Remove all unnecessary HAVE_CONFIG_H
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwNone_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_c
49  * Electrostatics interaction: Ewald
50  * VdW interaction:            None
51  * Geometry:                   Particle-Particle
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0;
73     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
75     real             velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              ewitab;
78     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
79     real             *ewtab;
80     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
81
82     x                = xx[0];
83     f                = ff[0];
84
85     nri              = nlist->nri;
86     iinr             = nlist->iinr;
87     jindex           = nlist->jindex;
88     jjnr             = nlist->jjnr;
89     shiftidx         = nlist->shift;
90     gid              = nlist->gid;
91     shiftvec         = fr->shift_vec[0];
92     fshift           = fr->fshift[0];
93     facel            = fr->epsfac;
94     charge           = mdatoms->chargeA;
95
96     sh_ewald         = fr->ic->sh_ewald;
97     ewtab            = fr->ic->tabq_coul_FDV0;
98     ewtabscale       = fr->ic->tabq_scale;
99     ewtabhalfspace   = 0.5/ewtabscale;
100
101     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
102     rcutoff          = fr->rcoulomb;
103     rcutoff2         = rcutoff*rcutoff;
104
105     rswitch          = fr->rcoulomb_switch;
106     /* Setup switch parameters */
107     d                = rcutoff-rswitch;
108     swV3             = -10.0/(d*d*d);
109     swV4             =  15.0/(d*d*d*d);
110     swV5             =  -6.0/(d*d*d*d*d);
111     swF2             = -30.0/(d*d*d);
112     swF3             =  60.0/(d*d*d*d);
113     swF4             = -30.0/(d*d*d*d*d);
114
115     outeriter        = 0;
116     inneriter        = 0;
117
118     /* Start outer loop over neighborlists */
119     for(iidx=0; iidx<nri; iidx++)
120     {
121         /* Load shift vector for this list */
122         i_shift_offset   = DIM*shiftidx[iidx];
123         shX              = shiftvec[i_shift_offset+XX];
124         shY              = shiftvec[i_shift_offset+YY];
125         shZ              = shiftvec[i_shift_offset+ZZ];
126
127         /* Load limits for loop over neighbors */
128         j_index_start    = jindex[iidx];
129         j_index_end      = jindex[iidx+1];
130
131         /* Get outer coordinate index */
132         inr              = iinr[iidx];
133         i_coord_offset   = DIM*inr;
134
135         /* Load i particle coords and add shift vector */
136         ix0              = shX + x[i_coord_offset+DIM*0+XX];
137         iy0              = shY + x[i_coord_offset+DIM*0+YY];
138         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
139
140         fix0             = 0.0;
141         fiy0             = 0.0;
142         fiz0             = 0.0;
143
144         /* Load parameters for i particles */
145         iq0              = facel*charge[inr+0];
146
147         /* Reset potential sums */
148         velecsum         = 0.0;
149
150         /* Start inner kernel loop */
151         for(jidx=j_index_start; jidx<j_index_end; jidx++)
152         {
153             /* Get j neighbor index, and coordinate index */
154             jnr              = jjnr[jidx];
155             j_coord_offset   = DIM*jnr;
156
157             /* load j atom coordinates */
158             jx0              = x[j_coord_offset+DIM*0+XX];
159             jy0              = x[j_coord_offset+DIM*0+YY];
160             jz0              = x[j_coord_offset+DIM*0+ZZ];
161
162             /* Calculate displacement vector */
163             dx00             = ix0 - jx0;
164             dy00             = iy0 - jy0;
165             dz00             = iz0 - jz0;
166
167             /* Calculate squared distance and things based on it */
168             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
169
170             rinv00           = gmx_invsqrt(rsq00);
171
172             rinvsq00         = rinv00*rinv00;
173
174             /* Load parameters for j particles */
175             jq0              = charge[jnr+0];
176
177             /**************************
178              * CALCULATE INTERACTIONS *
179              **************************/
180
181             if (rsq00<rcutoff2)
182             {
183
184             r00              = rsq00*rinv00;
185
186             qq00             = iq0*jq0;
187
188             /* EWALD ELECTROSTATICS */
189
190             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
191             ewrt             = r00*ewtabscale;
192             ewitab           = ewrt;
193             eweps            = ewrt-ewitab;
194             ewitab           = 4*ewitab;
195             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
196             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
197             felec            = qq00*rinv00*(rinvsq00-felec);
198
199             d                = r00-rswitch;
200             d                = (d>0.0) ? d : 0.0;
201             d2               = d*d;
202             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
203
204             dsw              = d2*(swF2+d*(swF3+d*swF4));
205
206             /* Evaluate switch function */
207             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
208             felec            = felec*sw - rinv00*velec*dsw;
209             velec           *= sw;
210
211             /* Update potential sums from outer loop */
212             velecsum        += velec;
213
214             fscal            = felec;
215
216             /* Calculate temporary vectorial force */
217             tx               = fscal*dx00;
218             ty               = fscal*dy00;
219             tz               = fscal*dz00;
220
221             /* Update vectorial force */
222             fix0            += tx;
223             fiy0            += ty;
224             fiz0            += tz;
225             f[j_coord_offset+DIM*0+XX] -= tx;
226             f[j_coord_offset+DIM*0+YY] -= ty;
227             f[j_coord_offset+DIM*0+ZZ] -= tz;
228
229             }
230
231             /* Inner loop uses 59 flops */
232         }
233         /* End of innermost loop */
234
235         tx = ty = tz = 0;
236         f[i_coord_offset+DIM*0+XX] += fix0;
237         f[i_coord_offset+DIM*0+YY] += fiy0;
238         f[i_coord_offset+DIM*0+ZZ] += fiz0;
239         tx                         += fix0;
240         ty                         += fiy0;
241         tz                         += fiz0;
242         fshift[i_shift_offset+XX]  += tx;
243         fshift[i_shift_offset+YY]  += ty;
244         fshift[i_shift_offset+ZZ]  += tz;
245
246         ggid                        = gid[iidx];
247         /* Update potential energies */
248         kernel_data->energygrp_elec[ggid] += velecsum;
249
250         /* Increment number of inner iterations */
251         inneriter                  += j_index_end - j_index_start;
252
253         /* Outer loop uses 14 flops */
254     }
255
256     /* Increment number of outer iterations */
257     outeriter        += nri;
258
259     /* Update outer/inner flops */
260
261     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*14 + inneriter*59);
262 }
263 /*
264  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_c
265  * Electrostatics interaction: Ewald
266  * VdW interaction:            None
267  * Geometry:                   Particle-Particle
268  * Calculate force/pot:        Force
269  */
270 void
271 nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_c
272                     (t_nblist                    * gmx_restrict       nlist,
273                      rvec                        * gmx_restrict          xx,
274                      rvec                        * gmx_restrict          ff,
275                      t_forcerec                  * gmx_restrict          fr,
276                      t_mdatoms                   * gmx_restrict     mdatoms,
277                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
278                      t_nrnb                      * gmx_restrict        nrnb)
279 {
280     int              i_shift_offset,i_coord_offset,j_coord_offset;
281     int              j_index_start,j_index_end;
282     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
283     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
284     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
285     real             *shiftvec,*fshift,*x,*f;
286     int              vdwioffset0;
287     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
288     int              vdwjidx0;
289     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
290     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
291     real             velec,felec,velecsum,facel,crf,krf,krf2;
292     real             *charge;
293     int              ewitab;
294     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
295     real             *ewtab;
296     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
297
298     x                = xx[0];
299     f                = ff[0];
300
301     nri              = nlist->nri;
302     iinr             = nlist->iinr;
303     jindex           = nlist->jindex;
304     jjnr             = nlist->jjnr;
305     shiftidx         = nlist->shift;
306     gid              = nlist->gid;
307     shiftvec         = fr->shift_vec[0];
308     fshift           = fr->fshift[0];
309     facel            = fr->epsfac;
310     charge           = mdatoms->chargeA;
311
312     sh_ewald         = fr->ic->sh_ewald;
313     ewtab            = fr->ic->tabq_coul_FDV0;
314     ewtabscale       = fr->ic->tabq_scale;
315     ewtabhalfspace   = 0.5/ewtabscale;
316
317     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
318     rcutoff          = fr->rcoulomb;
319     rcutoff2         = rcutoff*rcutoff;
320
321     rswitch          = fr->rcoulomb_switch;
322     /* Setup switch parameters */
323     d                = rcutoff-rswitch;
324     swV3             = -10.0/(d*d*d);
325     swV4             =  15.0/(d*d*d*d);
326     swV5             =  -6.0/(d*d*d*d*d);
327     swF2             = -30.0/(d*d*d);
328     swF3             =  60.0/(d*d*d*d);
329     swF4             = -30.0/(d*d*d*d*d);
330
331     outeriter        = 0;
332     inneriter        = 0;
333
334     /* Start outer loop over neighborlists */
335     for(iidx=0; iidx<nri; iidx++)
336     {
337         /* Load shift vector for this list */
338         i_shift_offset   = DIM*shiftidx[iidx];
339         shX              = shiftvec[i_shift_offset+XX];
340         shY              = shiftvec[i_shift_offset+YY];
341         shZ              = shiftvec[i_shift_offset+ZZ];
342
343         /* Load limits for loop over neighbors */
344         j_index_start    = jindex[iidx];
345         j_index_end      = jindex[iidx+1];
346
347         /* Get outer coordinate index */
348         inr              = iinr[iidx];
349         i_coord_offset   = DIM*inr;
350
351         /* Load i particle coords and add shift vector */
352         ix0              = shX + x[i_coord_offset+DIM*0+XX];
353         iy0              = shY + x[i_coord_offset+DIM*0+YY];
354         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
355
356         fix0             = 0.0;
357         fiy0             = 0.0;
358         fiz0             = 0.0;
359
360         /* Load parameters for i particles */
361         iq0              = facel*charge[inr+0];
362
363         /* Start inner kernel loop */
364         for(jidx=j_index_start; jidx<j_index_end; jidx++)
365         {
366             /* Get j neighbor index, and coordinate index */
367             jnr              = jjnr[jidx];
368             j_coord_offset   = DIM*jnr;
369
370             /* load j atom coordinates */
371             jx0              = x[j_coord_offset+DIM*0+XX];
372             jy0              = x[j_coord_offset+DIM*0+YY];
373             jz0              = x[j_coord_offset+DIM*0+ZZ];
374
375             /* Calculate displacement vector */
376             dx00             = ix0 - jx0;
377             dy00             = iy0 - jy0;
378             dz00             = iz0 - jz0;
379
380             /* Calculate squared distance and things based on it */
381             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
382
383             rinv00           = gmx_invsqrt(rsq00);
384
385             rinvsq00         = rinv00*rinv00;
386
387             /* Load parameters for j particles */
388             jq0              = charge[jnr+0];
389
390             /**************************
391              * CALCULATE INTERACTIONS *
392              **************************/
393
394             if (rsq00<rcutoff2)
395             {
396
397             r00              = rsq00*rinv00;
398
399             qq00             = iq0*jq0;
400
401             /* EWALD ELECTROSTATICS */
402
403             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
404             ewrt             = r00*ewtabscale;
405             ewitab           = ewrt;
406             eweps            = ewrt-ewitab;
407             ewitab           = 4*ewitab;
408             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
409             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
410             felec            = qq00*rinv00*(rinvsq00-felec);
411
412             d                = r00-rswitch;
413             d                = (d>0.0) ? d : 0.0;
414             d2               = d*d;
415             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
416
417             dsw              = d2*(swF2+d*(swF3+d*swF4));
418
419             /* Evaluate switch function */
420             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
421             felec            = felec*sw - rinv00*velec*dsw;
422
423             fscal            = felec;
424
425             /* Calculate temporary vectorial force */
426             tx               = fscal*dx00;
427             ty               = fscal*dy00;
428             tz               = fscal*dz00;
429
430             /* Update vectorial force */
431             fix0            += tx;
432             fiy0            += ty;
433             fiz0            += tz;
434             f[j_coord_offset+DIM*0+XX] -= tx;
435             f[j_coord_offset+DIM*0+YY] -= ty;
436             f[j_coord_offset+DIM*0+ZZ] -= tz;
437
438             }
439
440             /* Inner loop uses 57 flops */
441         }
442         /* End of innermost loop */
443
444         tx = ty = tz = 0;
445         f[i_coord_offset+DIM*0+XX] += fix0;
446         f[i_coord_offset+DIM*0+YY] += fiy0;
447         f[i_coord_offset+DIM*0+ZZ] += fiz0;
448         tx                         += fix0;
449         ty                         += fiy0;
450         tz                         += fiz0;
451         fshift[i_shift_offset+XX]  += tx;
452         fshift[i_shift_offset+YY]  += ty;
453         fshift[i_shift_offset+ZZ]  += tz;
454
455         /* Increment number of inner iterations */
456         inneriter                  += j_index_end - j_index_start;
457
458         /* Outer loop uses 13 flops */
459     }
460
461     /* Increment number of outer iterations */
462     outeriter        += nri;
463
464     /* Update outer/inner flops */
465
466     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*13 + inneriter*57);
467 }