13dbe36806ce67787a9d4c75181fedd859fa9934
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwNone_GeomW3W3_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3W3_VF_c
49  * Electrostatics interaction: Ewald
50  * VdW interaction:            None
51  * Geometry:                   Water3-Water3
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecEwSw_VdwNone_GeomW3W3_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwioffset1;
73     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74     int              vdwioffset2;
75     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76     int              vdwjidx0;
77     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
78     int              vdwjidx1;
79     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
80     int              vdwjidx2;
81     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
82     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
84     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
85     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
86     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
87     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
88     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
89     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
90     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
91     real             velec,felec,velecsum,facel,crf,krf,krf2;
92     real             *charge;
93     int              ewitab;
94     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
95     real             *ewtab;
96     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
97
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = fr->epsfac;
110     charge           = mdatoms->chargeA;
111
112     sh_ewald         = fr->ic->sh_ewald;
113     ewtab            = fr->ic->tabq_coul_FDV0;
114     ewtabscale       = fr->ic->tabq_scale;
115     ewtabhalfspace   = 0.5/ewtabscale;
116
117     /* Setup water-specific parameters */
118     inr              = nlist->iinr[0];
119     iq0              = facel*charge[inr+0];
120     iq1              = facel*charge[inr+1];
121     iq2              = facel*charge[inr+2];
122
123     jq0              = charge[inr+0];
124     jq1              = charge[inr+1];
125     jq2              = charge[inr+2];
126     qq00             = iq0*jq0;
127     qq01             = iq0*jq1;
128     qq02             = iq0*jq2;
129     qq10             = iq1*jq0;
130     qq11             = iq1*jq1;
131     qq12             = iq1*jq2;
132     qq20             = iq2*jq0;
133     qq21             = iq2*jq1;
134     qq22             = iq2*jq2;
135
136     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137     rcutoff          = fr->rcoulomb;
138     rcutoff2         = rcutoff*rcutoff;
139
140     rswitch          = fr->rcoulomb_switch;
141     /* Setup switch parameters */
142     d                = rcutoff-rswitch;
143     swV3             = -10.0/(d*d*d);
144     swV4             =  15.0/(d*d*d*d);
145     swV5             =  -6.0/(d*d*d*d*d);
146     swF2             = -30.0/(d*d*d);
147     swF3             =  60.0/(d*d*d*d);
148     swF4             = -30.0/(d*d*d*d*d);
149
150     outeriter        = 0;
151     inneriter        = 0;
152
153     /* Start outer loop over neighborlists */
154     for(iidx=0; iidx<nri; iidx++)
155     {
156         /* Load shift vector for this list */
157         i_shift_offset   = DIM*shiftidx[iidx];
158         shX              = shiftvec[i_shift_offset+XX];
159         shY              = shiftvec[i_shift_offset+YY];
160         shZ              = shiftvec[i_shift_offset+ZZ];
161
162         /* Load limits for loop over neighbors */
163         j_index_start    = jindex[iidx];
164         j_index_end      = jindex[iidx+1];
165
166         /* Get outer coordinate index */
167         inr              = iinr[iidx];
168         i_coord_offset   = DIM*inr;
169
170         /* Load i particle coords and add shift vector */
171         ix0              = shX + x[i_coord_offset+DIM*0+XX];
172         iy0              = shY + x[i_coord_offset+DIM*0+YY];
173         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
174         ix1              = shX + x[i_coord_offset+DIM*1+XX];
175         iy1              = shY + x[i_coord_offset+DIM*1+YY];
176         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
177         ix2              = shX + x[i_coord_offset+DIM*2+XX];
178         iy2              = shY + x[i_coord_offset+DIM*2+YY];
179         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
180
181         fix0             = 0.0;
182         fiy0             = 0.0;
183         fiz0             = 0.0;
184         fix1             = 0.0;
185         fiy1             = 0.0;
186         fiz1             = 0.0;
187         fix2             = 0.0;
188         fiy2             = 0.0;
189         fiz2             = 0.0;
190
191         /* Reset potential sums */
192         velecsum         = 0.0;
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end; jidx++)
196         {
197             /* Get j neighbor index, and coordinate index */
198             jnr              = jjnr[jidx];
199             j_coord_offset   = DIM*jnr;
200
201             /* load j atom coordinates */
202             jx0              = x[j_coord_offset+DIM*0+XX];
203             jy0              = x[j_coord_offset+DIM*0+YY];
204             jz0              = x[j_coord_offset+DIM*0+ZZ];
205             jx1              = x[j_coord_offset+DIM*1+XX];
206             jy1              = x[j_coord_offset+DIM*1+YY];
207             jz1              = x[j_coord_offset+DIM*1+ZZ];
208             jx2              = x[j_coord_offset+DIM*2+XX];
209             jy2              = x[j_coord_offset+DIM*2+YY];
210             jz2              = x[j_coord_offset+DIM*2+ZZ];
211
212             /* Calculate displacement vector */
213             dx00             = ix0 - jx0;
214             dy00             = iy0 - jy0;
215             dz00             = iz0 - jz0;
216             dx01             = ix0 - jx1;
217             dy01             = iy0 - jy1;
218             dz01             = iz0 - jz1;
219             dx02             = ix0 - jx2;
220             dy02             = iy0 - jy2;
221             dz02             = iz0 - jz2;
222             dx10             = ix1 - jx0;
223             dy10             = iy1 - jy0;
224             dz10             = iz1 - jz0;
225             dx11             = ix1 - jx1;
226             dy11             = iy1 - jy1;
227             dz11             = iz1 - jz1;
228             dx12             = ix1 - jx2;
229             dy12             = iy1 - jy2;
230             dz12             = iz1 - jz2;
231             dx20             = ix2 - jx0;
232             dy20             = iy2 - jy0;
233             dz20             = iz2 - jz0;
234             dx21             = ix2 - jx1;
235             dy21             = iy2 - jy1;
236             dz21             = iz2 - jz1;
237             dx22             = ix2 - jx2;
238             dy22             = iy2 - jy2;
239             dz22             = iz2 - jz2;
240
241             /* Calculate squared distance and things based on it */
242             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
243             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
244             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
245             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
246             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
247             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
248             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
249             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
250             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
251
252             rinv00           = gmx_invsqrt(rsq00);
253             rinv01           = gmx_invsqrt(rsq01);
254             rinv02           = gmx_invsqrt(rsq02);
255             rinv10           = gmx_invsqrt(rsq10);
256             rinv11           = gmx_invsqrt(rsq11);
257             rinv12           = gmx_invsqrt(rsq12);
258             rinv20           = gmx_invsqrt(rsq20);
259             rinv21           = gmx_invsqrt(rsq21);
260             rinv22           = gmx_invsqrt(rsq22);
261
262             rinvsq00         = rinv00*rinv00;
263             rinvsq01         = rinv01*rinv01;
264             rinvsq02         = rinv02*rinv02;
265             rinvsq10         = rinv10*rinv10;
266             rinvsq11         = rinv11*rinv11;
267             rinvsq12         = rinv12*rinv12;
268             rinvsq20         = rinv20*rinv20;
269             rinvsq21         = rinv21*rinv21;
270             rinvsq22         = rinv22*rinv22;
271
272             /**************************
273              * CALCULATE INTERACTIONS *
274              **************************/
275
276             if (rsq00<rcutoff2)
277             {
278
279             r00              = rsq00*rinv00;
280
281             /* EWALD ELECTROSTATICS */
282
283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
284             ewrt             = r00*ewtabscale;
285             ewitab           = ewrt;
286             eweps            = ewrt-ewitab;
287             ewitab           = 4*ewitab;
288             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
289             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
290             felec            = qq00*rinv00*(rinvsq00-felec);
291
292             d                = r00-rswitch;
293             d                = (d>0.0) ? d : 0.0;
294             d2               = d*d;
295             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
296
297             dsw              = d2*(swF2+d*(swF3+d*swF4));
298
299             /* Evaluate switch function */
300             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
301             felec            = felec*sw - rinv00*velec*dsw;
302             velec           *= sw;
303
304             /* Update potential sums from outer loop */
305             velecsum        += velec;
306
307             fscal            = felec;
308
309             /* Calculate temporary vectorial force */
310             tx               = fscal*dx00;
311             ty               = fscal*dy00;
312             tz               = fscal*dz00;
313
314             /* Update vectorial force */
315             fix0            += tx;
316             fiy0            += ty;
317             fiz0            += tz;
318             f[j_coord_offset+DIM*0+XX] -= tx;
319             f[j_coord_offset+DIM*0+YY] -= ty;
320             f[j_coord_offset+DIM*0+ZZ] -= tz;
321
322             }
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             if (rsq01<rcutoff2)
329             {
330
331             r01              = rsq01*rinv01;
332
333             /* EWALD ELECTROSTATICS */
334
335             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
336             ewrt             = r01*ewtabscale;
337             ewitab           = ewrt;
338             eweps            = ewrt-ewitab;
339             ewitab           = 4*ewitab;
340             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
341             velec            = qq01*(rinv01-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
342             felec            = qq01*rinv01*(rinvsq01-felec);
343
344             d                = r01-rswitch;
345             d                = (d>0.0) ? d : 0.0;
346             d2               = d*d;
347             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
348
349             dsw              = d2*(swF2+d*(swF3+d*swF4));
350
351             /* Evaluate switch function */
352             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
353             felec            = felec*sw - rinv01*velec*dsw;
354             velec           *= sw;
355
356             /* Update potential sums from outer loop */
357             velecsum        += velec;
358
359             fscal            = felec;
360
361             /* Calculate temporary vectorial force */
362             tx               = fscal*dx01;
363             ty               = fscal*dy01;
364             tz               = fscal*dz01;
365
366             /* Update vectorial force */
367             fix0            += tx;
368             fiy0            += ty;
369             fiz0            += tz;
370             f[j_coord_offset+DIM*1+XX] -= tx;
371             f[j_coord_offset+DIM*1+YY] -= ty;
372             f[j_coord_offset+DIM*1+ZZ] -= tz;
373
374             }
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             if (rsq02<rcutoff2)
381             {
382
383             r02              = rsq02*rinv02;
384
385             /* EWALD ELECTROSTATICS */
386
387             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
388             ewrt             = r02*ewtabscale;
389             ewitab           = ewrt;
390             eweps            = ewrt-ewitab;
391             ewitab           = 4*ewitab;
392             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
393             velec            = qq02*(rinv02-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
394             felec            = qq02*rinv02*(rinvsq02-felec);
395
396             d                = r02-rswitch;
397             d                = (d>0.0) ? d : 0.0;
398             d2               = d*d;
399             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
400
401             dsw              = d2*(swF2+d*(swF3+d*swF4));
402
403             /* Evaluate switch function */
404             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
405             felec            = felec*sw - rinv02*velec*dsw;
406             velec           *= sw;
407
408             /* Update potential sums from outer loop */
409             velecsum        += velec;
410
411             fscal            = felec;
412
413             /* Calculate temporary vectorial force */
414             tx               = fscal*dx02;
415             ty               = fscal*dy02;
416             tz               = fscal*dz02;
417
418             /* Update vectorial force */
419             fix0            += tx;
420             fiy0            += ty;
421             fiz0            += tz;
422             f[j_coord_offset+DIM*2+XX] -= tx;
423             f[j_coord_offset+DIM*2+YY] -= ty;
424             f[j_coord_offset+DIM*2+ZZ] -= tz;
425
426             }
427
428             /**************************
429              * CALCULATE INTERACTIONS *
430              **************************/
431
432             if (rsq10<rcutoff2)
433             {
434
435             r10              = rsq10*rinv10;
436
437             /* EWALD ELECTROSTATICS */
438
439             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
440             ewrt             = r10*ewtabscale;
441             ewitab           = ewrt;
442             eweps            = ewrt-ewitab;
443             ewitab           = 4*ewitab;
444             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
445             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
446             felec            = qq10*rinv10*(rinvsq10-felec);
447
448             d                = r10-rswitch;
449             d                = (d>0.0) ? d : 0.0;
450             d2               = d*d;
451             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
452
453             dsw              = d2*(swF2+d*(swF3+d*swF4));
454
455             /* Evaluate switch function */
456             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
457             felec            = felec*sw - rinv10*velec*dsw;
458             velec           *= sw;
459
460             /* Update potential sums from outer loop */
461             velecsum        += velec;
462
463             fscal            = felec;
464
465             /* Calculate temporary vectorial force */
466             tx               = fscal*dx10;
467             ty               = fscal*dy10;
468             tz               = fscal*dz10;
469
470             /* Update vectorial force */
471             fix1            += tx;
472             fiy1            += ty;
473             fiz1            += tz;
474             f[j_coord_offset+DIM*0+XX] -= tx;
475             f[j_coord_offset+DIM*0+YY] -= ty;
476             f[j_coord_offset+DIM*0+ZZ] -= tz;
477
478             }
479
480             /**************************
481              * CALCULATE INTERACTIONS *
482              **************************/
483
484             if (rsq11<rcutoff2)
485             {
486
487             r11              = rsq11*rinv11;
488
489             /* EWALD ELECTROSTATICS */
490
491             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
492             ewrt             = r11*ewtabscale;
493             ewitab           = ewrt;
494             eweps            = ewrt-ewitab;
495             ewitab           = 4*ewitab;
496             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
497             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
498             felec            = qq11*rinv11*(rinvsq11-felec);
499
500             d                = r11-rswitch;
501             d                = (d>0.0) ? d : 0.0;
502             d2               = d*d;
503             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
504
505             dsw              = d2*(swF2+d*(swF3+d*swF4));
506
507             /* Evaluate switch function */
508             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
509             felec            = felec*sw - rinv11*velec*dsw;
510             velec           *= sw;
511
512             /* Update potential sums from outer loop */
513             velecsum        += velec;
514
515             fscal            = felec;
516
517             /* Calculate temporary vectorial force */
518             tx               = fscal*dx11;
519             ty               = fscal*dy11;
520             tz               = fscal*dz11;
521
522             /* Update vectorial force */
523             fix1            += tx;
524             fiy1            += ty;
525             fiz1            += tz;
526             f[j_coord_offset+DIM*1+XX] -= tx;
527             f[j_coord_offset+DIM*1+YY] -= ty;
528             f[j_coord_offset+DIM*1+ZZ] -= tz;
529
530             }
531
532             /**************************
533              * CALCULATE INTERACTIONS *
534              **************************/
535
536             if (rsq12<rcutoff2)
537             {
538
539             r12              = rsq12*rinv12;
540
541             /* EWALD ELECTROSTATICS */
542
543             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
544             ewrt             = r12*ewtabscale;
545             ewitab           = ewrt;
546             eweps            = ewrt-ewitab;
547             ewitab           = 4*ewitab;
548             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
549             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
550             felec            = qq12*rinv12*(rinvsq12-felec);
551
552             d                = r12-rswitch;
553             d                = (d>0.0) ? d : 0.0;
554             d2               = d*d;
555             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
556
557             dsw              = d2*(swF2+d*(swF3+d*swF4));
558
559             /* Evaluate switch function */
560             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
561             felec            = felec*sw - rinv12*velec*dsw;
562             velec           *= sw;
563
564             /* Update potential sums from outer loop */
565             velecsum        += velec;
566
567             fscal            = felec;
568
569             /* Calculate temporary vectorial force */
570             tx               = fscal*dx12;
571             ty               = fscal*dy12;
572             tz               = fscal*dz12;
573
574             /* Update vectorial force */
575             fix1            += tx;
576             fiy1            += ty;
577             fiz1            += tz;
578             f[j_coord_offset+DIM*2+XX] -= tx;
579             f[j_coord_offset+DIM*2+YY] -= ty;
580             f[j_coord_offset+DIM*2+ZZ] -= tz;
581
582             }
583
584             /**************************
585              * CALCULATE INTERACTIONS *
586              **************************/
587
588             if (rsq20<rcutoff2)
589             {
590
591             r20              = rsq20*rinv20;
592
593             /* EWALD ELECTROSTATICS */
594
595             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
596             ewrt             = r20*ewtabscale;
597             ewitab           = ewrt;
598             eweps            = ewrt-ewitab;
599             ewitab           = 4*ewitab;
600             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
601             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
602             felec            = qq20*rinv20*(rinvsq20-felec);
603
604             d                = r20-rswitch;
605             d                = (d>0.0) ? d : 0.0;
606             d2               = d*d;
607             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
608
609             dsw              = d2*(swF2+d*(swF3+d*swF4));
610
611             /* Evaluate switch function */
612             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
613             felec            = felec*sw - rinv20*velec*dsw;
614             velec           *= sw;
615
616             /* Update potential sums from outer loop */
617             velecsum        += velec;
618
619             fscal            = felec;
620
621             /* Calculate temporary vectorial force */
622             tx               = fscal*dx20;
623             ty               = fscal*dy20;
624             tz               = fscal*dz20;
625
626             /* Update vectorial force */
627             fix2            += tx;
628             fiy2            += ty;
629             fiz2            += tz;
630             f[j_coord_offset+DIM*0+XX] -= tx;
631             f[j_coord_offset+DIM*0+YY] -= ty;
632             f[j_coord_offset+DIM*0+ZZ] -= tz;
633
634             }
635
636             /**************************
637              * CALCULATE INTERACTIONS *
638              **************************/
639
640             if (rsq21<rcutoff2)
641             {
642
643             r21              = rsq21*rinv21;
644
645             /* EWALD ELECTROSTATICS */
646
647             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
648             ewrt             = r21*ewtabscale;
649             ewitab           = ewrt;
650             eweps            = ewrt-ewitab;
651             ewitab           = 4*ewitab;
652             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
653             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
654             felec            = qq21*rinv21*(rinvsq21-felec);
655
656             d                = r21-rswitch;
657             d                = (d>0.0) ? d : 0.0;
658             d2               = d*d;
659             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
660
661             dsw              = d2*(swF2+d*(swF3+d*swF4));
662
663             /* Evaluate switch function */
664             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
665             felec            = felec*sw - rinv21*velec*dsw;
666             velec           *= sw;
667
668             /* Update potential sums from outer loop */
669             velecsum        += velec;
670
671             fscal            = felec;
672
673             /* Calculate temporary vectorial force */
674             tx               = fscal*dx21;
675             ty               = fscal*dy21;
676             tz               = fscal*dz21;
677
678             /* Update vectorial force */
679             fix2            += tx;
680             fiy2            += ty;
681             fiz2            += tz;
682             f[j_coord_offset+DIM*1+XX] -= tx;
683             f[j_coord_offset+DIM*1+YY] -= ty;
684             f[j_coord_offset+DIM*1+ZZ] -= tz;
685
686             }
687
688             /**************************
689              * CALCULATE INTERACTIONS *
690              **************************/
691
692             if (rsq22<rcutoff2)
693             {
694
695             r22              = rsq22*rinv22;
696
697             /* EWALD ELECTROSTATICS */
698
699             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
700             ewrt             = r22*ewtabscale;
701             ewitab           = ewrt;
702             eweps            = ewrt-ewitab;
703             ewitab           = 4*ewitab;
704             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
705             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
706             felec            = qq22*rinv22*(rinvsq22-felec);
707
708             d                = r22-rswitch;
709             d                = (d>0.0) ? d : 0.0;
710             d2               = d*d;
711             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
712
713             dsw              = d2*(swF2+d*(swF3+d*swF4));
714
715             /* Evaluate switch function */
716             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
717             felec            = felec*sw - rinv22*velec*dsw;
718             velec           *= sw;
719
720             /* Update potential sums from outer loop */
721             velecsum        += velec;
722
723             fscal            = felec;
724
725             /* Calculate temporary vectorial force */
726             tx               = fscal*dx22;
727             ty               = fscal*dy22;
728             tz               = fscal*dz22;
729
730             /* Update vectorial force */
731             fix2            += tx;
732             fiy2            += ty;
733             fiz2            += tz;
734             f[j_coord_offset+DIM*2+XX] -= tx;
735             f[j_coord_offset+DIM*2+YY] -= ty;
736             f[j_coord_offset+DIM*2+ZZ] -= tz;
737
738             }
739
740             /* Inner loop uses 522 flops */
741         }
742         /* End of innermost loop */
743
744         tx = ty = tz = 0;
745         f[i_coord_offset+DIM*0+XX] += fix0;
746         f[i_coord_offset+DIM*0+YY] += fiy0;
747         f[i_coord_offset+DIM*0+ZZ] += fiz0;
748         tx                         += fix0;
749         ty                         += fiy0;
750         tz                         += fiz0;
751         f[i_coord_offset+DIM*1+XX] += fix1;
752         f[i_coord_offset+DIM*1+YY] += fiy1;
753         f[i_coord_offset+DIM*1+ZZ] += fiz1;
754         tx                         += fix1;
755         ty                         += fiy1;
756         tz                         += fiz1;
757         f[i_coord_offset+DIM*2+XX] += fix2;
758         f[i_coord_offset+DIM*2+YY] += fiy2;
759         f[i_coord_offset+DIM*2+ZZ] += fiz2;
760         tx                         += fix2;
761         ty                         += fiy2;
762         tz                         += fiz2;
763         fshift[i_shift_offset+XX]  += tx;
764         fshift[i_shift_offset+YY]  += ty;
765         fshift[i_shift_offset+ZZ]  += tz;
766
767         ggid                        = gid[iidx];
768         /* Update potential energies */
769         kernel_data->energygrp_elec[ggid] += velecsum;
770
771         /* Increment number of inner iterations */
772         inneriter                  += j_index_end - j_index_start;
773
774         /* Outer loop uses 31 flops */
775     }
776
777     /* Increment number of outer iterations */
778     outeriter        += nri;
779
780     /* Update outer/inner flops */
781
782     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*31 + inneriter*522);
783 }
784 /*
785  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3W3_F_c
786  * Electrostatics interaction: Ewald
787  * VdW interaction:            None
788  * Geometry:                   Water3-Water3
789  * Calculate force/pot:        Force
790  */
791 void
792 nb_kernel_ElecEwSw_VdwNone_GeomW3W3_F_c
793                     (t_nblist                    * gmx_restrict       nlist,
794                      rvec                        * gmx_restrict          xx,
795                      rvec                        * gmx_restrict          ff,
796                      t_forcerec                  * gmx_restrict          fr,
797                      t_mdatoms                   * gmx_restrict     mdatoms,
798                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
799                      t_nrnb                      * gmx_restrict        nrnb)
800 {
801     int              i_shift_offset,i_coord_offset,j_coord_offset;
802     int              j_index_start,j_index_end;
803     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
804     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
805     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
806     real             *shiftvec,*fshift,*x,*f;
807     int              vdwioffset0;
808     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
809     int              vdwioffset1;
810     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
811     int              vdwioffset2;
812     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
813     int              vdwjidx0;
814     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
815     int              vdwjidx1;
816     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
817     int              vdwjidx2;
818     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
819     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
820     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
821     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
822     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
823     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
824     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
825     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
826     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
827     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
828     real             velec,felec,velecsum,facel,crf,krf,krf2;
829     real             *charge;
830     int              ewitab;
831     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
832     real             *ewtab;
833     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
834
835     x                = xx[0];
836     f                = ff[0];
837
838     nri              = nlist->nri;
839     iinr             = nlist->iinr;
840     jindex           = nlist->jindex;
841     jjnr             = nlist->jjnr;
842     shiftidx         = nlist->shift;
843     gid              = nlist->gid;
844     shiftvec         = fr->shift_vec[0];
845     fshift           = fr->fshift[0];
846     facel            = fr->epsfac;
847     charge           = mdatoms->chargeA;
848
849     sh_ewald         = fr->ic->sh_ewald;
850     ewtab            = fr->ic->tabq_coul_FDV0;
851     ewtabscale       = fr->ic->tabq_scale;
852     ewtabhalfspace   = 0.5/ewtabscale;
853
854     /* Setup water-specific parameters */
855     inr              = nlist->iinr[0];
856     iq0              = facel*charge[inr+0];
857     iq1              = facel*charge[inr+1];
858     iq2              = facel*charge[inr+2];
859
860     jq0              = charge[inr+0];
861     jq1              = charge[inr+1];
862     jq2              = charge[inr+2];
863     qq00             = iq0*jq0;
864     qq01             = iq0*jq1;
865     qq02             = iq0*jq2;
866     qq10             = iq1*jq0;
867     qq11             = iq1*jq1;
868     qq12             = iq1*jq2;
869     qq20             = iq2*jq0;
870     qq21             = iq2*jq1;
871     qq22             = iq2*jq2;
872
873     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
874     rcutoff          = fr->rcoulomb;
875     rcutoff2         = rcutoff*rcutoff;
876
877     rswitch          = fr->rcoulomb_switch;
878     /* Setup switch parameters */
879     d                = rcutoff-rswitch;
880     swV3             = -10.0/(d*d*d);
881     swV4             =  15.0/(d*d*d*d);
882     swV5             =  -6.0/(d*d*d*d*d);
883     swF2             = -30.0/(d*d*d);
884     swF3             =  60.0/(d*d*d*d);
885     swF4             = -30.0/(d*d*d*d*d);
886
887     outeriter        = 0;
888     inneriter        = 0;
889
890     /* Start outer loop over neighborlists */
891     for(iidx=0; iidx<nri; iidx++)
892     {
893         /* Load shift vector for this list */
894         i_shift_offset   = DIM*shiftidx[iidx];
895         shX              = shiftvec[i_shift_offset+XX];
896         shY              = shiftvec[i_shift_offset+YY];
897         shZ              = shiftvec[i_shift_offset+ZZ];
898
899         /* Load limits for loop over neighbors */
900         j_index_start    = jindex[iidx];
901         j_index_end      = jindex[iidx+1];
902
903         /* Get outer coordinate index */
904         inr              = iinr[iidx];
905         i_coord_offset   = DIM*inr;
906
907         /* Load i particle coords and add shift vector */
908         ix0              = shX + x[i_coord_offset+DIM*0+XX];
909         iy0              = shY + x[i_coord_offset+DIM*0+YY];
910         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
911         ix1              = shX + x[i_coord_offset+DIM*1+XX];
912         iy1              = shY + x[i_coord_offset+DIM*1+YY];
913         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
914         ix2              = shX + x[i_coord_offset+DIM*2+XX];
915         iy2              = shY + x[i_coord_offset+DIM*2+YY];
916         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
917
918         fix0             = 0.0;
919         fiy0             = 0.0;
920         fiz0             = 0.0;
921         fix1             = 0.0;
922         fiy1             = 0.0;
923         fiz1             = 0.0;
924         fix2             = 0.0;
925         fiy2             = 0.0;
926         fiz2             = 0.0;
927
928         /* Start inner kernel loop */
929         for(jidx=j_index_start; jidx<j_index_end; jidx++)
930         {
931             /* Get j neighbor index, and coordinate index */
932             jnr              = jjnr[jidx];
933             j_coord_offset   = DIM*jnr;
934
935             /* load j atom coordinates */
936             jx0              = x[j_coord_offset+DIM*0+XX];
937             jy0              = x[j_coord_offset+DIM*0+YY];
938             jz0              = x[j_coord_offset+DIM*0+ZZ];
939             jx1              = x[j_coord_offset+DIM*1+XX];
940             jy1              = x[j_coord_offset+DIM*1+YY];
941             jz1              = x[j_coord_offset+DIM*1+ZZ];
942             jx2              = x[j_coord_offset+DIM*2+XX];
943             jy2              = x[j_coord_offset+DIM*2+YY];
944             jz2              = x[j_coord_offset+DIM*2+ZZ];
945
946             /* Calculate displacement vector */
947             dx00             = ix0 - jx0;
948             dy00             = iy0 - jy0;
949             dz00             = iz0 - jz0;
950             dx01             = ix0 - jx1;
951             dy01             = iy0 - jy1;
952             dz01             = iz0 - jz1;
953             dx02             = ix0 - jx2;
954             dy02             = iy0 - jy2;
955             dz02             = iz0 - jz2;
956             dx10             = ix1 - jx0;
957             dy10             = iy1 - jy0;
958             dz10             = iz1 - jz0;
959             dx11             = ix1 - jx1;
960             dy11             = iy1 - jy1;
961             dz11             = iz1 - jz1;
962             dx12             = ix1 - jx2;
963             dy12             = iy1 - jy2;
964             dz12             = iz1 - jz2;
965             dx20             = ix2 - jx0;
966             dy20             = iy2 - jy0;
967             dz20             = iz2 - jz0;
968             dx21             = ix2 - jx1;
969             dy21             = iy2 - jy1;
970             dz21             = iz2 - jz1;
971             dx22             = ix2 - jx2;
972             dy22             = iy2 - jy2;
973             dz22             = iz2 - jz2;
974
975             /* Calculate squared distance and things based on it */
976             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
977             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
978             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
979             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
980             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
981             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
982             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
983             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
984             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
985
986             rinv00           = gmx_invsqrt(rsq00);
987             rinv01           = gmx_invsqrt(rsq01);
988             rinv02           = gmx_invsqrt(rsq02);
989             rinv10           = gmx_invsqrt(rsq10);
990             rinv11           = gmx_invsqrt(rsq11);
991             rinv12           = gmx_invsqrt(rsq12);
992             rinv20           = gmx_invsqrt(rsq20);
993             rinv21           = gmx_invsqrt(rsq21);
994             rinv22           = gmx_invsqrt(rsq22);
995
996             rinvsq00         = rinv00*rinv00;
997             rinvsq01         = rinv01*rinv01;
998             rinvsq02         = rinv02*rinv02;
999             rinvsq10         = rinv10*rinv10;
1000             rinvsq11         = rinv11*rinv11;
1001             rinvsq12         = rinv12*rinv12;
1002             rinvsq20         = rinv20*rinv20;
1003             rinvsq21         = rinv21*rinv21;
1004             rinvsq22         = rinv22*rinv22;
1005
1006             /**************************
1007              * CALCULATE INTERACTIONS *
1008              **************************/
1009
1010             if (rsq00<rcutoff2)
1011             {
1012
1013             r00              = rsq00*rinv00;
1014
1015             /* EWALD ELECTROSTATICS */
1016
1017             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1018             ewrt             = r00*ewtabscale;
1019             ewitab           = ewrt;
1020             eweps            = ewrt-ewitab;
1021             ewitab           = 4*ewitab;
1022             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1023             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1024             felec            = qq00*rinv00*(rinvsq00-felec);
1025
1026             d                = r00-rswitch;
1027             d                = (d>0.0) ? d : 0.0;
1028             d2               = d*d;
1029             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1030
1031             dsw              = d2*(swF2+d*(swF3+d*swF4));
1032
1033             /* Evaluate switch function */
1034             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1035             felec            = felec*sw - rinv00*velec*dsw;
1036
1037             fscal            = felec;
1038
1039             /* Calculate temporary vectorial force */
1040             tx               = fscal*dx00;
1041             ty               = fscal*dy00;
1042             tz               = fscal*dz00;
1043
1044             /* Update vectorial force */
1045             fix0            += tx;
1046             fiy0            += ty;
1047             fiz0            += tz;
1048             f[j_coord_offset+DIM*0+XX] -= tx;
1049             f[j_coord_offset+DIM*0+YY] -= ty;
1050             f[j_coord_offset+DIM*0+ZZ] -= tz;
1051
1052             }
1053
1054             /**************************
1055              * CALCULATE INTERACTIONS *
1056              **************************/
1057
1058             if (rsq01<rcutoff2)
1059             {
1060
1061             r01              = rsq01*rinv01;
1062
1063             /* EWALD ELECTROSTATICS */
1064
1065             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1066             ewrt             = r01*ewtabscale;
1067             ewitab           = ewrt;
1068             eweps            = ewrt-ewitab;
1069             ewitab           = 4*ewitab;
1070             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1071             velec            = qq01*(rinv01-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1072             felec            = qq01*rinv01*(rinvsq01-felec);
1073
1074             d                = r01-rswitch;
1075             d                = (d>0.0) ? d : 0.0;
1076             d2               = d*d;
1077             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1078
1079             dsw              = d2*(swF2+d*(swF3+d*swF4));
1080
1081             /* Evaluate switch function */
1082             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1083             felec            = felec*sw - rinv01*velec*dsw;
1084
1085             fscal            = felec;
1086
1087             /* Calculate temporary vectorial force */
1088             tx               = fscal*dx01;
1089             ty               = fscal*dy01;
1090             tz               = fscal*dz01;
1091
1092             /* Update vectorial force */
1093             fix0            += tx;
1094             fiy0            += ty;
1095             fiz0            += tz;
1096             f[j_coord_offset+DIM*1+XX] -= tx;
1097             f[j_coord_offset+DIM*1+YY] -= ty;
1098             f[j_coord_offset+DIM*1+ZZ] -= tz;
1099
1100             }
1101
1102             /**************************
1103              * CALCULATE INTERACTIONS *
1104              **************************/
1105
1106             if (rsq02<rcutoff2)
1107             {
1108
1109             r02              = rsq02*rinv02;
1110
1111             /* EWALD ELECTROSTATICS */
1112
1113             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1114             ewrt             = r02*ewtabscale;
1115             ewitab           = ewrt;
1116             eweps            = ewrt-ewitab;
1117             ewitab           = 4*ewitab;
1118             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1119             velec            = qq02*(rinv02-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1120             felec            = qq02*rinv02*(rinvsq02-felec);
1121
1122             d                = r02-rswitch;
1123             d                = (d>0.0) ? d : 0.0;
1124             d2               = d*d;
1125             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1126
1127             dsw              = d2*(swF2+d*(swF3+d*swF4));
1128
1129             /* Evaluate switch function */
1130             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1131             felec            = felec*sw - rinv02*velec*dsw;
1132
1133             fscal            = felec;
1134
1135             /* Calculate temporary vectorial force */
1136             tx               = fscal*dx02;
1137             ty               = fscal*dy02;
1138             tz               = fscal*dz02;
1139
1140             /* Update vectorial force */
1141             fix0            += tx;
1142             fiy0            += ty;
1143             fiz0            += tz;
1144             f[j_coord_offset+DIM*2+XX] -= tx;
1145             f[j_coord_offset+DIM*2+YY] -= ty;
1146             f[j_coord_offset+DIM*2+ZZ] -= tz;
1147
1148             }
1149
1150             /**************************
1151              * CALCULATE INTERACTIONS *
1152              **************************/
1153
1154             if (rsq10<rcutoff2)
1155             {
1156
1157             r10              = rsq10*rinv10;
1158
1159             /* EWALD ELECTROSTATICS */
1160
1161             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1162             ewrt             = r10*ewtabscale;
1163             ewitab           = ewrt;
1164             eweps            = ewrt-ewitab;
1165             ewitab           = 4*ewitab;
1166             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1167             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1168             felec            = qq10*rinv10*(rinvsq10-felec);
1169
1170             d                = r10-rswitch;
1171             d                = (d>0.0) ? d : 0.0;
1172             d2               = d*d;
1173             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1174
1175             dsw              = d2*(swF2+d*(swF3+d*swF4));
1176
1177             /* Evaluate switch function */
1178             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1179             felec            = felec*sw - rinv10*velec*dsw;
1180
1181             fscal            = felec;
1182
1183             /* Calculate temporary vectorial force */
1184             tx               = fscal*dx10;
1185             ty               = fscal*dy10;
1186             tz               = fscal*dz10;
1187
1188             /* Update vectorial force */
1189             fix1            += tx;
1190             fiy1            += ty;
1191             fiz1            += tz;
1192             f[j_coord_offset+DIM*0+XX] -= tx;
1193             f[j_coord_offset+DIM*0+YY] -= ty;
1194             f[j_coord_offset+DIM*0+ZZ] -= tz;
1195
1196             }
1197
1198             /**************************
1199              * CALCULATE INTERACTIONS *
1200              **************************/
1201
1202             if (rsq11<rcutoff2)
1203             {
1204
1205             r11              = rsq11*rinv11;
1206
1207             /* EWALD ELECTROSTATICS */
1208
1209             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1210             ewrt             = r11*ewtabscale;
1211             ewitab           = ewrt;
1212             eweps            = ewrt-ewitab;
1213             ewitab           = 4*ewitab;
1214             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1215             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1216             felec            = qq11*rinv11*(rinvsq11-felec);
1217
1218             d                = r11-rswitch;
1219             d                = (d>0.0) ? d : 0.0;
1220             d2               = d*d;
1221             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1222
1223             dsw              = d2*(swF2+d*(swF3+d*swF4));
1224
1225             /* Evaluate switch function */
1226             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1227             felec            = felec*sw - rinv11*velec*dsw;
1228
1229             fscal            = felec;
1230
1231             /* Calculate temporary vectorial force */
1232             tx               = fscal*dx11;
1233             ty               = fscal*dy11;
1234             tz               = fscal*dz11;
1235
1236             /* Update vectorial force */
1237             fix1            += tx;
1238             fiy1            += ty;
1239             fiz1            += tz;
1240             f[j_coord_offset+DIM*1+XX] -= tx;
1241             f[j_coord_offset+DIM*1+YY] -= ty;
1242             f[j_coord_offset+DIM*1+ZZ] -= tz;
1243
1244             }
1245
1246             /**************************
1247              * CALCULATE INTERACTIONS *
1248              **************************/
1249
1250             if (rsq12<rcutoff2)
1251             {
1252
1253             r12              = rsq12*rinv12;
1254
1255             /* EWALD ELECTROSTATICS */
1256
1257             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1258             ewrt             = r12*ewtabscale;
1259             ewitab           = ewrt;
1260             eweps            = ewrt-ewitab;
1261             ewitab           = 4*ewitab;
1262             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1263             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1264             felec            = qq12*rinv12*(rinvsq12-felec);
1265
1266             d                = r12-rswitch;
1267             d                = (d>0.0) ? d : 0.0;
1268             d2               = d*d;
1269             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1270
1271             dsw              = d2*(swF2+d*(swF3+d*swF4));
1272
1273             /* Evaluate switch function */
1274             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1275             felec            = felec*sw - rinv12*velec*dsw;
1276
1277             fscal            = felec;
1278
1279             /* Calculate temporary vectorial force */
1280             tx               = fscal*dx12;
1281             ty               = fscal*dy12;
1282             tz               = fscal*dz12;
1283
1284             /* Update vectorial force */
1285             fix1            += tx;
1286             fiy1            += ty;
1287             fiz1            += tz;
1288             f[j_coord_offset+DIM*2+XX] -= tx;
1289             f[j_coord_offset+DIM*2+YY] -= ty;
1290             f[j_coord_offset+DIM*2+ZZ] -= tz;
1291
1292             }
1293
1294             /**************************
1295              * CALCULATE INTERACTIONS *
1296              **************************/
1297
1298             if (rsq20<rcutoff2)
1299             {
1300
1301             r20              = rsq20*rinv20;
1302
1303             /* EWALD ELECTROSTATICS */
1304
1305             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1306             ewrt             = r20*ewtabscale;
1307             ewitab           = ewrt;
1308             eweps            = ewrt-ewitab;
1309             ewitab           = 4*ewitab;
1310             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1311             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1312             felec            = qq20*rinv20*(rinvsq20-felec);
1313
1314             d                = r20-rswitch;
1315             d                = (d>0.0) ? d : 0.0;
1316             d2               = d*d;
1317             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1318
1319             dsw              = d2*(swF2+d*(swF3+d*swF4));
1320
1321             /* Evaluate switch function */
1322             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1323             felec            = felec*sw - rinv20*velec*dsw;
1324
1325             fscal            = felec;
1326
1327             /* Calculate temporary vectorial force */
1328             tx               = fscal*dx20;
1329             ty               = fscal*dy20;
1330             tz               = fscal*dz20;
1331
1332             /* Update vectorial force */
1333             fix2            += tx;
1334             fiy2            += ty;
1335             fiz2            += tz;
1336             f[j_coord_offset+DIM*0+XX] -= tx;
1337             f[j_coord_offset+DIM*0+YY] -= ty;
1338             f[j_coord_offset+DIM*0+ZZ] -= tz;
1339
1340             }
1341
1342             /**************************
1343              * CALCULATE INTERACTIONS *
1344              **************************/
1345
1346             if (rsq21<rcutoff2)
1347             {
1348
1349             r21              = rsq21*rinv21;
1350
1351             /* EWALD ELECTROSTATICS */
1352
1353             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1354             ewrt             = r21*ewtabscale;
1355             ewitab           = ewrt;
1356             eweps            = ewrt-ewitab;
1357             ewitab           = 4*ewitab;
1358             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1359             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1360             felec            = qq21*rinv21*(rinvsq21-felec);
1361
1362             d                = r21-rswitch;
1363             d                = (d>0.0) ? d : 0.0;
1364             d2               = d*d;
1365             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1366
1367             dsw              = d2*(swF2+d*(swF3+d*swF4));
1368
1369             /* Evaluate switch function */
1370             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1371             felec            = felec*sw - rinv21*velec*dsw;
1372
1373             fscal            = felec;
1374
1375             /* Calculate temporary vectorial force */
1376             tx               = fscal*dx21;
1377             ty               = fscal*dy21;
1378             tz               = fscal*dz21;
1379
1380             /* Update vectorial force */
1381             fix2            += tx;
1382             fiy2            += ty;
1383             fiz2            += tz;
1384             f[j_coord_offset+DIM*1+XX] -= tx;
1385             f[j_coord_offset+DIM*1+YY] -= ty;
1386             f[j_coord_offset+DIM*1+ZZ] -= tz;
1387
1388             }
1389
1390             /**************************
1391              * CALCULATE INTERACTIONS *
1392              **************************/
1393
1394             if (rsq22<rcutoff2)
1395             {
1396
1397             r22              = rsq22*rinv22;
1398
1399             /* EWALD ELECTROSTATICS */
1400
1401             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1402             ewrt             = r22*ewtabscale;
1403             ewitab           = ewrt;
1404             eweps            = ewrt-ewitab;
1405             ewitab           = 4*ewitab;
1406             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1407             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1408             felec            = qq22*rinv22*(rinvsq22-felec);
1409
1410             d                = r22-rswitch;
1411             d                = (d>0.0) ? d : 0.0;
1412             d2               = d*d;
1413             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1414
1415             dsw              = d2*(swF2+d*(swF3+d*swF4));
1416
1417             /* Evaluate switch function */
1418             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1419             felec            = felec*sw - rinv22*velec*dsw;
1420
1421             fscal            = felec;
1422
1423             /* Calculate temporary vectorial force */
1424             tx               = fscal*dx22;
1425             ty               = fscal*dy22;
1426             tz               = fscal*dz22;
1427
1428             /* Update vectorial force */
1429             fix2            += tx;
1430             fiy2            += ty;
1431             fiz2            += tz;
1432             f[j_coord_offset+DIM*2+XX] -= tx;
1433             f[j_coord_offset+DIM*2+YY] -= ty;
1434             f[j_coord_offset+DIM*2+ZZ] -= tz;
1435
1436             }
1437
1438             /* Inner loop uses 504 flops */
1439         }
1440         /* End of innermost loop */
1441
1442         tx = ty = tz = 0;
1443         f[i_coord_offset+DIM*0+XX] += fix0;
1444         f[i_coord_offset+DIM*0+YY] += fiy0;
1445         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1446         tx                         += fix0;
1447         ty                         += fiy0;
1448         tz                         += fiz0;
1449         f[i_coord_offset+DIM*1+XX] += fix1;
1450         f[i_coord_offset+DIM*1+YY] += fiy1;
1451         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1452         tx                         += fix1;
1453         ty                         += fiy1;
1454         tz                         += fiz1;
1455         f[i_coord_offset+DIM*2+XX] += fix2;
1456         f[i_coord_offset+DIM*2+YY] += fiy2;
1457         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1458         tx                         += fix2;
1459         ty                         += fiy2;
1460         tz                         += fiz2;
1461         fshift[i_shift_offset+XX]  += tx;
1462         fshift[i_shift_offset+YY]  += ty;
1463         fshift[i_shift_offset+ZZ]  += tz;
1464
1465         /* Increment number of inner iterations */
1466         inneriter                  += j_index_end - j_index_start;
1467
1468         /* Outer loop uses 30 flops */
1469     }
1470
1471     /* Increment number of outer iterations */
1472     outeriter        += nri;
1473
1474     /* Update outer/inner flops */
1475
1476     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*30 + inneriter*504);
1477 }