Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwNone_GeomW3P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83     real             velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              ewitab;
86     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
87     real             *ewtab;
88     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
89
90     x                = xx[0];
91     f                = ff[0];
92
93     nri              = nlist->nri;
94     iinr             = nlist->iinr;
95     jindex           = nlist->jindex;
96     jjnr             = nlist->jjnr;
97     shiftidx         = nlist->shift;
98     gid              = nlist->gid;
99     shiftvec         = fr->shift_vec[0];
100     fshift           = fr->fshift[0];
101     facel            = fr->epsfac;
102     charge           = mdatoms->chargeA;
103
104     sh_ewald         = fr->ic->sh_ewald;
105     ewtab            = fr->ic->tabq_coul_FDV0;
106     ewtabscale       = fr->ic->tabq_scale;
107     ewtabhalfspace   = 0.5/ewtabscale;
108
109     /* Setup water-specific parameters */
110     inr              = nlist->iinr[0];
111     iq0              = facel*charge[inr+0];
112     iq1              = facel*charge[inr+1];
113     iq2              = facel*charge[inr+2];
114
115     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
116     rcutoff          = fr->rcoulomb;
117     rcutoff2         = rcutoff*rcutoff;
118
119     rswitch          = fr->rcoulomb_switch;
120     /* Setup switch parameters */
121     d                = rcutoff-rswitch;
122     swV3             = -10.0/(d*d*d);
123     swV4             =  15.0/(d*d*d*d);
124     swV5             =  -6.0/(d*d*d*d*d);
125     swF2             = -30.0/(d*d*d);
126     swF3             =  60.0/(d*d*d*d);
127     swF4             = -30.0/(d*d*d*d*d);
128
129     outeriter        = 0;
130     inneriter        = 0;
131
132     /* Start outer loop over neighborlists */
133     for(iidx=0; iidx<nri; iidx++)
134     {
135         /* Load shift vector for this list */
136         i_shift_offset   = DIM*shiftidx[iidx];
137         shX              = shiftvec[i_shift_offset+XX];
138         shY              = shiftvec[i_shift_offset+YY];
139         shZ              = shiftvec[i_shift_offset+ZZ];
140
141         /* Load limits for loop over neighbors */
142         j_index_start    = jindex[iidx];
143         j_index_end      = jindex[iidx+1];
144
145         /* Get outer coordinate index */
146         inr              = iinr[iidx];
147         i_coord_offset   = DIM*inr;
148
149         /* Load i particle coords and add shift vector */
150         ix0              = shX + x[i_coord_offset+DIM*0+XX];
151         iy0              = shY + x[i_coord_offset+DIM*0+YY];
152         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
153         ix1              = shX + x[i_coord_offset+DIM*1+XX];
154         iy1              = shY + x[i_coord_offset+DIM*1+YY];
155         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
156         ix2              = shX + x[i_coord_offset+DIM*2+XX];
157         iy2              = shY + x[i_coord_offset+DIM*2+YY];
158         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
159
160         fix0             = 0.0;
161         fiy0             = 0.0;
162         fiz0             = 0.0;
163         fix1             = 0.0;
164         fiy1             = 0.0;
165         fiz1             = 0.0;
166         fix2             = 0.0;
167         fiy2             = 0.0;
168         fiz2             = 0.0;
169
170         /* Reset potential sums */
171         velecsum         = 0.0;
172
173         /* Start inner kernel loop */
174         for(jidx=j_index_start; jidx<j_index_end; jidx++)
175         {
176             /* Get j neighbor index, and coordinate index */
177             jnr              = jjnr[jidx];
178             j_coord_offset   = DIM*jnr;
179
180             /* load j atom coordinates */
181             jx0              = x[j_coord_offset+DIM*0+XX];
182             jy0              = x[j_coord_offset+DIM*0+YY];
183             jz0              = x[j_coord_offset+DIM*0+ZZ];
184
185             /* Calculate displacement vector */
186             dx00             = ix0 - jx0;
187             dy00             = iy0 - jy0;
188             dz00             = iz0 - jz0;
189             dx10             = ix1 - jx0;
190             dy10             = iy1 - jy0;
191             dz10             = iz1 - jz0;
192             dx20             = ix2 - jx0;
193             dy20             = iy2 - jy0;
194             dz20             = iz2 - jz0;
195
196             /* Calculate squared distance and things based on it */
197             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
198             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
199             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
200
201             rinv00           = gmx_invsqrt(rsq00);
202             rinv10           = gmx_invsqrt(rsq10);
203             rinv20           = gmx_invsqrt(rsq20);
204
205             rinvsq00         = rinv00*rinv00;
206             rinvsq10         = rinv10*rinv10;
207             rinvsq20         = rinv20*rinv20;
208
209             /* Load parameters for j particles */
210             jq0              = charge[jnr+0];
211
212             /**************************
213              * CALCULATE INTERACTIONS *
214              **************************/
215
216             if (rsq00<rcutoff2)
217             {
218
219             r00              = rsq00*rinv00;
220
221             qq00             = iq0*jq0;
222
223             /* EWALD ELECTROSTATICS */
224
225             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
226             ewrt             = r00*ewtabscale;
227             ewitab           = ewrt;
228             eweps            = ewrt-ewitab;
229             ewitab           = 4*ewitab;
230             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
231             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
232             felec            = qq00*rinv00*(rinvsq00-felec);
233
234             d                = r00-rswitch;
235             d                = (d>0.0) ? d : 0.0;
236             d2               = d*d;
237             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
238
239             dsw              = d2*(swF2+d*(swF3+d*swF4));
240
241             /* Evaluate switch function */
242             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
243             felec            = felec*sw - rinv00*velec*dsw;
244             velec           *= sw;
245
246             /* Update potential sums from outer loop */
247             velecsum        += velec;
248
249             fscal            = felec;
250
251             /* Calculate temporary vectorial force */
252             tx               = fscal*dx00;
253             ty               = fscal*dy00;
254             tz               = fscal*dz00;
255
256             /* Update vectorial force */
257             fix0            += tx;
258             fiy0            += ty;
259             fiz0            += tz;
260             f[j_coord_offset+DIM*0+XX] -= tx;
261             f[j_coord_offset+DIM*0+YY] -= ty;
262             f[j_coord_offset+DIM*0+ZZ] -= tz;
263
264             }
265
266             /**************************
267              * CALCULATE INTERACTIONS *
268              **************************/
269
270             if (rsq10<rcutoff2)
271             {
272
273             r10              = rsq10*rinv10;
274
275             qq10             = iq1*jq0;
276
277             /* EWALD ELECTROSTATICS */
278
279             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
280             ewrt             = r10*ewtabscale;
281             ewitab           = ewrt;
282             eweps            = ewrt-ewitab;
283             ewitab           = 4*ewitab;
284             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
285             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
286             felec            = qq10*rinv10*(rinvsq10-felec);
287
288             d                = r10-rswitch;
289             d                = (d>0.0) ? d : 0.0;
290             d2               = d*d;
291             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
292
293             dsw              = d2*(swF2+d*(swF3+d*swF4));
294
295             /* Evaluate switch function */
296             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
297             felec            = felec*sw - rinv10*velec*dsw;
298             velec           *= sw;
299
300             /* Update potential sums from outer loop */
301             velecsum        += velec;
302
303             fscal            = felec;
304
305             /* Calculate temporary vectorial force */
306             tx               = fscal*dx10;
307             ty               = fscal*dy10;
308             tz               = fscal*dz10;
309
310             /* Update vectorial force */
311             fix1            += tx;
312             fiy1            += ty;
313             fiz1            += tz;
314             f[j_coord_offset+DIM*0+XX] -= tx;
315             f[j_coord_offset+DIM*0+YY] -= ty;
316             f[j_coord_offset+DIM*0+ZZ] -= tz;
317
318             }
319
320             /**************************
321              * CALCULATE INTERACTIONS *
322              **************************/
323
324             if (rsq20<rcutoff2)
325             {
326
327             r20              = rsq20*rinv20;
328
329             qq20             = iq2*jq0;
330
331             /* EWALD ELECTROSTATICS */
332
333             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
334             ewrt             = r20*ewtabscale;
335             ewitab           = ewrt;
336             eweps            = ewrt-ewitab;
337             ewitab           = 4*ewitab;
338             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
339             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
340             felec            = qq20*rinv20*(rinvsq20-felec);
341
342             d                = r20-rswitch;
343             d                = (d>0.0) ? d : 0.0;
344             d2               = d*d;
345             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
346
347             dsw              = d2*(swF2+d*(swF3+d*swF4));
348
349             /* Evaluate switch function */
350             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
351             felec            = felec*sw - rinv20*velec*dsw;
352             velec           *= sw;
353
354             /* Update potential sums from outer loop */
355             velecsum        += velec;
356
357             fscal            = felec;
358
359             /* Calculate temporary vectorial force */
360             tx               = fscal*dx20;
361             ty               = fscal*dy20;
362             tz               = fscal*dz20;
363
364             /* Update vectorial force */
365             fix2            += tx;
366             fiy2            += ty;
367             fiz2            += tz;
368             f[j_coord_offset+DIM*0+XX] -= tx;
369             f[j_coord_offset+DIM*0+YY] -= ty;
370             f[j_coord_offset+DIM*0+ZZ] -= tz;
371
372             }
373
374             /* Inner loop uses 177 flops */
375         }
376         /* End of innermost loop */
377
378         tx = ty = tz = 0;
379         f[i_coord_offset+DIM*0+XX] += fix0;
380         f[i_coord_offset+DIM*0+YY] += fiy0;
381         f[i_coord_offset+DIM*0+ZZ] += fiz0;
382         tx                         += fix0;
383         ty                         += fiy0;
384         tz                         += fiz0;
385         f[i_coord_offset+DIM*1+XX] += fix1;
386         f[i_coord_offset+DIM*1+YY] += fiy1;
387         f[i_coord_offset+DIM*1+ZZ] += fiz1;
388         tx                         += fix1;
389         ty                         += fiy1;
390         tz                         += fiz1;
391         f[i_coord_offset+DIM*2+XX] += fix2;
392         f[i_coord_offset+DIM*2+YY] += fiy2;
393         f[i_coord_offset+DIM*2+ZZ] += fiz2;
394         tx                         += fix2;
395         ty                         += fiy2;
396         tz                         += fiz2;
397         fshift[i_shift_offset+XX]  += tx;
398         fshift[i_shift_offset+YY]  += ty;
399         fshift[i_shift_offset+ZZ]  += tz;
400
401         ggid                        = gid[iidx];
402         /* Update potential energies */
403         kernel_data->energygrp_elec[ggid] += velecsum;
404
405         /* Increment number of inner iterations */
406         inneriter                  += j_index_end - j_index_start;
407
408         /* Outer loop uses 31 flops */
409     }
410
411     /* Increment number of outer iterations */
412     outeriter        += nri;
413
414     /* Update outer/inner flops */
415
416     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_VF,outeriter*31 + inneriter*177);
417 }
418 /*
419  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_c
420  * Electrostatics interaction: Ewald
421  * VdW interaction:            None
422  * Geometry:                   Water3-Particle
423  * Calculate force/pot:        Force
424  */
425 void
426 nb_kernel_ElecEwSw_VdwNone_GeomW3P1_F_c
427                     (t_nblist                    * gmx_restrict       nlist,
428                      rvec                        * gmx_restrict          xx,
429                      rvec                        * gmx_restrict          ff,
430                      t_forcerec                  * gmx_restrict          fr,
431                      t_mdatoms                   * gmx_restrict     mdatoms,
432                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
433                      t_nrnb                      * gmx_restrict        nrnb)
434 {
435     int              i_shift_offset,i_coord_offset,j_coord_offset;
436     int              j_index_start,j_index_end;
437     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
438     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
439     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
440     real             *shiftvec,*fshift,*x,*f;
441     int              vdwioffset0;
442     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
443     int              vdwioffset1;
444     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
445     int              vdwioffset2;
446     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
447     int              vdwjidx0;
448     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
449     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
450     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
451     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
452     real             velec,felec,velecsum,facel,crf,krf,krf2;
453     real             *charge;
454     int              ewitab;
455     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
456     real             *ewtab;
457     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
458
459     x                = xx[0];
460     f                = ff[0];
461
462     nri              = nlist->nri;
463     iinr             = nlist->iinr;
464     jindex           = nlist->jindex;
465     jjnr             = nlist->jjnr;
466     shiftidx         = nlist->shift;
467     gid              = nlist->gid;
468     shiftvec         = fr->shift_vec[0];
469     fshift           = fr->fshift[0];
470     facel            = fr->epsfac;
471     charge           = mdatoms->chargeA;
472
473     sh_ewald         = fr->ic->sh_ewald;
474     ewtab            = fr->ic->tabq_coul_FDV0;
475     ewtabscale       = fr->ic->tabq_scale;
476     ewtabhalfspace   = 0.5/ewtabscale;
477
478     /* Setup water-specific parameters */
479     inr              = nlist->iinr[0];
480     iq0              = facel*charge[inr+0];
481     iq1              = facel*charge[inr+1];
482     iq2              = facel*charge[inr+2];
483
484     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
485     rcutoff          = fr->rcoulomb;
486     rcutoff2         = rcutoff*rcutoff;
487
488     rswitch          = fr->rcoulomb_switch;
489     /* Setup switch parameters */
490     d                = rcutoff-rswitch;
491     swV3             = -10.0/(d*d*d);
492     swV4             =  15.0/(d*d*d*d);
493     swV5             =  -6.0/(d*d*d*d*d);
494     swF2             = -30.0/(d*d*d);
495     swF3             =  60.0/(d*d*d*d);
496     swF4             = -30.0/(d*d*d*d*d);
497
498     outeriter        = 0;
499     inneriter        = 0;
500
501     /* Start outer loop over neighborlists */
502     for(iidx=0; iidx<nri; iidx++)
503     {
504         /* Load shift vector for this list */
505         i_shift_offset   = DIM*shiftidx[iidx];
506         shX              = shiftvec[i_shift_offset+XX];
507         shY              = shiftvec[i_shift_offset+YY];
508         shZ              = shiftvec[i_shift_offset+ZZ];
509
510         /* Load limits for loop over neighbors */
511         j_index_start    = jindex[iidx];
512         j_index_end      = jindex[iidx+1];
513
514         /* Get outer coordinate index */
515         inr              = iinr[iidx];
516         i_coord_offset   = DIM*inr;
517
518         /* Load i particle coords and add shift vector */
519         ix0              = shX + x[i_coord_offset+DIM*0+XX];
520         iy0              = shY + x[i_coord_offset+DIM*0+YY];
521         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
522         ix1              = shX + x[i_coord_offset+DIM*1+XX];
523         iy1              = shY + x[i_coord_offset+DIM*1+YY];
524         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
525         ix2              = shX + x[i_coord_offset+DIM*2+XX];
526         iy2              = shY + x[i_coord_offset+DIM*2+YY];
527         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
528
529         fix0             = 0.0;
530         fiy0             = 0.0;
531         fiz0             = 0.0;
532         fix1             = 0.0;
533         fiy1             = 0.0;
534         fiz1             = 0.0;
535         fix2             = 0.0;
536         fiy2             = 0.0;
537         fiz2             = 0.0;
538
539         /* Start inner kernel loop */
540         for(jidx=j_index_start; jidx<j_index_end; jidx++)
541         {
542             /* Get j neighbor index, and coordinate index */
543             jnr              = jjnr[jidx];
544             j_coord_offset   = DIM*jnr;
545
546             /* load j atom coordinates */
547             jx0              = x[j_coord_offset+DIM*0+XX];
548             jy0              = x[j_coord_offset+DIM*0+YY];
549             jz0              = x[j_coord_offset+DIM*0+ZZ];
550
551             /* Calculate displacement vector */
552             dx00             = ix0 - jx0;
553             dy00             = iy0 - jy0;
554             dz00             = iz0 - jz0;
555             dx10             = ix1 - jx0;
556             dy10             = iy1 - jy0;
557             dz10             = iz1 - jz0;
558             dx20             = ix2 - jx0;
559             dy20             = iy2 - jy0;
560             dz20             = iz2 - jz0;
561
562             /* Calculate squared distance and things based on it */
563             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
564             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
565             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
566
567             rinv00           = gmx_invsqrt(rsq00);
568             rinv10           = gmx_invsqrt(rsq10);
569             rinv20           = gmx_invsqrt(rsq20);
570
571             rinvsq00         = rinv00*rinv00;
572             rinvsq10         = rinv10*rinv10;
573             rinvsq20         = rinv20*rinv20;
574
575             /* Load parameters for j particles */
576             jq0              = charge[jnr+0];
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             if (rsq00<rcutoff2)
583             {
584
585             r00              = rsq00*rinv00;
586
587             qq00             = iq0*jq0;
588
589             /* EWALD ELECTROSTATICS */
590
591             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
592             ewrt             = r00*ewtabscale;
593             ewitab           = ewrt;
594             eweps            = ewrt-ewitab;
595             ewitab           = 4*ewitab;
596             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
597             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
598             felec            = qq00*rinv00*(rinvsq00-felec);
599
600             d                = r00-rswitch;
601             d                = (d>0.0) ? d : 0.0;
602             d2               = d*d;
603             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
604
605             dsw              = d2*(swF2+d*(swF3+d*swF4));
606
607             /* Evaluate switch function */
608             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
609             felec            = felec*sw - rinv00*velec*dsw;
610
611             fscal            = felec;
612
613             /* Calculate temporary vectorial force */
614             tx               = fscal*dx00;
615             ty               = fscal*dy00;
616             tz               = fscal*dz00;
617
618             /* Update vectorial force */
619             fix0            += tx;
620             fiy0            += ty;
621             fiz0            += tz;
622             f[j_coord_offset+DIM*0+XX] -= tx;
623             f[j_coord_offset+DIM*0+YY] -= ty;
624             f[j_coord_offset+DIM*0+ZZ] -= tz;
625
626             }
627
628             /**************************
629              * CALCULATE INTERACTIONS *
630              **************************/
631
632             if (rsq10<rcutoff2)
633             {
634
635             r10              = rsq10*rinv10;
636
637             qq10             = iq1*jq0;
638
639             /* EWALD ELECTROSTATICS */
640
641             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
642             ewrt             = r10*ewtabscale;
643             ewitab           = ewrt;
644             eweps            = ewrt-ewitab;
645             ewitab           = 4*ewitab;
646             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
647             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
648             felec            = qq10*rinv10*(rinvsq10-felec);
649
650             d                = r10-rswitch;
651             d                = (d>0.0) ? d : 0.0;
652             d2               = d*d;
653             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
654
655             dsw              = d2*(swF2+d*(swF3+d*swF4));
656
657             /* Evaluate switch function */
658             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
659             felec            = felec*sw - rinv10*velec*dsw;
660
661             fscal            = felec;
662
663             /* Calculate temporary vectorial force */
664             tx               = fscal*dx10;
665             ty               = fscal*dy10;
666             tz               = fscal*dz10;
667
668             /* Update vectorial force */
669             fix1            += tx;
670             fiy1            += ty;
671             fiz1            += tz;
672             f[j_coord_offset+DIM*0+XX] -= tx;
673             f[j_coord_offset+DIM*0+YY] -= ty;
674             f[j_coord_offset+DIM*0+ZZ] -= tz;
675
676             }
677
678             /**************************
679              * CALCULATE INTERACTIONS *
680              **************************/
681
682             if (rsq20<rcutoff2)
683             {
684
685             r20              = rsq20*rinv20;
686
687             qq20             = iq2*jq0;
688
689             /* EWALD ELECTROSTATICS */
690
691             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
692             ewrt             = r20*ewtabscale;
693             ewitab           = ewrt;
694             eweps            = ewrt-ewitab;
695             ewitab           = 4*ewitab;
696             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
697             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
698             felec            = qq20*rinv20*(rinvsq20-felec);
699
700             d                = r20-rswitch;
701             d                = (d>0.0) ? d : 0.0;
702             d2               = d*d;
703             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
704
705             dsw              = d2*(swF2+d*(swF3+d*swF4));
706
707             /* Evaluate switch function */
708             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
709             felec            = felec*sw - rinv20*velec*dsw;
710
711             fscal            = felec;
712
713             /* Calculate temporary vectorial force */
714             tx               = fscal*dx20;
715             ty               = fscal*dy20;
716             tz               = fscal*dz20;
717
718             /* Update vectorial force */
719             fix2            += tx;
720             fiy2            += ty;
721             fiz2            += tz;
722             f[j_coord_offset+DIM*0+XX] -= tx;
723             f[j_coord_offset+DIM*0+YY] -= ty;
724             f[j_coord_offset+DIM*0+ZZ] -= tz;
725
726             }
727
728             /* Inner loop uses 171 flops */
729         }
730         /* End of innermost loop */
731
732         tx = ty = tz = 0;
733         f[i_coord_offset+DIM*0+XX] += fix0;
734         f[i_coord_offset+DIM*0+YY] += fiy0;
735         f[i_coord_offset+DIM*0+ZZ] += fiz0;
736         tx                         += fix0;
737         ty                         += fiy0;
738         tz                         += fiz0;
739         f[i_coord_offset+DIM*1+XX] += fix1;
740         f[i_coord_offset+DIM*1+YY] += fiy1;
741         f[i_coord_offset+DIM*1+ZZ] += fiz1;
742         tx                         += fix1;
743         ty                         += fiy1;
744         tz                         += fiz1;
745         f[i_coord_offset+DIM*2+XX] += fix2;
746         f[i_coord_offset+DIM*2+YY] += fiy2;
747         f[i_coord_offset+DIM*2+ZZ] += fiz2;
748         tx                         += fix2;
749         ty                         += fiy2;
750         tz                         += fiz2;
751         fshift[i_shift_offset+XX]  += tx;
752         fshift[i_shift_offset+YY]  += ty;
753         fshift[i_shift_offset+ZZ]  += tz;
754
755         /* Increment number of inner iterations */
756         inneriter                  += j_index_end - j_index_start;
757
758         /* Outer loop uses 30 flops */
759     }
760
761     /* Increment number of outer iterations */
762     outeriter        += nri;
763
764     /* Update outer/inner flops */
765
766     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3_F,outeriter*30 + inneriter*171);
767 }