32;
1378             tz               = fscal*dz32;
1379
1380             /* Update vectorial force */
1381             fix3            += tx;
1382             fiy3            += ty;
1383             fiz3            += tz;
1384             f[j_coord_offset+DIM*2+XX] -= tx;
1385             f[j_coord_offset+DIM*2+YY] -= ty;
1386             f[j_coord_offset+DIM*2+ZZ] -= tz;
1387
1388             }
1389
1390             /**************************
1391              * CALCULATE INTERACTIONS *
1392              **************************/
1393
1394             if (rsq33<rcutoff2)
1395             {
1396
1397             r33              = rsq33*rinv33;
1398
1399             /* EWALD ELECTROSTATICS */
1400
1401             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1402             ewrt             = r33*ewtabscale;
1403             ewitab           = ewrt;
1404             eweps            = ewrt-ewitab;
1405             ewitab           = 4*ewitab;
1406             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1407             velec            = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1408             felec            = qq33*rinv33*(rinvsq33-felec);
1409
1410             d                = r33-rswitch;
1411             d                = (d>0.0) ? d : 0.0;
1412             d2               = d*d;
1413             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1414
1415             dsw              = d2*(swF2+d*(swF3+d*swF4));
1416
1417             /* Evaluate switch function */
1418             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1419             felec            = felec*sw - rinv33*velec*dsw;
1420
1421             fscal            = felec;
1422
1423             /* Calculate temporary vectorial force */
1424             tx               = fscal*dx33;
1425             ty               = fscal*dy33;
1426             tz               = fscal*dz33;
1427
1428             /* Update vectorial force */
1429             fix3            += tx;
1430             fiy3            += ty;
1431             fiz3            += tz;
1432             f[j_coord_offset+DIM*3+XX] -= tx;
1433             f[j_coord_offset+DIM*3+YY] -= ty;
1434             f[j_coord_offset+DIM*3+ZZ] -= tz;
1435
1436             }
1437
1438             /* Inner loop uses 504 flops */
1439         }
1440         /* End of innermost loop */
1441
1442         tx = ty = tz = 0;
1443         f[i_coord_offset+DIM*1+XX] += fix1;
1444         f[i_coord_offset+DIM*1+YY] += fiy1;
1445         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1446         tx                         += fix1;
1447         ty                         += fiy1;
1448         tz                         += fiz1;
1449         f[i_coord_offset+DIM*2+XX] += fix2;
1450         f[i_coord_offset+DIM*2+YY] += fiy2;
1451         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1452         tx                         += fix2;
1453         ty                         += fiy2;
1454         tz                         += fiz2;
1455         f[i_coord_offset+DIM*3+XX] += fix3;
1456         f[i_coord_offset+DIM*3+YY] += fiy3;
1457         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1458         tx                         += fix3;
1459         ty                         += fiy3;
1460         tz                         += fiz3;
1461         fshift[i_shift_offset+XX]  += tx;
1462         fshift[i_shift_offset+YY]  += ty;
1463         fshift[i_shift_offset+ZZ]  += tz;
1464
1465         /* Increment number of inner iterations */
1466         inneriter                  += j_index_end - j_index_start;
1467
1468         /* Outer loop uses 30 flops */
1469     }
1470
1471     /* Increment number of outer iterations */
1472     outeriter        += nri;
1473
1474     /* Update outer/inner flops */
1475
1476     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4W4_F,outeriter*30 + inneriter*504);
1477 }