e9064bdcb69fe308d5957aa4d14498c99154c3f5
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_c
35  * Electrostatics interaction: Ewald
36  * VdW interaction:            None
37  * Geometry:                   Particle-Particle
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwjidx0;
59     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
60     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
61     real             velec,felec,velecsum,facel,crf,krf,krf2;
62     real             *charge;
63     int              ewitab;
64     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
65     real             *ewtab;
66     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
67
68     x                = xx[0];
69     f                = ff[0];
70
71     nri              = nlist->nri;
72     iinr             = nlist->iinr;
73     jindex           = nlist->jindex;
74     jjnr             = nlist->jjnr;
75     shiftidx         = nlist->shift;
76     gid              = nlist->gid;
77     shiftvec         = fr->shift_vec[0];
78     fshift           = fr->fshift[0];
79     facel            = fr->epsfac;
80     charge           = mdatoms->chargeA;
81
82     sh_ewald         = fr->ic->sh_ewald;
83     ewtab            = fr->ic->tabq_coul_FDV0;
84     ewtabscale       = fr->ic->tabq_scale;
85     ewtabhalfspace   = 0.5/ewtabscale;
86
87     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
88     rcutoff          = fr->rcoulomb;
89     rcutoff2         = rcutoff*rcutoff;
90
91     rswitch          = fr->rcoulomb_switch;
92     /* Setup switch parameters */
93     d                = rcutoff-rswitch;
94     swV3             = -10.0/(d*d*d);
95     swV4             =  15.0/(d*d*d*d);
96     swV5             =  -6.0/(d*d*d*d*d);
97     swF2             = -30.0/(d*d*d);
98     swF3             =  60.0/(d*d*d*d);
99     swF4             = -30.0/(d*d*d*d*d);
100
101     outeriter        = 0;
102     inneriter        = 0;
103
104     /* Start outer loop over neighborlists */
105     for(iidx=0; iidx<nri; iidx++)
106     {
107         /* Load shift vector for this list */
108         i_shift_offset   = DIM*shiftidx[iidx];
109         shX              = shiftvec[i_shift_offset+XX];
110         shY              = shiftvec[i_shift_offset+YY];
111         shZ              = shiftvec[i_shift_offset+ZZ];
112
113         /* Load limits for loop over neighbors */
114         j_index_start    = jindex[iidx];
115         j_index_end      = jindex[iidx+1];
116
117         /* Get outer coordinate index */
118         inr              = iinr[iidx];
119         i_coord_offset   = DIM*inr;
120
121         /* Load i particle coords and add shift vector */
122         ix0              = shX + x[i_coord_offset+DIM*0+XX];
123         iy0              = shY + x[i_coord_offset+DIM*0+YY];
124         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
125
126         fix0             = 0.0;
127         fiy0             = 0.0;
128         fiz0             = 0.0;
129
130         /* Load parameters for i particles */
131         iq0              = facel*charge[inr+0];
132
133         /* Reset potential sums */
134         velecsum         = 0.0;
135
136         /* Start inner kernel loop */
137         for(jidx=j_index_start; jidx<j_index_end; jidx++)
138         {
139             /* Get j neighbor index, and coordinate index */
140             jnr              = jjnr[jidx];
141             j_coord_offset   = DIM*jnr;
142
143             /* load j atom coordinates */
144             jx0              = x[j_coord_offset+DIM*0+XX];
145             jy0              = x[j_coord_offset+DIM*0+YY];
146             jz0              = x[j_coord_offset+DIM*0+ZZ];
147
148             /* Calculate displacement vector */
149             dx00             = ix0 - jx0;
150             dy00             = iy0 - jy0;
151             dz00             = iz0 - jz0;
152
153             /* Calculate squared distance and things based on it */
154             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
155
156             rinv00           = gmx_invsqrt(rsq00);
157
158             rinvsq00         = rinv00*rinv00;
159
160             /* Load parameters for j particles */
161             jq0              = charge[jnr+0];
162
163             /**************************
164              * CALCULATE INTERACTIONS *
165              **************************/
166
167             if (rsq00<rcutoff2)
168             {
169
170             r00              = rsq00*rinv00;
171
172             qq00             = iq0*jq0;
173
174             /* EWALD ELECTROSTATICS */
175
176             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
177             ewrt             = r00*ewtabscale;
178             ewitab           = ewrt;
179             eweps            = ewrt-ewitab;
180             ewitab           = 4*ewitab;
181             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
182             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
183             felec            = qq00*rinv00*(rinvsq00-felec);
184
185             d                = r00-rswitch;
186             d                = (d>0.0) ? d : 0.0;
187             d2               = d*d;
188             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
189
190             dsw              = d2*(swF2+d*(swF3+d*swF4));
191
192             /* Evaluate switch function */
193             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
194             felec            = felec*sw - rinv00*velec*dsw;
195             velec           *= sw;
196
197             /* Update potential sums from outer loop */
198             velecsum        += velec;
199
200             fscal            = felec;
201
202             /* Calculate temporary vectorial force */
203             tx               = fscal*dx00;
204             ty               = fscal*dy00;
205             tz               = fscal*dz00;
206
207             /* Update vectorial force */
208             fix0            += tx;
209             fiy0            += ty;
210             fiz0            += tz;
211             f[j_coord_offset+DIM*0+XX] -= tx;
212             f[j_coord_offset+DIM*0+YY] -= ty;
213             f[j_coord_offset+DIM*0+ZZ] -= tz;
214
215             }
216
217             /* Inner loop uses 59 flops */
218         }
219         /* End of innermost loop */
220
221         tx = ty = tz = 0;
222         f[i_coord_offset+DIM*0+XX] += fix0;
223         f[i_coord_offset+DIM*0+YY] += fiy0;
224         f[i_coord_offset+DIM*0+ZZ] += fiz0;
225         tx                         += fix0;
226         ty                         += fiy0;
227         tz                         += fiz0;
228         fshift[i_shift_offset+XX]  += tx;
229         fshift[i_shift_offset+YY]  += ty;
230         fshift[i_shift_offset+ZZ]  += tz;
231
232         ggid                        = gid[iidx];
233         /* Update potential energies */
234         kernel_data->energygrp_elec[ggid] += velecsum;
235
236         /* Increment number of inner iterations */
237         inneriter                  += j_index_end - j_index_start;
238
239         /* Outer loop uses 14 flops */
240     }
241
242     /* Increment number of outer iterations */
243     outeriter        += nri;
244
245     /* Update outer/inner flops */
246
247     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*14 + inneriter*59);
248 }
249 /*
250  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_c
251  * Electrostatics interaction: Ewald
252  * VdW interaction:            None
253  * Geometry:                   Particle-Particle
254  * Calculate force/pot:        Force
255  */
256 void
257 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_c
258                     (t_nblist * gmx_restrict                nlist,
259                      rvec * gmx_restrict                    xx,
260                      rvec * gmx_restrict                    ff,
261                      t_forcerec * gmx_restrict              fr,
262                      t_mdatoms * gmx_restrict               mdatoms,
263                      nb_kernel_data_t * gmx_restrict        kernel_data,
264                      t_nrnb * gmx_restrict                  nrnb)
265 {
266     int              i_shift_offset,i_coord_offset,j_coord_offset;
267     int              j_index_start,j_index_end;
268     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
269     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
270     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
271     real             *shiftvec,*fshift,*x,*f;
272     int              vdwioffset0;
273     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
274     int              vdwjidx0;
275     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
276     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
277     real             velec,felec,velecsum,facel,crf,krf,krf2;
278     real             *charge;
279     int              ewitab;
280     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
281     real             *ewtab;
282     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
283
284     x                = xx[0];
285     f                = ff[0];
286
287     nri              = nlist->nri;
288     iinr             = nlist->iinr;
289     jindex           = nlist->jindex;
290     jjnr             = nlist->jjnr;
291     shiftidx         = nlist->shift;
292     gid              = nlist->gid;
293     shiftvec         = fr->shift_vec[0];
294     fshift           = fr->fshift[0];
295     facel            = fr->epsfac;
296     charge           = mdatoms->chargeA;
297
298     sh_ewald         = fr->ic->sh_ewald;
299     ewtab            = fr->ic->tabq_coul_FDV0;
300     ewtabscale       = fr->ic->tabq_scale;
301     ewtabhalfspace   = 0.5/ewtabscale;
302
303     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
304     rcutoff          = fr->rcoulomb;
305     rcutoff2         = rcutoff*rcutoff;
306
307     rswitch          = fr->rcoulomb_switch;
308     /* Setup switch parameters */
309     d                = rcutoff-rswitch;
310     swV3             = -10.0/(d*d*d);
311     swV4             =  15.0/(d*d*d*d);
312     swV5             =  -6.0/(d*d*d*d*d);
313     swF2             = -30.0/(d*d*d);
314     swF3             =  60.0/(d*d*d*d);
315     swF4             = -30.0/(d*d*d*d*d);
316
317     outeriter        = 0;
318     inneriter        = 0;
319
320     /* Start outer loop over neighborlists */
321     for(iidx=0; iidx<nri; iidx++)
322     {
323         /* Load shift vector for this list */
324         i_shift_offset   = DIM*shiftidx[iidx];
325         shX              = shiftvec[i_shift_offset+XX];
326         shY              = shiftvec[i_shift_offset+YY];
327         shZ              = shiftvec[i_shift_offset+ZZ];
328
329         /* Load limits for loop over neighbors */
330         j_index_start    = jindex[iidx];
331         j_index_end      = jindex[iidx+1];
332
333         /* Get outer coordinate index */
334         inr              = iinr[iidx];
335         i_coord_offset   = DIM*inr;
336
337         /* Load i particle coords and add shift vector */
338         ix0              = shX + x[i_coord_offset+DIM*0+XX];
339         iy0              = shY + x[i_coord_offset+DIM*0+YY];
340         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
341
342         fix0             = 0.0;
343         fiy0             = 0.0;
344         fiz0             = 0.0;
345
346         /* Load parameters for i particles */
347         iq0              = facel*charge[inr+0];
348
349         /* Start inner kernel loop */
350         for(jidx=j_index_start; jidx<j_index_end; jidx++)
351         {
352             /* Get j neighbor index, and coordinate index */
353             jnr              = jjnr[jidx];
354             j_coord_offset   = DIM*jnr;
355
356             /* load j atom coordinates */
357             jx0              = x[j_coord_offset+DIM*0+XX];
358             jy0              = x[j_coord_offset+DIM*0+YY];
359             jz0              = x[j_coord_offset+DIM*0+ZZ];
360
361             /* Calculate displacement vector */
362             dx00             = ix0 - jx0;
363             dy00             = iy0 - jy0;
364             dz00             = iz0 - jz0;
365
366             /* Calculate squared distance and things based on it */
367             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
368
369             rinv00           = gmx_invsqrt(rsq00);
370
371             rinvsq00         = rinv00*rinv00;
372
373             /* Load parameters for j particles */
374             jq0              = charge[jnr+0];
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             if (rsq00<rcutoff2)
381             {
382
383             r00              = rsq00*rinv00;
384
385             qq00             = iq0*jq0;
386
387             /* EWALD ELECTROSTATICS */
388
389             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
390             ewrt             = r00*ewtabscale;
391             ewitab           = ewrt;
392             eweps            = ewrt-ewitab;
393             ewitab           = 4*ewitab;
394             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
395             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
396             felec            = qq00*rinv00*(rinvsq00-felec);
397
398             d                = r00-rswitch;
399             d                = (d>0.0) ? d : 0.0;
400             d2               = d*d;
401             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
402
403             dsw              = d2*(swF2+d*(swF3+d*swF4));
404
405             /* Evaluate switch function */
406             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
407             felec            = felec*sw - rinv00*velec*dsw;
408
409             fscal            = felec;
410
411             /* Calculate temporary vectorial force */
412             tx               = fscal*dx00;
413             ty               = fscal*dy00;
414             tz               = fscal*dz00;
415
416             /* Update vectorial force */
417             fix0            += tx;
418             fiy0            += ty;
419             fiz0            += tz;
420             f[j_coord_offset+DIM*0+XX] -= tx;
421             f[j_coord_offset+DIM*0+YY] -= ty;
422             f[j_coord_offset+DIM*0+ZZ] -= tz;
423
424             }
425
426             /* Inner loop uses 57 flops */
427         }
428         /* End of innermost loop */
429
430         tx = ty = tz = 0;
431         f[i_coord_offset+DIM*0+XX] += fix0;
432         f[i_coord_offset+DIM*0+YY] += fiy0;
433         f[i_coord_offset+DIM*0+ZZ] += fiz0;
434         tx                         += fix0;
435         ty                         += fiy0;
436         tz                         += fiz0;
437         fshift[i_shift_offset+XX]  += tx;
438         fshift[i_shift_offset+YY]  += ty;
439         fshift[i_shift_offset+ZZ]  += tz;
440
441         /* Increment number of inner iterations */
442         inneriter                  += j_index_end - j_index_start;
443
444         /* Outer loop uses 13 flops */
445     }
446
447     /* Increment number of outer iterations */
448     outeriter        += nri;
449
450     /* Update outer/inner flops */
451
452     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*13 + inneriter*57);
453 }