Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwLJSw_GeomW4W4_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4W4_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water4-Water4
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwLJSw_GeomW4W4_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwioffset3;
79     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0;
81     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     int              vdwjidx1;
83     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84     int              vdwjidx2;
85     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86     int              vdwjidx3;
87     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98     real             velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     int              ewitab;
105     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
106     real             *ewtab;
107     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
108
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = fr->epsfac;
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     sh_ewald         = fr->ic->sh_ewald;
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = fr->ic->tabq_scale;
129     ewtabhalfspace   = 0.5/ewtabscale;
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = facel*charge[inr+1];
134     iq2              = facel*charge[inr+2];
135     iq3              = facel*charge[inr+3];
136     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
137
138     jq1              = charge[inr+1];
139     jq2              = charge[inr+2];
140     jq3              = charge[inr+3];
141     vdwjidx0         = 2*vdwtype[inr+0];
142     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
143     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
144     qq11             = iq1*jq1;
145     qq12             = iq1*jq2;
146     qq13             = iq1*jq3;
147     qq21             = iq2*jq1;
148     qq22             = iq2*jq2;
149     qq23             = iq2*jq3;
150     qq31             = iq3*jq1;
151     qq32             = iq3*jq2;
152     qq33             = iq3*jq3;
153
154     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
155     rcutoff          = fr->rcoulomb;
156     rcutoff2         = rcutoff*rcutoff;
157
158     rswitch          = fr->rcoulomb_switch;
159     /* Setup switch parameters */
160     d                = rcutoff-rswitch;
161     swV3             = -10.0/(d*d*d);
162     swV4             =  15.0/(d*d*d*d);
163     swV5             =  -6.0/(d*d*d*d*d);
164     swF2             = -30.0/(d*d*d);
165     swF3             =  60.0/(d*d*d*d);
166     swF4             = -30.0/(d*d*d*d*d);
167
168     outeriter        = 0;
169     inneriter        = 0;
170
171     /* Start outer loop over neighborlists */
172     for(iidx=0; iidx<nri; iidx++)
173     {
174         /* Load shift vector for this list */
175         i_shift_offset   = DIM*shiftidx[iidx];
176         shX              = shiftvec[i_shift_offset+XX];
177         shY              = shiftvec[i_shift_offset+YY];
178         shZ              = shiftvec[i_shift_offset+ZZ];
179
180         /* Load limits for loop over neighbors */
181         j_index_start    = jindex[iidx];
182         j_index_end      = jindex[iidx+1];
183
184         /* Get outer coordinate index */
185         inr              = iinr[iidx];
186         i_coord_offset   = DIM*inr;
187
188         /* Load i particle coords and add shift vector */
189         ix0              = shX + x[i_coord_offset+DIM*0+XX];
190         iy0              = shY + x[i_coord_offset+DIM*0+YY];
191         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
192         ix1              = shX + x[i_coord_offset+DIM*1+XX];
193         iy1              = shY + x[i_coord_offset+DIM*1+YY];
194         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
195         ix2              = shX + x[i_coord_offset+DIM*2+XX];
196         iy2              = shY + x[i_coord_offset+DIM*2+YY];
197         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
198         ix3              = shX + x[i_coord_offset+DIM*3+XX];
199         iy3              = shY + x[i_coord_offset+DIM*3+YY];
200         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
201
202         fix0             = 0.0;
203         fiy0             = 0.0;
204         fiz0             = 0.0;
205         fix1             = 0.0;
206         fiy1             = 0.0;
207         fiz1             = 0.0;
208         fix2             = 0.0;
209         fiy2             = 0.0;
210         fiz2             = 0.0;
211         fix3             = 0.0;
212         fiy3             = 0.0;
213         fiz3             = 0.0;
214
215         /* Reset potential sums */
216         velecsum         = 0.0;
217         vvdwsum          = 0.0;
218
219         /* Start inner kernel loop */
220         for(jidx=j_index_start; jidx<j_index_end; jidx++)
221         {
222             /* Get j neighbor index, and coordinate index */
223             jnr              = jjnr[jidx];
224             j_coord_offset   = DIM*jnr;
225
226             /* load j atom coordinates */
227             jx0              = x[j_coord_offset+DIM*0+XX];
228             jy0              = x[j_coord_offset+DIM*0+YY];
229             jz0              = x[j_coord_offset+DIM*0+ZZ];
230             jx1              = x[j_coord_offset+DIM*1+XX];
231             jy1              = x[j_coord_offset+DIM*1+YY];
232             jz1              = x[j_coord_offset+DIM*1+ZZ];
233             jx2              = x[j_coord_offset+DIM*2+XX];
234             jy2              = x[j_coord_offset+DIM*2+YY];
235             jz2              = x[j_coord_offset+DIM*2+ZZ];
236             jx3              = x[j_coord_offset+DIM*3+XX];
237             jy3              = x[j_coord_offset+DIM*3+YY];
238             jz3              = x[j_coord_offset+DIM*3+ZZ];
239
240             /* Calculate displacement vector */
241             dx00             = ix0 - jx0;
242             dy00             = iy0 - jy0;
243             dz00             = iz0 - jz0;
244             dx11             = ix1 - jx1;
245             dy11             = iy1 - jy1;
246             dz11             = iz1 - jz1;
247             dx12             = ix1 - jx2;
248             dy12             = iy1 - jy2;
249             dz12             = iz1 - jz2;
250             dx13             = ix1 - jx3;
251             dy13             = iy1 - jy3;
252             dz13             = iz1 - jz3;
253             dx21             = ix2 - jx1;
254             dy21             = iy2 - jy1;
255             dz21             = iz2 - jz1;
256             dx22             = ix2 - jx2;
257             dy22             = iy2 - jy2;
258             dz22             = iz2 - jz2;
259             dx23             = ix2 - jx3;
260             dy23             = iy2 - jy3;
261             dz23             = iz2 - jz3;
262             dx31             = ix3 - jx1;
263             dy31             = iy3 - jy1;
264             dz31             = iz3 - jz1;
265             dx32             = ix3 - jx2;
266             dy32             = iy3 - jy2;
267             dz32             = iz3 - jz2;
268             dx33             = ix3 - jx3;
269             dy33             = iy3 - jy3;
270             dz33             = iz3 - jz3;
271
272             /* Calculate squared distance and things based on it */
273             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
274             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
275             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
276             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
277             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
278             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
279             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
280             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
281             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
282             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
283
284             rinv00           = gmx_invsqrt(rsq00);
285             rinv11           = gmx_invsqrt(rsq11);
286             rinv12           = gmx_invsqrt(rsq12);
287             rinv13           = gmx_invsqrt(rsq13);
288             rinv21           = gmx_invsqrt(rsq21);
289             rinv22           = gmx_invsqrt(rsq22);
290             rinv23           = gmx_invsqrt(rsq23);
291             rinv31           = gmx_invsqrt(rsq31);
292             rinv32           = gmx_invsqrt(rsq32);
293             rinv33           = gmx_invsqrt(rsq33);
294
295             rinvsq00         = rinv00*rinv00;
296             rinvsq11         = rinv11*rinv11;
297             rinvsq12         = rinv12*rinv12;
298             rinvsq13         = rinv13*rinv13;
299             rinvsq21         = rinv21*rinv21;
300             rinvsq22         = rinv22*rinv22;
301             rinvsq23         = rinv23*rinv23;
302             rinvsq31         = rinv31*rinv31;
303             rinvsq32         = rinv32*rinv32;
304             rinvsq33         = rinv33*rinv33;
305
306             /**************************
307              * CALCULATE INTERACTIONS *
308              **************************/
309
310             if (rsq00<rcutoff2)
311             {
312
313             r00              = rsq00*rinv00;
314
315             /* LENNARD-JONES DISPERSION/REPULSION */
316
317             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
318             vvdw6            = c6_00*rinvsix;
319             vvdw12           = c12_00*rinvsix*rinvsix;
320             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
321             fvdw             = (vvdw12-vvdw6)*rinvsq00;
322
323             d                = r00-rswitch;
324             d                = (d>0.0) ? d : 0.0;
325             d2               = d*d;
326             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
327
328             dsw              = d2*(swF2+d*(swF3+d*swF4));
329
330             /* Evaluate switch function */
331             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
332             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
333             vvdw            *= sw;
334
335             /* Update potential sums from outer loop */
336             vvdwsum         += vvdw;
337
338             fscal            = fvdw;
339
340             /* Calculate temporary vectorial force */
341             tx               = fscal*dx00;
342             ty               = fscal*dy00;
343             tz               = fscal*dz00;
344
345             /* Update vectorial force */
346             fix0            += tx;
347             fiy0            += ty;
348             fiz0            += tz;
349             f[j_coord_offset+DIM*0+XX] -= tx;
350             f[j_coord_offset+DIM*0+YY] -= ty;
351             f[j_coord_offset+DIM*0+ZZ] -= tz;
352
353             }
354
355             /**************************
356              * CALCULATE INTERACTIONS *
357              **************************/
358
359             if (rsq11<rcutoff2)
360             {
361
362             r11              = rsq11*rinv11;
363
364             /* EWALD ELECTROSTATICS */
365
366             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
367             ewrt             = r11*ewtabscale;
368             ewitab           = ewrt;
369             eweps            = ewrt-ewitab;
370             ewitab           = 4*ewitab;
371             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
372             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
373             felec            = qq11*rinv11*(rinvsq11-felec);
374
375             d                = r11-rswitch;
376             d                = (d>0.0) ? d : 0.0;
377             d2               = d*d;
378             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
379
380             dsw              = d2*(swF2+d*(swF3+d*swF4));
381
382             /* Evaluate switch function */
383             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
384             felec            = felec*sw - rinv11*velec*dsw;
385             velec           *= sw;
386
387             /* Update potential sums from outer loop */
388             velecsum        += velec;
389
390             fscal            = felec;
391
392             /* Calculate temporary vectorial force */
393             tx               = fscal*dx11;
394             ty               = fscal*dy11;
395             tz               = fscal*dz11;
396
397             /* Update vectorial force */
398             fix1            += tx;
399             fiy1            += ty;
400             fiz1            += tz;
401             f[j_coord_offset+DIM*1+XX] -= tx;
402             f[j_coord_offset+DIM*1+YY] -= ty;
403             f[j_coord_offset+DIM*1+ZZ] -= tz;
404
405             }
406
407             /**************************
408              * CALCULATE INTERACTIONS *
409              **************************/
410
411             if (rsq12<rcutoff2)
412             {
413
414             r12              = rsq12*rinv12;
415
416             /* EWALD ELECTROSTATICS */
417
418             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
419             ewrt             = r12*ewtabscale;
420             ewitab           = ewrt;
421             eweps            = ewrt-ewitab;
422             ewitab           = 4*ewitab;
423             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
424             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
425             felec            = qq12*rinv12*(rinvsq12-felec);
426
427             d                = r12-rswitch;
428             d                = (d>0.0) ? d : 0.0;
429             d2               = d*d;
430             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
431
432             dsw              = d2*(swF2+d*(swF3+d*swF4));
433
434             /* Evaluate switch function */
435             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
436             felec            = felec*sw - rinv12*velec*dsw;
437             velec           *= sw;
438
439             /* Update potential sums from outer loop */
440             velecsum        += velec;
441
442             fscal            = felec;
443
444             /* Calculate temporary vectorial force */
445             tx               = fscal*dx12;
446             ty               = fscal*dy12;
447             tz               = fscal*dz12;
448
449             /* Update vectorial force */
450             fix1            += tx;
451             fiy1            += ty;
452             fiz1            += tz;
453             f[j_coord_offset+DIM*2+XX] -= tx;
454             f[j_coord_offset+DIM*2+YY] -= ty;
455             f[j_coord_offset+DIM*2+ZZ] -= tz;
456
457             }
458
459             /**************************
460              * CALCULATE INTERACTIONS *
461              **************************/
462
463             if (rsq13<rcutoff2)
464             {
465
466             r13              = rsq13*rinv13;
467
468             /* EWALD ELECTROSTATICS */
469
470             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
471             ewrt             = r13*ewtabscale;
472             ewitab           = ewrt;
473             eweps            = ewrt-ewitab;
474             ewitab           = 4*ewitab;
475             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
476             velec            = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
477             felec            = qq13*rinv13*(rinvsq13-felec);
478
479             d                = r13-rswitch;
480             d                = (d>0.0) ? d : 0.0;
481             d2               = d*d;
482             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
483
484             dsw              = d2*(swF2+d*(swF3+d*swF4));
485
486             /* Evaluate switch function */
487             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
488             felec            = felec*sw - rinv13*velec*dsw;
489             velec           *= sw;
490
491             /* Update potential sums from outer loop */
492             velecsum        += velec;
493
494             fscal            = felec;
495
496             /* Calculate temporary vectorial force */
497             tx               = fscal*dx13;
498             ty               = fscal*dy13;
499             tz               = fscal*dz13;
500
501             /* Update vectorial force */
502             fix1            += tx;
503             fiy1            += ty;
504             fiz1            += tz;
505             f[j_coord_offset+DIM*3+XX] -= tx;
506             f[j_coord_offset+DIM*3+YY] -= ty;
507             f[j_coord_offset+DIM*3+ZZ] -= tz;
508
509             }
510
511             /**************************
512              * CALCULATE INTERACTIONS *
513              **************************/
514
515             if (rsq21<rcutoff2)
516             {
517
518             r21              = rsq21*rinv21;
519
520             /* EWALD ELECTROSTATICS */
521
522             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
523             ewrt             = r21*ewtabscale;
524             ewitab           = ewrt;
525             eweps            = ewrt-ewitab;
526             ewitab           = 4*ewitab;
527             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
528             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
529             felec            = qq21*rinv21*(rinvsq21-felec);
530
531             d                = r21-rswitch;
532             d                = (d>0.0) ? d : 0.0;
533             d2               = d*d;
534             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
535
536             dsw              = d2*(swF2+d*(swF3+d*swF4));
537
538             /* Evaluate switch function */
539             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
540             felec            = felec*sw - rinv21*velec*dsw;
541             velec           *= sw;
542
543             /* Update potential sums from outer loop */
544             velecsum        += velec;
545
546             fscal            = felec;
547
548             /* Calculate temporary vectorial force */
549             tx               = fscal*dx21;
550             ty               = fscal*dy21;
551             tz               = fscal*dz21;
552
553             /* Update vectorial force */
554             fix2            += tx;
555             fiy2            += ty;
556             fiz2            += tz;
557             f[j_coord_offset+DIM*1+XX] -= tx;
558             f[j_coord_offset+DIM*1+YY] -= ty;
559             f[j_coord_offset+DIM*1+ZZ] -= tz;
560
561             }
562
563             /**************************
564              * CALCULATE INTERACTIONS *
565              **************************/
566
567             if (rsq22<rcutoff2)
568             {
569
570             r22              = rsq22*rinv22;
571
572             /* EWALD ELECTROSTATICS */
573
574             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
575             ewrt             = r22*ewtabscale;
576             ewitab           = ewrt;
577             eweps            = ewrt-ewitab;
578             ewitab           = 4*ewitab;
579             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
580             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
581             felec            = qq22*rinv22*(rinvsq22-felec);
582
583             d                = r22-rswitch;
584             d                = (d>0.0) ? d : 0.0;
585             d2               = d*d;
586             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
587
588             dsw              = d2*(swF2+d*(swF3+d*swF4));
589
590             /* Evaluate switch function */
591             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
592             felec            = felec*sw - rinv22*velec*dsw;
593             velec           *= sw;
594
595             /* Update potential sums from outer loop */
596             velecsum        += velec;
597
598             fscal            = felec;
599
600             /* Calculate temporary vectorial force */
601             tx               = fscal*dx22;
602             ty               = fscal*dy22;
603             tz               = fscal*dz22;
604
605             /* Update vectorial force */
606             fix2            += tx;
607             fiy2            += ty;
608             fiz2            += tz;
609             f[j_coord_offset+DIM*2+XX] -= tx;
610             f[j_coord_offset+DIM*2+YY] -= ty;
611             f[j_coord_offset+DIM*2+ZZ] -= tz;
612
613             }
614
615             /**************************
616              * CALCULATE INTERACTIONS *
617              **************************/
618
619             if (rsq23<rcutoff2)
620             {
621
622             r23              = rsq23*rinv23;
623
624             /* EWALD ELECTROSTATICS */
625
626             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
627             ewrt             = r23*ewtabscale;
628             ewitab           = ewrt;
629             eweps            = ewrt-ewitab;
630             ewitab           = 4*ewitab;
631             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
632             velec            = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
633             felec            = qq23*rinv23*(rinvsq23-felec);
634
635             d                = r23-rswitch;
636             d                = (d>0.0) ? d : 0.0;
637             d2               = d*d;
638             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
639
640             dsw              = d2*(swF2+d*(swF3+d*swF4));
641
642             /* Evaluate switch function */
643             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
644             felec            = felec*sw - rinv23*velec*dsw;
645             velec           *= sw;
646
647             /* Update potential sums from outer loop */
648             velecsum        += velec;
649
650             fscal            = felec;
651
652             /* Calculate temporary vectorial force */
653             tx               = fscal*dx23;
654             ty               = fscal*dy23;
655             tz               = fscal*dz23;
656
657             /* Update vectorial force */
658             fix2            += tx;
659             fiy2            += ty;
660             fiz2            += tz;
661             f[j_coord_offset+DIM*3+XX] -= tx;
662             f[j_coord_offset+DIM*3+YY] -= ty;
663             f[j_coord_offset+DIM*3+ZZ] -= tz;
664
665             }
666
667             /**************************
668              * CALCULATE INTERACTIONS *
669              **************************/
670
671             if (rsq31<rcutoff2)
672             {
673
674             r31              = rsq31*rinv31;
675
676             /* EWALD ELECTROSTATICS */
677
678             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
679             ewrt             = r31*ewtabscale;
680             ewitab           = ewrt;
681             eweps            = ewrt-ewitab;
682             ewitab           = 4*ewitab;
683             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
684             velec            = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
685             felec            = qq31*rinv31*(rinvsq31-felec);
686
687             d                = r31-rswitch;
688             d                = (d>0.0) ? d : 0.0;
689             d2               = d*d;
690             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
691
692             dsw              = d2*(swF2+d*(swF3+d*swF4));
693
694             /* Evaluate switch function */
695             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
696             felec            = felec*sw - rinv31*velec*dsw;
697             velec           *= sw;
698
699             /* Update potential sums from outer loop */
700             velecsum        += velec;
701
702             fscal            = felec;
703
704             /* Calculate temporary vectorial force */
705             tx               = fscal*dx31;
706             ty               = fscal*dy31;
707             tz               = fscal*dz31;
708
709             /* Update vectorial force */
710             fix3            += tx;
711             fiy3            += ty;
712             fiz3            += tz;
713             f[j_coord_offset+DIM*1+XX] -= tx;
714             f[j_coord_offset+DIM*1+YY] -= ty;
715             f[j_coord_offset+DIM*1+ZZ] -= tz;
716
717             }
718
719             /**************************
720              * CALCULATE INTERACTIONS *
721              **************************/
722
723             if (rsq32<rcutoff2)
724             {
725
726             r32              = rsq32*rinv32;
727
728             /* EWALD ELECTROSTATICS */
729
730             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
731             ewrt             = r32*ewtabscale;
732             ewitab           = ewrt;
733             eweps            = ewrt-ewitab;
734             ewitab           = 4*ewitab;
735             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
736             velec            = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
737             felec            = qq32*rinv32*(rinvsq32-felec);
738
739             d                = r32-rswitch;
740             d                = (d>0.0) ? d : 0.0;
741             d2               = d*d;
742             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
743
744             dsw              = d2*(swF2+d*(swF3+d*swF4));
745
746             /* Evaluate switch function */
747             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
748             felec            = felec*sw - rinv32*velec*dsw;
749             velec           *= sw;
750
751             /* Update potential sums from outer loop */
752             velecsum        += velec;
753
754             fscal            = felec;
755
756             /* Calculate temporary vectorial force */
757             tx               = fscal*dx32;
758             ty               = fscal*dy32;
759             tz               = fscal*dz32;
760
761             /* Update vectorial force */
762             fix3            += tx;
763             fiy3            += ty;
764             fiz3            += tz;
765             f[j_coord_offset+DIM*2+XX] -= tx;
766             f[j_coord_offset+DIM*2+YY] -= ty;
767             f[j_coord_offset+DIM*2+ZZ] -= tz;
768
769             }
770
771             /**************************
772              * CALCULATE INTERACTIONS *
773              **************************/
774
775             if (rsq33<rcutoff2)
776             {
777
778             r33              = rsq33*rinv33;
779
780             /* EWALD ELECTROSTATICS */
781
782             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
783             ewrt             = r33*ewtabscale;
784             ewitab           = ewrt;
785             eweps            = ewrt-ewitab;
786             ewitab           = 4*ewitab;
787             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
788             velec            = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
789             felec            = qq33*rinv33*(rinvsq33-felec);
790
791             d                = r33-rswitch;
792             d                = (d>0.0) ? d : 0.0;
793             d2               = d*d;
794             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
795
796             dsw              = d2*(swF2+d*(swF3+d*swF4));
797
798             /* Evaluate switch function */
799             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
800             felec            = felec*sw - rinv33*velec*dsw;
801             velec           *= sw;
802
803             /* Update potential sums from outer loop */
804             velecsum        += velec;
805
806             fscal            = felec;
807
808             /* Calculate temporary vectorial force */
809             tx               = fscal*dx33;
810             ty               = fscal*dy33;
811             tz               = fscal*dz33;
812
813             /* Update vectorial force */
814             fix3            += tx;
815             fiy3            += ty;
816             fiz3            += tz;
817             f[j_coord_offset+DIM*3+XX] -= tx;
818             f[j_coord_offset+DIM*3+YY] -= ty;
819             f[j_coord_offset+DIM*3+ZZ] -= tz;
820
821             }
822
823             /* Inner loop uses 575 flops */
824         }
825         /* End of innermost loop */
826
827         tx = ty = tz = 0;
828         f[i_coord_offset+DIM*0+XX] += fix0;
829         f[i_coord_offset+DIM*0+YY] += fiy0;
830         f[i_coord_offset+DIM*0+ZZ] += fiz0;
831         tx                         += fix0;
832         ty                         += fiy0;
833         tz                         += fiz0;
834         f[i_coord_offset+DIM*1+XX] += fix1;
835         f[i_coord_offset+DIM*1+YY] += fiy1;
836         f[i_coord_offset+DIM*1+ZZ] += fiz1;
837         tx                         += fix1;
838         ty                         += fiy1;
839         tz                         += fiz1;
840         f[i_coord_offset+DIM*2+XX] += fix2;
841         f[i_coord_offset+DIM*2+YY] += fiy2;
842         f[i_coord_offset+DIM*2+ZZ] += fiz2;
843         tx                         += fix2;
844         ty                         += fiy2;
845         tz                         += fiz2;
846         f[i_coord_offset+DIM*3+XX] += fix3;
847         f[i_coord_offset+DIM*3+YY] += fiy3;
848         f[i_coord_offset+DIM*3+ZZ] += fiz3;
849         tx                         += fix3;
850         ty                         += fiy3;
851         tz                         += fiz3;
852         fshift[i_shift_offset+XX]  += tx;
853         fshift[i_shift_offset+YY]  += ty;
854         fshift[i_shift_offset+ZZ]  += tz;
855
856         ggid                        = gid[iidx];
857         /* Update potential energies */
858         kernel_data->energygrp_elec[ggid] += velecsum;
859         kernel_data->energygrp_vdw[ggid] += vvdwsum;
860
861         /* Increment number of inner iterations */
862         inneriter                  += j_index_end - j_index_start;
863
864         /* Outer loop uses 41 flops */
865     }
866
867     /* Increment number of outer iterations */
868     outeriter        += nri;
869
870     /* Update outer/inner flops */
871
872     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*575);
873 }
874 /*
875  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW4W4_F_c
876  * Electrostatics interaction: Ewald
877  * VdW interaction:            LennardJones
878  * Geometry:                   Water4-Water4
879  * Calculate force/pot:        Force
880  */
881 void
882 nb_kernel_ElecEwSw_VdwLJSw_GeomW4W4_F_c
883                     (t_nblist                    * gmx_restrict       nlist,
884                      rvec                        * gmx_restrict          xx,
885                      rvec                        * gmx_restrict          ff,
886                      t_forcerec                  * gmx_restrict          fr,
887                      t_mdatoms                   * gmx_restrict     mdatoms,
888                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
889                      t_nrnb                      * gmx_restrict        nrnb)
890 {
891     int              i_shift_offset,i_coord_offset,j_coord_offset;
892     int              j_index_start,j_index_end;
893     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
894     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
895     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
896     real             *shiftvec,*fshift,*x,*f;
897     int              vdwioffset0;
898     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
899     int              vdwioffset1;
900     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
901     int              vdwioffset2;
902     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
903     int              vdwioffset3;
904     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
905     int              vdwjidx0;
906     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
907     int              vdwjidx1;
908     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
909     int              vdwjidx2;
910     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
911     int              vdwjidx3;
912     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
913     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
914     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
915     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
916     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
917     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
918     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
919     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
920     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
921     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
922     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
923     real             velec,felec,velecsum,facel,crf,krf,krf2;
924     real             *charge;
925     int              nvdwtype;
926     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
927     int              *vdwtype;
928     real             *vdwparam;
929     int              ewitab;
930     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
931     real             *ewtab;
932     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
933
934     x                = xx[0];
935     f                = ff[0];
936
937     nri              = nlist->nri;
938     iinr             = nlist->iinr;
939     jindex           = nlist->jindex;
940     jjnr             = nlist->jjnr;
941     shiftidx         = nlist->shift;
942     gid              = nlist->gid;
943     shiftvec         = fr->shift_vec[0];
944     fshift           = fr->fshift[0];
945     facel            = fr->epsfac;
946     charge           = mdatoms->chargeA;
947     nvdwtype         = fr->ntype;
948     vdwparam         = fr->nbfp;
949     vdwtype          = mdatoms->typeA;
950
951     sh_ewald         = fr->ic->sh_ewald;
952     ewtab            = fr->ic->tabq_coul_FDV0;
953     ewtabscale       = fr->ic->tabq_scale;
954     ewtabhalfspace   = 0.5/ewtabscale;
955
956     /* Setup water-specific parameters */
957     inr              = nlist->iinr[0];
958     iq1              = facel*charge[inr+1];
959     iq2              = facel*charge[inr+2];
960     iq3              = facel*charge[inr+3];
961     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
962
963     jq1              = charge[inr+1];
964     jq2              = charge[inr+2];
965     jq3              = charge[inr+3];
966     vdwjidx0         = 2*vdwtype[inr+0];
967     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
968     c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
969     qq11             = iq1*jq1;
970     qq12             = iq1*jq2;
971     qq13             = iq1*jq3;
972     qq21             = iq2*jq1;
973     qq22             = iq2*jq2;
974     qq23             = iq2*jq3;
975     qq31             = iq3*jq1;
976     qq32             = iq3*jq2;
977     qq33             = iq3*jq3;
978
979     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
980     rcutoff          = fr->rcoulomb;
981     rcutoff2         = rcutoff*rcutoff;
982
983     rswitch          = fr->rcoulomb_switch;
984     /* Setup switch parameters */
985     d                = rcutoff-rswitch;
986     swV3             = -10.0/(d*d*d);
987     swV4             =  15.0/(d*d*d*d);
988     swV5             =  -6.0/(d*d*d*d*d);
989     swF2             = -30.0/(d*d*d);
990     swF3             =  60.0/(d*d*d*d);
991     swF4             = -30.0/(d*d*d*d*d);
992
993     outeriter        = 0;
994     inneriter        = 0;
995
996     /* Start outer loop over neighborlists */
997     for(iidx=0; iidx<nri; iidx++)
998     {
999         /* Load shift vector for this list */
1000         i_shift_offset   = DIM*shiftidx[iidx];
1001         shX              = shiftvec[i_shift_offset+XX];
1002         shY              = shiftvec[i_shift_offset+YY];
1003         shZ              = shiftvec[i_shift_offset+ZZ];
1004
1005         /* Load limits for loop over neighbors */
1006         j_index_start    = jindex[iidx];
1007         j_index_end      = jindex[iidx+1];
1008
1009         /* Get outer coordinate index */
1010         inr              = iinr[iidx];
1011         i_coord_offset   = DIM*inr;
1012
1013         /* Load i particle coords and add shift vector */
1014         ix0              = shX + x[i_coord_offset+DIM*0+XX];
1015         iy0              = shY + x[i_coord_offset+DIM*0+YY];
1016         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
1017         ix1              = shX + x[i_coord_offset+DIM*1+XX];
1018         iy1              = shY + x[i_coord_offset+DIM*1+YY];
1019         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
1020         ix2              = shX + x[i_coord_offset+DIM*2+XX];
1021         iy2              = shY + x[i_coord_offset+DIM*2+YY];
1022         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
1023         ix3              = shX + x[i_coord_offset+DIM*3+XX];
1024         iy3              = shY + x[i_coord_offset+DIM*3+YY];
1025         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
1026
1027         fix0             = 0.0;
1028         fiy0             = 0.0;
1029         fiz0             = 0.0;
1030         fix1             = 0.0;
1031         fiy1             = 0.0;
1032         fiz1             = 0.0;
1033         fix2             = 0.0;
1034         fiy2             = 0.0;
1035         fiz2             = 0.0;
1036         fix3             = 0.0;
1037         fiy3             = 0.0;
1038         fiz3             = 0.0;
1039
1040         /* Start inner kernel loop */
1041         for(jidx=j_index_start; jidx<j_index_end; jidx++)
1042         {
1043             /* Get j neighbor index, and coordinate index */
1044             jnr              = jjnr[jidx];
1045             j_coord_offset   = DIM*jnr;
1046
1047             /* load j atom coordinates */
1048             jx0              = x[j_coord_offset+DIM*0+XX];
1049             jy0              = x[j_coord_offset+DIM*0+YY];
1050             jz0              = x[j_coord_offset+DIM*0+ZZ];
1051             jx1              = x[j_coord_offset+DIM*1+XX];
1052             jy1              = x[j_coord_offset+DIM*1+YY];
1053             jz1              = x[j_coord_offset+DIM*1+ZZ];
1054             jx2              = x[j_coord_offset+DIM*2+XX];
1055             jy2              = x[j_coord_offset+DIM*2+YY];
1056             jz2              = x[j_coord_offset+DIM*2+ZZ];
1057             jx3              = x[j_coord_offset+DIM*3+XX];
1058             jy3              = x[j_coord_offset+DIM*3+YY];
1059             jz3              = x[j_coord_offset+DIM*3+ZZ];
1060
1061             /* Calculate displacement vector */
1062             dx00             = ix0 - jx0;
1063             dy00             = iy0 - jy0;
1064             dz00             = iz0 - jz0;
1065             dx11             = ix1 - jx1;
1066             dy11             = iy1 - jy1;
1067             dz11             = iz1 - jz1;
1068             dx12             = ix1 - jx2;
1069             dy12             = iy1 - jy2;
1070             dz12             = iz1 - jz2;
1071             dx13             = ix1 - jx3;
1072             dy13             = iy1 - jy3;
1073             dz13             = iz1 - jz3;
1074             dx21             = ix2 - jx1;
1075             dy21             = iy2 - jy1;
1076             dz21             = iz2 - jz1;
1077             dx22             = ix2 - jx2;
1078             dy22             = iy2 - jy2;
1079             dz22             = iz2 - jz2;
1080             dx23             = ix2 - jx3;
1081             dy23             = iy2 - jy3;
1082             dz23             = iz2 - jz3;
1083             dx31             = ix3 - jx1;
1084             dy31             = iy3 - jy1;
1085             dz31             = iz3 - jz1;
1086             dx32             = ix3 - jx2;
1087             dy32             = iy3 - jy2;
1088             dz32             = iz3 - jz2;
1089             dx33             = ix3 - jx3;
1090             dy33             = iy3 - jy3;
1091             dz33             = iz3 - jz3;
1092
1093             /* Calculate squared distance and things based on it */
1094             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
1095             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
1096             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
1097             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
1098             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
1099             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
1100             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
1101             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
1102             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
1103             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
1104
1105             rinv00           = gmx_invsqrt(rsq00);
1106             rinv11           = gmx_invsqrt(rsq11);
1107             rinv12           = gmx_invsqrt(rsq12);
1108             rinv13           = gmx_invsqrt(rsq13);
1109             rinv21           = gmx_invsqrt(rsq21);
1110             rinv22           = gmx_invsqrt(rsq22);
1111             rinv23           = gmx_invsqrt(rsq23);
1112             rinv31           = gmx_invsqrt(rsq31);
1113             rinv32           = gmx_invsqrt(rsq32);
1114             rinv33           = gmx_invsqrt(rsq33);
1115
1116             rinvsq00         = rinv00*rinv00;
1117             rinvsq11         = rinv11*rinv11;
1118             rinvsq12         = rinv12*rinv12;
1119             rinvsq13         = rinv13*rinv13;
1120             rinvsq21         = rinv21*rinv21;
1121             rinvsq22         = rinv22*rinv22;
1122             rinvsq23         = rinv23*rinv23;
1123             rinvsq31         = rinv31*rinv31;
1124             rinvsq32         = rinv32*rinv32;
1125             rinvsq33         = rinv33*rinv33;
1126
1127             /**************************
1128              * CALCULATE INTERACTIONS *
1129              **************************/
1130
1131             if (rsq00<rcutoff2)
1132             {
1133
1134             r00              = rsq00*rinv00;
1135
1136             /* LENNARD-JONES DISPERSION/REPULSION */
1137
1138             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
1139             vvdw6            = c6_00*rinvsix;
1140             vvdw12           = c12_00*rinvsix*rinvsix;
1141             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
1142             fvdw             = (vvdw12-vvdw6)*rinvsq00;
1143
1144             d                = r00-rswitch;
1145             d                = (d>0.0) ? d : 0.0;
1146             d2               = d*d;
1147             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1148
1149             dsw              = d2*(swF2+d*(swF3+d*swF4));
1150
1151             /* Evaluate switch function */
1152             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1153             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
1154
1155             fscal            = fvdw;
1156
1157             /* Calculate temporary vectorial force */
1158             tx               = fscal*dx00;
1159             ty               = fscal*dy00;
1160             tz               = fscal*dz00;
1161
1162             /* Update vectorial force */
1163             fix0            += tx;
1164             fiy0            += ty;
1165             fiz0            += tz;
1166             f[j_coord_offset+DIM*0+XX] -= tx;
1167             f[j_coord_offset+DIM*0+YY] -= ty;
1168             f[j_coord_offset+DIM*0+ZZ] -= tz;
1169
1170             }
1171
1172             /**************************
1173              * CALCULATE INTERACTIONS *
1174              **************************/
1175
1176             if (rsq11<rcutoff2)
1177             {
1178
1179             r11              = rsq11*rinv11;
1180
1181             /* EWALD ELECTROSTATICS */
1182
1183             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1184             ewrt             = r11*ewtabscale;
1185             ewitab           = ewrt;
1186             eweps            = ewrt-ewitab;
1187             ewitab           = 4*ewitab;
1188             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1189             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1190             felec            = qq11*rinv11*(rinvsq11-felec);
1191
1192             d                = r11-rswitch;
1193             d                = (d>0.0) ? d : 0.0;
1194             d2               = d*d;
1195             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1196
1197             dsw              = d2*(swF2+d*(swF3+d*swF4));
1198
1199             /* Evaluate switch function */
1200             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1201             felec            = felec*sw - rinv11*velec*dsw;
1202
1203             fscal            = felec;
1204
1205             /* Calculate temporary vectorial force */
1206             tx               = fscal*dx11;
1207             ty               = fscal*dy11;
1208             tz               = fscal*dz11;
1209
1210             /* Update vectorial force */
1211             fix1            += tx;
1212             fiy1            += ty;
1213             fiz1            += tz;
1214             f[j_coord_offset+DIM*1+XX] -= tx;
1215             f[j_coord_offset+DIM*1+YY] -= ty;
1216             f[j_coord_offset+DIM*1+ZZ] -= tz;
1217
1218             }
1219
1220             /**************************
1221              * CALCULATE INTERACTIONS *
1222              **************************/
1223
1224             if (rsq12<rcutoff2)
1225             {
1226
1227             r12              = rsq12*rinv12;
1228
1229             /* EWALD ELECTROSTATICS */
1230
1231             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1232             ewrt             = r12*ewtabscale;
1233             ewitab           = ewrt;
1234             eweps            = ewrt-ewitab;
1235             ewitab           = 4*ewitab;
1236             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1237             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1238             felec            = qq12*rinv12*(rinvsq12-felec);
1239
1240             d                = r12-rswitch;
1241             d                = (d>0.0) ? d : 0.0;
1242             d2               = d*d;
1243             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1244
1245             dsw              = d2*(swF2+d*(swF3+d*swF4));
1246
1247             /* Evaluate switch function */
1248             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1249             felec            = felec*sw - rinv12*velec*dsw;
1250
1251             fscal            = felec;
1252
1253             /* Calculate temporary vectorial force */
1254             tx               = fscal*dx12;
1255             ty               = fscal*dy12;
1256             tz               = fscal*dz12;
1257
1258             /* Update vectorial force */
1259             fix1            += tx;
1260             fiy1            += ty;
1261             fiz1            += tz;
1262             f[j_coord_offset+DIM*2+XX] -= tx;
1263             f[j_coord_offset+DIM*2+YY] -= ty;
1264             f[j_coord_offset+DIM*2+ZZ] -= tz;
1265
1266             }
1267
1268             /**************************
1269              * CALCULATE INTERACTIONS *
1270              **************************/
1271
1272             if (rsq13<rcutoff2)
1273             {
1274
1275             r13              = rsq13*rinv13;
1276
1277             /* EWALD ELECTROSTATICS */
1278
1279             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1280             ewrt             = r13*ewtabscale;
1281             ewitab           = ewrt;
1282             eweps            = ewrt-ewitab;
1283             ewitab           = 4*ewitab;
1284             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1285             velec            = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1286             felec            = qq13*rinv13*(rinvsq13-felec);
1287
1288             d                = r13-rswitch;
1289             d                = (d>0.0) ? d : 0.0;
1290             d2               = d*d;
1291             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1292
1293             dsw              = d2*(swF2+d*(swF3+d*swF4));
1294
1295             /* Evaluate switch function */
1296             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1297             felec            = felec*sw - rinv13*velec*dsw;
1298
1299             fscal            = felec;
1300
1301             /* Calculate temporary vectorial force */
1302             tx               = fscal*dx13;
1303             ty               = fscal*dy13;
1304             tz               = fscal*dz13;
1305
1306             /* Update vectorial force */
1307             fix1            += tx;
1308             fiy1            += ty;
1309             fiz1            += tz;
1310             f[j_coord_offset+DIM*3+XX] -= tx;
1311             f[j_coord_offset+DIM*3+YY] -= ty;
1312             f[j_coord_offset+DIM*3+ZZ] -= tz;
1313
1314             }
1315
1316             /**************************
1317              * CALCULATE INTERACTIONS *
1318              **************************/
1319
1320             if (rsq21<rcutoff2)
1321             {
1322
1323             r21              = rsq21*rinv21;
1324
1325             /* EWALD ELECTROSTATICS */
1326
1327             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1328             ewrt             = r21*ewtabscale;
1329             ewitab           = ewrt;
1330             eweps            = ewrt-ewitab;
1331             ewitab           = 4*ewitab;
1332             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1333             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1334             felec            = qq21*rinv21*(rinvsq21-felec);
1335
1336             d                = r21-rswitch;
1337             d                = (d>0.0) ? d : 0.0;
1338             d2               = d*d;
1339             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1340
1341             dsw              = d2*(swF2+d*(swF3+d*swF4));
1342
1343             /* Evaluate switch function */
1344             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1345             felec            = felec*sw - rinv21*velec*dsw;
1346
1347             fscal            = felec;
1348
1349             /* Calculate temporary vectorial force */
1350             tx               = fscal*dx21;
1351             ty               = fscal*dy21;
1352             tz               = fscal*dz21;
1353
1354             /* Update vectorial force */
1355             fix2            += tx;
1356             fiy2            += ty;
1357             fiz2            += tz;
1358             f[j_coord_offset+DIM*1+XX] -= tx;
1359             f[j_coord_offset+DIM*1+YY] -= ty;
1360             f[j_coord_offset+DIM*1+ZZ] -= tz;
1361
1362             }
1363
1364             /**************************
1365              * CALCULATE INTERACTIONS *
1366              **************************/
1367
1368             if (rsq22<rcutoff2)
1369             {
1370
1371             r22              = rsq22*rinv22;
1372
1373             /* EWALD ELECTROSTATICS */
1374
1375             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1376             ewrt             = r22*ewtabscale;
1377             ewitab           = ewrt;
1378             eweps            = ewrt-ewitab;
1379             ewitab           = 4*ewitab;
1380             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1381             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1382             felec            = qq22*rinv22*(rinvsq22-felec);
1383
1384             d                = r22-rswitch;
1385             d                = (d>0.0) ? d : 0.0;
1386             d2               = d*d;
1387             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1388
1389             dsw              = d2*(swF2+d*(swF3+d*swF4));
1390
1391             /* Evaluate switch function */
1392             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1393             felec            = felec*sw - rinv22*velec*dsw;
1394
1395             fscal            = felec;
1396
1397             /* Calculate temporary vectorial force */
1398             tx               = fscal*dx22;
1399             ty               = fscal*dy22;
1400             tz               = fscal*dz22;
1401
1402             /* Update vectorial force */
1403             fix2            += tx;
1404             fiy2            += ty;
1405             fiz2            += tz;
1406             f[j_coord_offset+DIM*2+XX] -= tx;
1407             f[j_coord_offset+DIM*2+YY] -= ty;
1408             f[j_coord_offset+DIM*2+ZZ] -= tz;
1409
1410             }
1411
1412             /**************************
1413              * CALCULATE INTERACTIONS *
1414              **************************/
1415
1416             if (rsq23<rcutoff2)
1417             {
1418
1419             r23              = rsq23*rinv23;
1420
1421             /* EWALD ELECTROSTATICS */
1422
1423             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1424             ewrt             = r23*ewtabscale;
1425             ewitab           = ewrt;
1426             eweps            = ewrt-ewitab;
1427             ewitab           = 4*ewitab;
1428             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1429             velec            = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1430             felec            = qq23*rinv23*(rinvsq23-felec);
1431
1432             d                = r23-rswitch;
1433             d                = (d>0.0) ? d : 0.0;
1434             d2               = d*d;
1435             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1436
1437             dsw              = d2*(swF2+d*(swF3+d*swF4));
1438
1439             /* Evaluate switch function */
1440             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1441             felec            = felec*sw - rinv23*velec*dsw;
1442
1443             fscal            = felec;
1444
1445             /* Calculate temporary vectorial force */
1446             tx               = fscal*dx23;
1447             ty               = fscal*dy23;
1448             tz               = fscal*dz23;
1449
1450             /* Update vectorial force */
1451             fix2            += tx;
1452             fiy2            += ty;
1453             fiz2            += tz;
1454             f[j_coord_offset+DIM*3+XX] -= tx;
1455             f[j_coord_offset+DIM*3+YY] -= ty;
1456             f[j_coord_offset+DIM*3+ZZ] -= tz;
1457
1458             }
1459
1460             /**************************
1461              * CALCULATE INTERACTIONS *
1462              **************************/
1463
1464             if (rsq31<rcutoff2)
1465             {
1466
1467             r31              = rsq31*rinv31;
1468
1469             /* EWALD ELECTROSTATICS */
1470
1471             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1472             ewrt             = r31*ewtabscale;
1473             ewitab           = ewrt;
1474             eweps            = ewrt-ewitab;
1475             ewitab           = 4*ewitab;
1476             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1477             velec            = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1478             felec            = qq31*rinv31*(rinvsq31-felec);
1479
1480             d                = r31-rswitch;
1481             d                = (d>0.0) ? d : 0.0;
1482             d2               = d*d;
1483             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1484
1485             dsw              = d2*(swF2+d*(swF3+d*swF4));
1486
1487             /* Evaluate switch function */
1488             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1489             felec            = felec*sw - rinv31*velec*dsw;
1490
1491             fscal            = felec;
1492
1493             /* Calculate temporary vectorial force */
1494             tx               = fscal*dx31;
1495             ty               = fscal*dy31;
1496             tz               = fscal*dz31;
1497
1498             /* Update vectorial force */
1499             fix3            += tx;
1500             fiy3            += ty;
1501             fiz3            += tz;
1502             f[j_coord_offset+DIM*1+XX] -= tx;
1503             f[j_coord_offset+DIM*1+YY] -= ty;
1504             f[j_coord_offset+DIM*1+ZZ] -= tz;
1505
1506             }
1507
1508             /**************************
1509              * CALCULATE INTERACTIONS *
1510              **************************/
1511
1512             if (rsq32<rcutoff2)
1513             {
1514
1515             r32              = rsq32*rinv32;
1516
1517             /* EWALD ELECTROSTATICS */
1518
1519             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1520             ewrt             = r32*ewtabscale;
1521             ewitab           = ewrt;
1522             eweps            = ewrt-ewitab;
1523             ewitab           = 4*ewitab;
1524             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1525             velec            = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1526             felec            = qq32*rinv32*(rinvsq32-felec);
1527
1528             d                = r32-rswitch;
1529             d                = (d>0.0) ? d : 0.0;
1530             d2               = d*d;
1531             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1532
1533             dsw              = d2*(swF2+d*(swF3+d*swF4));
1534
1535             /* Evaluate switch function */
1536             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1537             felec            = felec*sw - rinv32*velec*dsw;
1538
1539             fscal            = felec;
1540
1541             /* Calculate temporary vectorial force */
1542             tx               = fscal*dx32;
1543             ty               = fscal*dy32;
1544             tz               = fscal*dz32;
1545
1546             /* Update vectorial force */
1547             fix3            += tx;
1548             fiy3            += ty;
1549             fiz3            += tz;
1550             f[j_coord_offset+DIM*2+XX] -= tx;
1551             f[j_coord_offset+DIM*2+YY] -= ty;
1552             f[j_coord_offset+DIM*2+ZZ] -= tz;
1553
1554             }
1555
1556             /**************************
1557              * CALCULATE INTERACTIONS *
1558              **************************/
1559
1560             if (rsq33<rcutoff2)
1561             {
1562
1563             r33              = rsq33*rinv33;
1564
1565             /* EWALD ELECTROSTATICS */
1566
1567             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1568             ewrt             = r33*ewtabscale;
1569             ewitab           = ewrt;
1570             eweps            = ewrt-ewitab;
1571             ewitab           = 4*ewitab;
1572             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1573             velec            = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1574             felec            = qq33*rinv33*(rinvsq33-felec);
1575
1576             d                = r33-rswitch;
1577             d                = (d>0.0) ? d : 0.0;
1578             d2               = d*d;
1579             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1580
1581             dsw              = d2*(swF2+d*(swF3+d*swF4));
1582
1583             /* Evaluate switch function */
1584             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1585             felec            = felec*sw - rinv33*velec*dsw;
1586
1587             fscal            = felec;
1588
1589             /* Calculate temporary vectorial force */
1590             tx               = fscal*dx33;
1591             ty               = fscal*dy33;
1592             tz               = fscal*dz33;
1593
1594             /* Update vectorial force */
1595             fix3            += tx;
1596             fiy3            += ty;
1597             fiz3            += tz;
1598             f[j_coord_offset+DIM*3+XX] -= tx;
1599             f[j_coord_offset+DIM*3+YY] -= ty;
1600             f[j_coord_offset+DIM*3+ZZ] -= tz;
1601
1602             }
1603
1604             /* Inner loop uses 555 flops */
1605         }
1606         /* End of innermost loop */
1607
1608         tx = ty = tz = 0;
1609         f[i_coord_offset+DIM*0+XX] += fix0;
1610         f[i_coord_offset+DIM*0+YY] += fiy0;
1611         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1612         tx                         += fix0;
1613         ty                         += fiy0;
1614         tz                         += fiz0;
1615         f[i_coord_offset+DIM*1+XX] += fix1;
1616         f[i_coord_offset+DIM*1+YY] += fiy1;
1617         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1618         tx                         += fix1;
1619         ty                         += fiy1;
1620         tz                         += fiz1;
1621         f[i_coord_offset+DIM*2+XX] += fix2;
1622         f[i_coord_offset+DIM*2+YY] += fiy2;
1623         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1624         tx                         += fix2;
1625         ty                         += fiy2;
1626         tz                         += fiz2;
1627         f[i_coord_offset+DIM*3+XX] += fix3;
1628         f[i_coord_offset+DIM*3+YY] += fiy3;
1629         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1630         tx                         += fix3;
1631         ty                         += fiy3;
1632         tz                         += fiz3;
1633         fshift[i_shift_offset+XX]  += tx;
1634         fshift[i_shift_offset+YY]  += ty;
1635         fshift[i_shift_offset+ZZ]  += tz;
1636
1637         /* Increment number of inner iterations */
1638         inneriter                  += j_index_end - j_index_start;
1639
1640         /* Outer loop uses 39 flops */
1641     }
1642
1643     /* Increment number of outer iterations */
1644     outeriter        += nri;
1645
1646     /* Update outer/inner flops */
1647
1648     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*555);
1649 }