Merge origin/release-4-6 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_c.c
1 /*
2  * Note: this file was generated by the Gromacs c kernel generator.
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  * Copyright (c) 2001-2012, The GROMACS Development Team
9  *
10  * Gromacs is a library for molecular simulation and trajectory analysis,
11  * written by Erik Lindahl, David van der Spoel, Berk Hess, and others - for
12  * a full list of developers and information, check out http://www.gromacs.org
13  *
14  * This program is free software; you can redistribute it and/or modify it under
15  * the terms of the GNU Lesser General Public License as published by the Free
16  * Software Foundation; either version 2 of the License, or (at your option) any
17  * later version.
18  *
19  * To help fund GROMACS development, we humbly ask that you cite
20  * the papers people have written on it - you can find them on the website.
21  */
22 #ifdef HAVE_CONFIG_H
23 #include <config.h>
24 #endif
25
26 #include <math.h>
27
28 #include "../nb_kernel.h"
29 #include "types/simple.h"
30 #include "vec.h"
31 #include "nrnb.h"
32
33 /*
34  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_c
35  * Electrostatics interaction: Ewald
36  * VdW interaction:            LennardJones
37  * Geometry:                   Water3-Particle
38  * Calculate force/pot:        PotentialAndForce
39  */
40 void
41 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_c
42                     (t_nblist * gmx_restrict                nlist,
43                      rvec * gmx_restrict                    xx,
44                      rvec * gmx_restrict                    ff,
45                      t_forcerec * gmx_restrict              fr,
46                      t_mdatoms * gmx_restrict               mdatoms,
47                      nb_kernel_data_t * gmx_restrict        kernel_data,
48                      t_nrnb * gmx_restrict                  nrnb)
49 {
50     int              i_shift_offset,i_coord_offset,j_coord_offset;
51     int              j_index_start,j_index_end;
52     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
53     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
54     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
55     real             *shiftvec,*fshift,*x,*f;
56     int              vdwioffset0;
57     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
58     int              vdwioffset1;
59     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
60     int              vdwioffset2;
61     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
62     int              vdwjidx0;
63     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
64     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
65     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
66     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
67     real             velec,felec,velecsum,facel,crf,krf,krf2;
68     real             *charge;
69     int              nvdwtype;
70     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
71     int              *vdwtype;
72     real             *vdwparam;
73     int              ewitab;
74     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
75     real             *ewtab;
76     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
77
78     x                = xx[0];
79     f                = ff[0];
80
81     nri              = nlist->nri;
82     iinr             = nlist->iinr;
83     jindex           = nlist->jindex;
84     jjnr             = nlist->jjnr;
85     shiftidx         = nlist->shift;
86     gid              = nlist->gid;
87     shiftvec         = fr->shift_vec[0];
88     fshift           = fr->fshift[0];
89     facel            = fr->epsfac;
90     charge           = mdatoms->chargeA;
91     nvdwtype         = fr->ntype;
92     vdwparam         = fr->nbfp;
93     vdwtype          = mdatoms->typeA;
94
95     sh_ewald         = fr->ic->sh_ewald;
96     ewtab            = fr->ic->tabq_coul_FDV0;
97     ewtabscale       = fr->ic->tabq_scale;
98     ewtabhalfspace   = 0.5/ewtabscale;
99
100     /* Setup water-specific parameters */
101     inr              = nlist->iinr[0];
102     iq0              = facel*charge[inr+0];
103     iq1              = facel*charge[inr+1];
104     iq2              = facel*charge[inr+2];
105     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
106
107     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
108     rcutoff          = fr->rcoulomb;
109     rcutoff2         = rcutoff*rcutoff;
110
111     rswitch          = fr->rcoulomb_switch;
112     /* Setup switch parameters */
113     d                = rcutoff-rswitch;
114     swV3             = -10.0/(d*d*d);
115     swV4             =  15.0/(d*d*d*d);
116     swV5             =  -6.0/(d*d*d*d*d);
117     swF2             = -30.0/(d*d*d);
118     swF3             =  60.0/(d*d*d*d);
119     swF4             = -30.0/(d*d*d*d*d);
120
121     outeriter        = 0;
122     inneriter        = 0;
123
124     /* Start outer loop over neighborlists */
125     for(iidx=0; iidx<nri; iidx++)
126     {
127         /* Load shift vector for this list */
128         i_shift_offset   = DIM*shiftidx[iidx];
129         shX              = shiftvec[i_shift_offset+XX];
130         shY              = shiftvec[i_shift_offset+YY];
131         shZ              = shiftvec[i_shift_offset+ZZ];
132
133         /* Load limits for loop over neighbors */
134         j_index_start    = jindex[iidx];
135         j_index_end      = jindex[iidx+1];
136
137         /* Get outer coordinate index */
138         inr              = iinr[iidx];
139         i_coord_offset   = DIM*inr;
140
141         /* Load i particle coords and add shift vector */
142         ix0              = shX + x[i_coord_offset+DIM*0+XX];
143         iy0              = shY + x[i_coord_offset+DIM*0+YY];
144         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
145         ix1              = shX + x[i_coord_offset+DIM*1+XX];
146         iy1              = shY + x[i_coord_offset+DIM*1+YY];
147         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
148         ix2              = shX + x[i_coord_offset+DIM*2+XX];
149         iy2              = shY + x[i_coord_offset+DIM*2+YY];
150         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
151
152         fix0             = 0.0;
153         fiy0             = 0.0;
154         fiz0             = 0.0;
155         fix1             = 0.0;
156         fiy1             = 0.0;
157         fiz1             = 0.0;
158         fix2             = 0.0;
159         fiy2             = 0.0;
160         fiz2             = 0.0;
161
162         /* Reset potential sums */
163         velecsum         = 0.0;
164         vvdwsum          = 0.0;
165
166         /* Start inner kernel loop */
167         for(jidx=j_index_start; jidx<j_index_end; jidx++)
168         {
169             /* Get j neighbor index, and coordinate index */
170             jnr              = jjnr[jidx];
171             j_coord_offset   = DIM*jnr;
172
173             /* load j atom coordinates */
174             jx0              = x[j_coord_offset+DIM*0+XX];
175             jy0              = x[j_coord_offset+DIM*0+YY];
176             jz0              = x[j_coord_offset+DIM*0+ZZ];
177
178             /* Calculate displacement vector */
179             dx00             = ix0 - jx0;
180             dy00             = iy0 - jy0;
181             dz00             = iz0 - jz0;
182             dx10             = ix1 - jx0;
183             dy10             = iy1 - jy0;
184             dz10             = iz1 - jz0;
185             dx20             = ix2 - jx0;
186             dy20             = iy2 - jy0;
187             dz20             = iz2 - jz0;
188
189             /* Calculate squared distance and things based on it */
190             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
191             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
192             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
193
194             rinv00           = gmx_invsqrt(rsq00);
195             rinv10           = gmx_invsqrt(rsq10);
196             rinv20           = gmx_invsqrt(rsq20);
197
198             rinvsq00         = rinv00*rinv00;
199             rinvsq10         = rinv10*rinv10;
200             rinvsq20         = rinv20*rinv20;
201
202             /* Load parameters for j particles */
203             jq0              = charge[jnr+0];
204             vdwjidx0         = 2*vdwtype[jnr+0];
205
206             /**************************
207              * CALCULATE INTERACTIONS *
208              **************************/
209
210             if (rsq00<rcutoff2)
211             {
212
213             r00              = rsq00*rinv00;
214
215             qq00             = iq0*jq0;
216             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
217             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
218
219             /* EWALD ELECTROSTATICS */
220
221             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
222             ewrt             = r00*ewtabscale;
223             ewitab           = ewrt;
224             eweps            = ewrt-ewitab;
225             ewitab           = 4*ewitab;
226             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
227             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
228             felec            = qq00*rinv00*(rinvsq00-felec);
229
230             /* LENNARD-JONES DISPERSION/REPULSION */
231
232             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
233             vvdw6            = c6_00*rinvsix;
234             vvdw12           = c12_00*rinvsix*rinvsix;
235             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
236             fvdw             = (vvdw12-vvdw6)*rinvsq00;
237
238             d                = r00-rswitch;
239             d                = (d>0.0) ? d : 0.0;
240             d2               = d*d;
241             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
242
243             dsw              = d2*(swF2+d*(swF3+d*swF4));
244
245             /* Evaluate switch function */
246             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
247             felec            = felec*sw - rinv00*velec*dsw;
248             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
249             velec           *= sw;
250             vvdw            *= sw;
251
252             /* Update potential sums from outer loop */
253             velecsum        += velec;
254             vvdwsum         += vvdw;
255
256             fscal            = felec+fvdw;
257
258             /* Calculate temporary vectorial force */
259             tx               = fscal*dx00;
260             ty               = fscal*dy00;
261             tz               = fscal*dz00;
262
263             /* Update vectorial force */
264             fix0            += tx;
265             fiy0            += ty;
266             fiz0            += tz;
267             f[j_coord_offset+DIM*0+XX] -= tx;
268             f[j_coord_offset+DIM*0+YY] -= ty;
269             f[j_coord_offset+DIM*0+ZZ] -= tz;
270
271             }
272
273             /**************************
274              * CALCULATE INTERACTIONS *
275              **************************/
276
277             if (rsq10<rcutoff2)
278             {
279
280             r10              = rsq10*rinv10;
281
282             qq10             = iq1*jq0;
283
284             /* EWALD ELECTROSTATICS */
285
286             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
287             ewrt             = r10*ewtabscale;
288             ewitab           = ewrt;
289             eweps            = ewrt-ewitab;
290             ewitab           = 4*ewitab;
291             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
292             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
293             felec            = qq10*rinv10*(rinvsq10-felec);
294
295             d                = r10-rswitch;
296             d                = (d>0.0) ? d : 0.0;
297             d2               = d*d;
298             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
299
300             dsw              = d2*(swF2+d*(swF3+d*swF4));
301
302             /* Evaluate switch function */
303             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
304             felec            = felec*sw - rinv10*velec*dsw;
305             velec           *= sw;
306
307             /* Update potential sums from outer loop */
308             velecsum        += velec;
309
310             fscal            = felec;
311
312             /* Calculate temporary vectorial force */
313             tx               = fscal*dx10;
314             ty               = fscal*dy10;
315             tz               = fscal*dz10;
316
317             /* Update vectorial force */
318             fix1            += tx;
319             fiy1            += ty;
320             fiz1            += tz;
321             f[j_coord_offset+DIM*0+XX] -= tx;
322             f[j_coord_offset+DIM*0+YY] -= ty;
323             f[j_coord_offset+DIM*0+ZZ] -= tz;
324
325             }
326
327             /**************************
328              * CALCULATE INTERACTIONS *
329              **************************/
330
331             if (rsq20<rcutoff2)
332             {
333
334             r20              = rsq20*rinv20;
335
336             qq20             = iq2*jq0;
337
338             /* EWALD ELECTROSTATICS */
339
340             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
341             ewrt             = r20*ewtabscale;
342             ewitab           = ewrt;
343             eweps            = ewrt-ewitab;
344             ewitab           = 4*ewitab;
345             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
346             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
347             felec            = qq20*rinv20*(rinvsq20-felec);
348
349             d                = r20-rswitch;
350             d                = (d>0.0) ? d : 0.0;
351             d2               = d*d;
352             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
353
354             dsw              = d2*(swF2+d*(swF3+d*swF4));
355
356             /* Evaluate switch function */
357             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
358             felec            = felec*sw - rinv20*velec*dsw;
359             velec           *= sw;
360
361             /* Update potential sums from outer loop */
362             velecsum        += velec;
363
364             fscal            = felec;
365
366             /* Calculate temporary vectorial force */
367             tx               = fscal*dx20;
368             ty               = fscal*dy20;
369             tz               = fscal*dz20;
370
371             /* Update vectorial force */
372             fix2            += tx;
373             fiy2            += ty;
374             fiz2            += tz;
375             f[j_coord_offset+DIM*0+XX] -= tx;
376             f[j_coord_offset+DIM*0+YY] -= ty;
377             f[j_coord_offset+DIM*0+ZZ] -= tz;
378
379             }
380
381             /* Inner loop uses 193 flops */
382         }
383         /* End of innermost loop */
384
385         tx = ty = tz = 0;
386         f[i_coord_offset+DIM*0+XX] += fix0;
387         f[i_coord_offset+DIM*0+YY] += fiy0;
388         f[i_coord_offset+DIM*0+ZZ] += fiz0;
389         tx                         += fix0;
390         ty                         += fiy0;
391         tz                         += fiz0;
392         f[i_coord_offset+DIM*1+XX] += fix1;
393         f[i_coord_offset+DIM*1+YY] += fiy1;
394         f[i_coord_offset+DIM*1+ZZ] += fiz1;
395         tx                         += fix1;
396         ty                         += fiy1;
397         tz                         += fiz1;
398         f[i_coord_offset+DIM*2+XX] += fix2;
399         f[i_coord_offset+DIM*2+YY] += fiy2;
400         f[i_coord_offset+DIM*2+ZZ] += fiz2;
401         tx                         += fix2;
402         ty                         += fiy2;
403         tz                         += fiz2;
404         fshift[i_shift_offset+XX]  += tx;
405         fshift[i_shift_offset+YY]  += ty;
406         fshift[i_shift_offset+ZZ]  += tz;
407
408         ggid                        = gid[iidx];
409         /* Update potential energies */
410         kernel_data->energygrp_elec[ggid] += velecsum;
411         kernel_data->energygrp_vdw[ggid] += vvdwsum;
412
413         /* Increment number of inner iterations */
414         inneriter                  += j_index_end - j_index_start;
415
416         /* Outer loop uses 32 flops */
417     }
418
419     /* Increment number of outer iterations */
420     outeriter        += nri;
421
422     /* Update outer/inner flops */
423
424     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*193);
425 }
426 /*
427  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_c
428  * Electrostatics interaction: Ewald
429  * VdW interaction:            LennardJones
430  * Geometry:                   Water3-Particle
431  * Calculate force/pot:        Force
432  */
433 void
434 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_c
435                     (t_nblist * gmx_restrict                nlist,
436                      rvec * gmx_restrict                    xx,
437                      rvec * gmx_restrict                    ff,
438                      t_forcerec * gmx_restrict              fr,
439                      t_mdatoms * gmx_restrict               mdatoms,
440                      nb_kernel_data_t * gmx_restrict        kernel_data,
441                      t_nrnb * gmx_restrict                  nrnb)
442 {
443     int              i_shift_offset,i_coord_offset,j_coord_offset;
444     int              j_index_start,j_index_end;
445     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
446     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
447     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
448     real             *shiftvec,*fshift,*x,*f;
449     int              vdwioffset0;
450     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
451     int              vdwioffset1;
452     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
453     int              vdwioffset2;
454     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
455     int              vdwjidx0;
456     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
457     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
458     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
459     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
460     real             velec,felec,velecsum,facel,crf,krf,krf2;
461     real             *charge;
462     int              nvdwtype;
463     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
464     int              *vdwtype;
465     real             *vdwparam;
466     int              ewitab;
467     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
468     real             *ewtab;
469     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
470
471     x                = xx[0];
472     f                = ff[0];
473
474     nri              = nlist->nri;
475     iinr             = nlist->iinr;
476     jindex           = nlist->jindex;
477     jjnr             = nlist->jjnr;
478     shiftidx         = nlist->shift;
479     gid              = nlist->gid;
480     shiftvec         = fr->shift_vec[0];
481     fshift           = fr->fshift[0];
482     facel            = fr->epsfac;
483     charge           = mdatoms->chargeA;
484     nvdwtype         = fr->ntype;
485     vdwparam         = fr->nbfp;
486     vdwtype          = mdatoms->typeA;
487
488     sh_ewald         = fr->ic->sh_ewald;
489     ewtab            = fr->ic->tabq_coul_FDV0;
490     ewtabscale       = fr->ic->tabq_scale;
491     ewtabhalfspace   = 0.5/ewtabscale;
492
493     /* Setup water-specific parameters */
494     inr              = nlist->iinr[0];
495     iq0              = facel*charge[inr+0];
496     iq1              = facel*charge[inr+1];
497     iq2              = facel*charge[inr+2];
498     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
499
500     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
501     rcutoff          = fr->rcoulomb;
502     rcutoff2         = rcutoff*rcutoff;
503
504     rswitch          = fr->rcoulomb_switch;
505     /* Setup switch parameters */
506     d                = rcutoff-rswitch;
507     swV3             = -10.0/(d*d*d);
508     swV4             =  15.0/(d*d*d*d);
509     swV5             =  -6.0/(d*d*d*d*d);
510     swF2             = -30.0/(d*d*d);
511     swF3             =  60.0/(d*d*d*d);
512     swF4             = -30.0/(d*d*d*d*d);
513
514     outeriter        = 0;
515     inneriter        = 0;
516
517     /* Start outer loop over neighborlists */
518     for(iidx=0; iidx<nri; iidx++)
519     {
520         /* Load shift vector for this list */
521         i_shift_offset   = DIM*shiftidx[iidx];
522         shX              = shiftvec[i_shift_offset+XX];
523         shY              = shiftvec[i_shift_offset+YY];
524         shZ              = shiftvec[i_shift_offset+ZZ];
525
526         /* Load limits for loop over neighbors */
527         j_index_start    = jindex[iidx];
528         j_index_end      = jindex[iidx+1];
529
530         /* Get outer coordinate index */
531         inr              = iinr[iidx];
532         i_coord_offset   = DIM*inr;
533
534         /* Load i particle coords and add shift vector */
535         ix0              = shX + x[i_coord_offset+DIM*0+XX];
536         iy0              = shY + x[i_coord_offset+DIM*0+YY];
537         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
538         ix1              = shX + x[i_coord_offset+DIM*1+XX];
539         iy1              = shY + x[i_coord_offset+DIM*1+YY];
540         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
541         ix2              = shX + x[i_coord_offset+DIM*2+XX];
542         iy2              = shY + x[i_coord_offset+DIM*2+YY];
543         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
544
545         fix0             = 0.0;
546         fiy0             = 0.0;
547         fiz0             = 0.0;
548         fix1             = 0.0;
549         fiy1             = 0.0;
550         fiz1             = 0.0;
551         fix2             = 0.0;
552         fiy2             = 0.0;
553         fiz2             = 0.0;
554
555         /* Start inner kernel loop */
556         for(jidx=j_index_start; jidx<j_index_end; jidx++)
557         {
558             /* Get j neighbor index, and coordinate index */
559             jnr              = jjnr[jidx];
560             j_coord_offset   = DIM*jnr;
561
562             /* load j atom coordinates */
563             jx0              = x[j_coord_offset+DIM*0+XX];
564             jy0              = x[j_coord_offset+DIM*0+YY];
565             jz0              = x[j_coord_offset+DIM*0+ZZ];
566
567             /* Calculate displacement vector */
568             dx00             = ix0 - jx0;
569             dy00             = iy0 - jy0;
570             dz00             = iz0 - jz0;
571             dx10             = ix1 - jx0;
572             dy10             = iy1 - jy0;
573             dz10             = iz1 - jz0;
574             dx20             = ix2 - jx0;
575             dy20             = iy2 - jy0;
576             dz20             = iz2 - jz0;
577
578             /* Calculate squared distance and things based on it */
579             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
580             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
581             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
582
583             rinv00           = gmx_invsqrt(rsq00);
584             rinv10           = gmx_invsqrt(rsq10);
585             rinv20           = gmx_invsqrt(rsq20);
586
587             rinvsq00         = rinv00*rinv00;
588             rinvsq10         = rinv10*rinv10;
589             rinvsq20         = rinv20*rinv20;
590
591             /* Load parameters for j particles */
592             jq0              = charge[jnr+0];
593             vdwjidx0         = 2*vdwtype[jnr+0];
594
595             /**************************
596              * CALCULATE INTERACTIONS *
597              **************************/
598
599             if (rsq00<rcutoff2)
600             {
601
602             r00              = rsq00*rinv00;
603
604             qq00             = iq0*jq0;
605             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
606             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
607
608             /* EWALD ELECTROSTATICS */
609
610             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
611             ewrt             = r00*ewtabscale;
612             ewitab           = ewrt;
613             eweps            = ewrt-ewitab;
614             ewitab           = 4*ewitab;
615             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
616             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
617             felec            = qq00*rinv00*(rinvsq00-felec);
618
619             /* LENNARD-JONES DISPERSION/REPULSION */
620
621             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
622             vvdw6            = c6_00*rinvsix;
623             vvdw12           = c12_00*rinvsix*rinvsix;
624             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
625             fvdw             = (vvdw12-vvdw6)*rinvsq00;
626
627             d                = r00-rswitch;
628             d                = (d>0.0) ? d : 0.0;
629             d2               = d*d;
630             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
631
632             dsw              = d2*(swF2+d*(swF3+d*swF4));
633
634             /* Evaluate switch function */
635             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
636             felec            = felec*sw - rinv00*velec*dsw;
637             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
638
639             fscal            = felec+fvdw;
640
641             /* Calculate temporary vectorial force */
642             tx               = fscal*dx00;
643             ty               = fscal*dy00;
644             tz               = fscal*dz00;
645
646             /* Update vectorial force */
647             fix0            += tx;
648             fiy0            += ty;
649             fiz0            += tz;
650             f[j_coord_offset+DIM*0+XX] -= tx;
651             f[j_coord_offset+DIM*0+YY] -= ty;
652             f[j_coord_offset+DIM*0+ZZ] -= tz;
653
654             }
655
656             /**************************
657              * CALCULATE INTERACTIONS *
658              **************************/
659
660             if (rsq10<rcutoff2)
661             {
662
663             r10              = rsq10*rinv10;
664
665             qq10             = iq1*jq0;
666
667             /* EWALD ELECTROSTATICS */
668
669             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
670             ewrt             = r10*ewtabscale;
671             ewitab           = ewrt;
672             eweps            = ewrt-ewitab;
673             ewitab           = 4*ewitab;
674             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
675             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
676             felec            = qq10*rinv10*(rinvsq10-felec);
677
678             d                = r10-rswitch;
679             d                = (d>0.0) ? d : 0.0;
680             d2               = d*d;
681             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
682
683             dsw              = d2*(swF2+d*(swF3+d*swF4));
684
685             /* Evaluate switch function */
686             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
687             felec            = felec*sw - rinv10*velec*dsw;
688
689             fscal            = felec;
690
691             /* Calculate temporary vectorial force */
692             tx               = fscal*dx10;
693             ty               = fscal*dy10;
694             tz               = fscal*dz10;
695
696             /* Update vectorial force */
697             fix1            += tx;
698             fiy1            += ty;
699             fiz1            += tz;
700             f[j_coord_offset+DIM*0+XX] -= tx;
701             f[j_coord_offset+DIM*0+YY] -= ty;
702             f[j_coord_offset+DIM*0+ZZ] -= tz;
703
704             }
705
706             /**************************
707              * CALCULATE INTERACTIONS *
708              **************************/
709
710             if (rsq20<rcutoff2)
711             {
712
713             r20              = rsq20*rinv20;
714
715             qq20             = iq2*jq0;
716
717             /* EWALD ELECTROSTATICS */
718
719             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
720             ewrt             = r20*ewtabscale;
721             ewitab           = ewrt;
722             eweps            = ewrt-ewitab;
723             ewitab           = 4*ewitab;
724             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
725             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
726             felec            = qq20*rinv20*(rinvsq20-felec);
727
728             d                = r20-rswitch;
729             d                = (d>0.0) ? d : 0.0;
730             d2               = d*d;
731             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
732
733             dsw              = d2*(swF2+d*(swF3+d*swF4));
734
735             /* Evaluate switch function */
736             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
737             felec            = felec*sw - rinv20*velec*dsw;
738
739             fscal            = felec;
740
741             /* Calculate temporary vectorial force */
742             tx               = fscal*dx20;
743             ty               = fscal*dy20;
744             tz               = fscal*dz20;
745
746             /* Update vectorial force */
747             fix2            += tx;
748             fiy2            += ty;
749             fiz2            += tz;
750             f[j_coord_offset+DIM*0+XX] -= tx;
751             f[j_coord_offset+DIM*0+YY] -= ty;
752             f[j_coord_offset+DIM*0+ZZ] -= tz;
753
754             }
755
756             /* Inner loop uses 185 flops */
757         }
758         /* End of innermost loop */
759
760         tx = ty = tz = 0;
761         f[i_coord_offset+DIM*0+XX] += fix0;
762         f[i_coord_offset+DIM*0+YY] += fiy0;
763         f[i_coord_offset+DIM*0+ZZ] += fiz0;
764         tx                         += fix0;
765         ty                         += fiy0;
766         tz                         += fiz0;
767         f[i_coord_offset+DIM*1+XX] += fix1;
768         f[i_coord_offset+DIM*1+YY] += fiy1;
769         f[i_coord_offset+DIM*1+ZZ] += fiz1;
770         tx                         += fix1;
771         ty                         += fiy1;
772         tz                         += fiz1;
773         f[i_coord_offset+DIM*2+XX] += fix2;
774         f[i_coord_offset+DIM*2+YY] += fiy2;
775         f[i_coord_offset+DIM*2+ZZ] += fiz2;
776         tx                         += fix2;
777         ty                         += fiy2;
778         tz                         += fiz2;
779         fshift[i_shift_offset+XX]  += tx;
780         fshift[i_shift_offset+YY]  += ty;
781         fshift[i_shift_offset+ZZ]  += tz;
782
783         /* Increment number of inner iterations */
784         inneriter                  += j_index_end - j_index_start;
785
786         /* Outer loop uses 30 flops */
787     }
788
789     /* Increment number of outer iterations */
790     outeriter        += nri;
791
792     /* Update outer/inner flops */
793
794     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*185);
795 }