Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            None
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              ewitab;
80     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
81     real             *ewtab;
82     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
83
84     x                = xx[0];
85     f                = ff[0];
86
87     nri              = nlist->nri;
88     iinr             = nlist->iinr;
89     jindex           = nlist->jindex;
90     jjnr             = nlist->jjnr;
91     shiftidx         = nlist->shift;
92     gid              = nlist->gid;
93     shiftvec         = fr->shift_vec[0];
94     fshift           = fr->fshift[0];
95     facel            = fr->epsfac;
96     charge           = mdatoms->chargeA;
97
98     sh_ewald         = fr->ic->sh_ewald;
99     ewtab            = fr->ic->tabq_coul_FDV0;
100     ewtabscale       = fr->ic->tabq_scale;
101     ewtabhalfspace   = 0.5/ewtabscale;
102
103     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
104     rcutoff          = fr->rcoulomb;
105     rcutoff2         = rcutoff*rcutoff;
106
107     rswitch          = fr->rcoulomb_switch;
108     /* Setup switch parameters */
109     d                = rcutoff-rswitch;
110     swV3             = -10.0/(d*d*d);
111     swV4             =  15.0/(d*d*d*d);
112     swV5             =  -6.0/(d*d*d*d*d);
113     swF2             = -30.0/(d*d*d);
114     swF3             =  60.0/(d*d*d*d);
115     swF4             = -30.0/(d*d*d*d*d);
116
117     outeriter        = 0;
118     inneriter        = 0;
119
120     /* Start outer loop over neighborlists */
121     for(iidx=0; iidx<nri; iidx++)
122     {
123         /* Load shift vector for this list */
124         i_shift_offset   = DIM*shiftidx[iidx];
125         shX              = shiftvec[i_shift_offset+XX];
126         shY              = shiftvec[i_shift_offset+YY];
127         shZ              = shiftvec[i_shift_offset+ZZ];
128
129         /* Load limits for loop over neighbors */
130         j_index_start    = jindex[iidx];
131         j_index_end      = jindex[iidx+1];
132
133         /* Get outer coordinate index */
134         inr              = iinr[iidx];
135         i_coord_offset   = DIM*inr;
136
137         /* Load i particle coords and add shift vector */
138         ix0              = shX + x[i_coord_offset+DIM*0+XX];
139         iy0              = shY + x[i_coord_offset+DIM*0+YY];
140         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
141
142         fix0             = 0.0;
143         fiy0             = 0.0;
144         fiz0             = 0.0;
145
146         /* Load parameters for i particles */
147         iq0              = facel*charge[inr+0];
148
149         /* Reset potential sums */
150         velecsum         = 0.0;
151
152         /* Start inner kernel loop */
153         for(jidx=j_index_start; jidx<j_index_end; jidx++)
154         {
155             /* Get j neighbor index, and coordinate index */
156             jnr              = jjnr[jidx];
157             j_coord_offset   = DIM*jnr;
158
159             /* load j atom coordinates */
160             jx0              = x[j_coord_offset+DIM*0+XX];
161             jy0              = x[j_coord_offset+DIM*0+YY];
162             jz0              = x[j_coord_offset+DIM*0+ZZ];
163
164             /* Calculate displacement vector */
165             dx00             = ix0 - jx0;
166             dy00             = iy0 - jy0;
167             dz00             = iz0 - jz0;
168
169             /* Calculate squared distance and things based on it */
170             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
171
172             rinv00           = gmx_invsqrt(rsq00);
173
174             rinvsq00         = rinv00*rinv00;
175
176             /* Load parameters for j particles */
177             jq0              = charge[jnr+0];
178
179             /**************************
180              * CALCULATE INTERACTIONS *
181              **************************/
182
183             if (rsq00<rcutoff2)
184             {
185
186             r00              = rsq00*rinv00;
187
188             qq00             = iq0*jq0;
189
190             /* EWALD ELECTROSTATICS */
191
192             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
193             ewrt             = r00*ewtabscale;
194             ewitab           = ewrt;
195             eweps            = ewrt-ewitab;
196             ewitab           = 4*ewitab;
197             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
198             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
199             felec            = qq00*rinv00*(rinvsq00-felec);
200
201             d                = r00-rswitch;
202             d                = (d>0.0) ? d : 0.0;
203             d2               = d*d;
204             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
205
206             dsw              = d2*(swF2+d*(swF3+d*swF4));
207
208             /* Evaluate switch function */
209             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
210             felec            = felec*sw - rinv00*velec*dsw;
211             velec           *= sw;
212
213             /* Update potential sums from outer loop */
214             velecsum        += velec;
215
216             fscal            = felec;
217
218             /* Calculate temporary vectorial force */
219             tx               = fscal*dx00;
220             ty               = fscal*dy00;
221             tz               = fscal*dz00;
222
223             /* Update vectorial force */
224             fix0            += tx;
225             fiy0            += ty;
226             fiz0            += tz;
227             f[j_coord_offset+DIM*0+XX] -= tx;
228             f[j_coord_offset+DIM*0+YY] -= ty;
229             f[j_coord_offset+DIM*0+ZZ] -= tz;
230
231             }
232
233             /* Inner loop uses 59 flops */
234         }
235         /* End of innermost loop */
236
237         tx = ty = tz = 0;
238         f[i_coord_offset+DIM*0+XX] += fix0;
239         f[i_coord_offset+DIM*0+YY] += fiy0;
240         f[i_coord_offset+DIM*0+ZZ] += fiz0;
241         tx                         += fix0;
242         ty                         += fiy0;
243         tz                         += fiz0;
244         fshift[i_shift_offset+XX]  += tx;
245         fshift[i_shift_offset+YY]  += ty;
246         fshift[i_shift_offset+ZZ]  += tz;
247
248         ggid                        = gid[iidx];
249         /* Update potential energies */
250         kernel_data->energygrp_elec[ggid] += velecsum;
251
252         /* Increment number of inner iterations */
253         inneriter                  += j_index_end - j_index_start;
254
255         /* Outer loop uses 14 flops */
256     }
257
258     /* Increment number of outer iterations */
259     outeriter        += nri;
260
261     /* Update outer/inner flops */
262
263     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*14 + inneriter*59);
264 }
265 /*
266  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_c
267  * Electrostatics interaction: Ewald
268  * VdW interaction:            None
269  * Geometry:                   Particle-Particle
270  * Calculate force/pot:        Force
271  */
272 void
273 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_c
274                     (t_nblist                    * gmx_restrict       nlist,
275                      rvec                        * gmx_restrict          xx,
276                      rvec                        * gmx_restrict          ff,
277                      t_forcerec                  * gmx_restrict          fr,
278                      t_mdatoms                   * gmx_restrict     mdatoms,
279                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
280                      t_nrnb                      * gmx_restrict        nrnb)
281 {
282     int              i_shift_offset,i_coord_offset,j_coord_offset;
283     int              j_index_start,j_index_end;
284     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
285     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
286     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
287     real             *shiftvec,*fshift,*x,*f;
288     int              vdwioffset0;
289     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
290     int              vdwjidx0;
291     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
292     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
293     real             velec,felec,velecsum,facel,crf,krf,krf2;
294     real             *charge;
295     int              ewitab;
296     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
297     real             *ewtab;
298     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
299
300     x                = xx[0];
301     f                = ff[0];
302
303     nri              = nlist->nri;
304     iinr             = nlist->iinr;
305     jindex           = nlist->jindex;
306     jjnr             = nlist->jjnr;
307     shiftidx         = nlist->shift;
308     gid              = nlist->gid;
309     shiftvec         = fr->shift_vec[0];
310     fshift           = fr->fshift[0];
311     facel            = fr->epsfac;
312     charge           = mdatoms->chargeA;
313
314     sh_ewald         = fr->ic->sh_ewald;
315     ewtab            = fr->ic->tabq_coul_FDV0;
316     ewtabscale       = fr->ic->tabq_scale;
317     ewtabhalfspace   = 0.5/ewtabscale;
318
319     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
320     rcutoff          = fr->rcoulomb;
321     rcutoff2         = rcutoff*rcutoff;
322
323     rswitch          = fr->rcoulomb_switch;
324     /* Setup switch parameters */
325     d                = rcutoff-rswitch;
326     swV3             = -10.0/(d*d*d);
327     swV4             =  15.0/(d*d*d*d);
328     swV5             =  -6.0/(d*d*d*d*d);
329     swF2             = -30.0/(d*d*d);
330     swF3             =  60.0/(d*d*d*d);
331     swF4             = -30.0/(d*d*d*d*d);
332
333     outeriter        = 0;
334     inneriter        = 0;
335
336     /* Start outer loop over neighborlists */
337     for(iidx=0; iidx<nri; iidx++)
338     {
339         /* Load shift vector for this list */
340         i_shift_offset   = DIM*shiftidx[iidx];
341         shX              = shiftvec[i_shift_offset+XX];
342         shY              = shiftvec[i_shift_offset+YY];
343         shZ              = shiftvec[i_shift_offset+ZZ];
344
345         /* Load limits for loop over neighbors */
346         j_index_start    = jindex[iidx];
347         j_index_end      = jindex[iidx+1];
348
349         /* Get outer coordinate index */
350         inr              = iinr[iidx];
351         i_coord_offset   = DIM*inr;
352
353         /* Load i particle coords and add shift vector */
354         ix0              = shX + x[i_coord_offset+DIM*0+XX];
355         iy0              = shY + x[i_coord_offset+DIM*0+YY];
356         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
357
358         fix0             = 0.0;
359         fiy0             = 0.0;
360         fiz0             = 0.0;
361
362         /* Load parameters for i particles */
363         iq0              = facel*charge[inr+0];
364
365         /* Start inner kernel loop */
366         for(jidx=j_index_start; jidx<j_index_end; jidx++)
367         {
368             /* Get j neighbor index, and coordinate index */
369             jnr              = jjnr[jidx];
370             j_coord_offset   = DIM*jnr;
371
372             /* load j atom coordinates */
373             jx0              = x[j_coord_offset+DIM*0+XX];
374             jy0              = x[j_coord_offset+DIM*0+YY];
375             jz0              = x[j_coord_offset+DIM*0+ZZ];
376
377             /* Calculate displacement vector */
378             dx00             = ix0 - jx0;
379             dy00             = iy0 - jy0;
380             dz00             = iz0 - jz0;
381
382             /* Calculate squared distance and things based on it */
383             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
384
385             rinv00           = gmx_invsqrt(rsq00);
386
387             rinvsq00         = rinv00*rinv00;
388
389             /* Load parameters for j particles */
390             jq0              = charge[jnr+0];
391
392             /**************************
393              * CALCULATE INTERACTIONS *
394              **************************/
395
396             if (rsq00<rcutoff2)
397             {
398
399             r00              = rsq00*rinv00;
400
401             qq00             = iq0*jq0;
402
403             /* EWALD ELECTROSTATICS */
404
405             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
406             ewrt             = r00*ewtabscale;
407             ewitab           = ewrt;
408             eweps            = ewrt-ewitab;
409             ewitab           = 4*ewitab;
410             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
411             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
412             felec            = qq00*rinv00*(rinvsq00-felec);
413
414             d                = r00-rswitch;
415             d                = (d>0.0) ? d : 0.0;
416             d2               = d*d;
417             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
418
419             dsw              = d2*(swF2+d*(swF3+d*swF4));
420
421             /* Evaluate switch function */
422             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
423             felec            = felec*sw - rinv00*velec*dsw;
424
425             fscal            = felec;
426
427             /* Calculate temporary vectorial force */
428             tx               = fscal*dx00;
429             ty               = fscal*dy00;
430             tz               = fscal*dz00;
431
432             /* Update vectorial force */
433             fix0            += tx;
434             fiy0            += ty;
435             fiz0            += tz;
436             f[j_coord_offset+DIM*0+XX] -= tx;
437             f[j_coord_offset+DIM*0+YY] -= ty;
438             f[j_coord_offset+DIM*0+ZZ] -= tz;
439
440             }
441
442             /* Inner loop uses 57 flops */
443         }
444         /* End of innermost loop */
445
446         tx = ty = tz = 0;
447         f[i_coord_offset+DIM*0+XX] += fix0;
448         f[i_coord_offset+DIM*0+YY] += fiy0;
449         f[i_coord_offset+DIM*0+ZZ] += fiz0;
450         tx                         += fix0;
451         ty                         += fiy0;
452         tz                         += fiz0;
453         fshift[i_shift_offset+XX]  += tx;
454         fshift[i_shift_offset+YY]  += ty;
455         fshift[i_shift_offset+ZZ]  += tz;
456
457         /* Increment number of inner iterations */
458         inneriter                  += j_index_end - j_index_start;
459
460         /* Outer loop uses 13 flops */
461     }
462
463     /* Increment number of outer iterations */
464     outeriter        += nri;
465
466     /* Update outer/inner flops */
467
468     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*13 + inneriter*57);
469 }