Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83     real             velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     int              ewitab;
90     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
91     real             *ewtab;
92     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
93
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = fr->epsfac;
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     sh_ewald         = fr->ic->sh_ewald;
112     ewtab            = fr->ic->tabq_coul_FDV0;
113     ewtabscale       = fr->ic->tabq_scale;
114     ewtabhalfspace   = 0.5/ewtabscale;
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = facel*charge[inr+0];
119     iq1              = facel*charge[inr+1];
120     iq2              = facel*charge[inr+2];
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124     rcutoff          = fr->rcoulomb;
125     rcutoff2         = rcutoff*rcutoff;
126
127     rswitch          = fr->rcoulomb_switch;
128     /* Setup switch parameters */
129     d                = rcutoff-rswitch;
130     swV3             = -10.0/(d*d*d);
131     swV4             =  15.0/(d*d*d*d);
132     swV5             =  -6.0/(d*d*d*d*d);
133     swF2             = -30.0/(d*d*d);
134     swF3             =  60.0/(d*d*d*d);
135     swF4             = -30.0/(d*d*d*d*d);
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145         shX              = shiftvec[i_shift_offset+XX];
146         shY              = shiftvec[i_shift_offset+YY];
147         shZ              = shiftvec[i_shift_offset+ZZ];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         ix0              = shX + x[i_coord_offset+DIM*0+XX];
159         iy0              = shY + x[i_coord_offset+DIM*0+YY];
160         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
161         ix1              = shX + x[i_coord_offset+DIM*1+XX];
162         iy1              = shY + x[i_coord_offset+DIM*1+YY];
163         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
164         ix2              = shX + x[i_coord_offset+DIM*2+XX];
165         iy2              = shY + x[i_coord_offset+DIM*2+YY];
166         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
167
168         fix0             = 0.0;
169         fiy0             = 0.0;
170         fiz0             = 0.0;
171         fix1             = 0.0;
172         fiy1             = 0.0;
173         fiz1             = 0.0;
174         fix2             = 0.0;
175         fiy2             = 0.0;
176         fiz2             = 0.0;
177
178         /* Reset potential sums */
179         velecsum         = 0.0;
180         vvdwsum          = 0.0;
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end; jidx++)
184         {
185             /* Get j neighbor index, and coordinate index */
186             jnr              = jjnr[jidx];
187             j_coord_offset   = DIM*jnr;
188
189             /* load j atom coordinates */
190             jx0              = x[j_coord_offset+DIM*0+XX];
191             jy0              = x[j_coord_offset+DIM*0+YY];
192             jz0              = x[j_coord_offset+DIM*0+ZZ];
193
194             /* Calculate displacement vector */
195             dx00             = ix0 - jx0;
196             dy00             = iy0 - jy0;
197             dz00             = iz0 - jz0;
198             dx10             = ix1 - jx0;
199             dy10             = iy1 - jy0;
200             dz10             = iz1 - jz0;
201             dx20             = ix2 - jx0;
202             dy20             = iy2 - jy0;
203             dz20             = iz2 - jz0;
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
207             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
208             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
209
210             rinv00           = gmx_invsqrt(rsq00);
211             rinv10           = gmx_invsqrt(rsq10);
212             rinv20           = gmx_invsqrt(rsq20);
213
214             rinvsq00         = rinv00*rinv00;
215             rinvsq10         = rinv10*rinv10;
216             rinvsq20         = rinv20*rinv20;
217
218             /* Load parameters for j particles */
219             jq0              = charge[jnr+0];
220             vdwjidx0         = 2*vdwtype[jnr+0];
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             if (rsq00<rcutoff2)
227             {
228
229             r00              = rsq00*rinv00;
230
231             qq00             = iq0*jq0;
232             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
233             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
234
235             /* EWALD ELECTROSTATICS */
236
237             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
238             ewrt             = r00*ewtabscale;
239             ewitab           = ewrt;
240             eweps            = ewrt-ewitab;
241             ewitab           = 4*ewitab;
242             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
243             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
244             felec            = qq00*rinv00*(rinvsq00-felec);
245
246             /* LENNARD-JONES DISPERSION/REPULSION */
247
248             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
249             vvdw6            = c6_00*rinvsix;
250             vvdw12           = c12_00*rinvsix*rinvsix;
251             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
252             fvdw             = (vvdw12-vvdw6)*rinvsq00;
253
254             d                = r00-rswitch;
255             d                = (d>0.0) ? d : 0.0;
256             d2               = d*d;
257             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
258
259             dsw              = d2*(swF2+d*(swF3+d*swF4));
260
261             /* Evaluate switch function */
262             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
263             felec            = felec*sw - rinv00*velec*dsw;
264             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
265             velec           *= sw;
266             vvdw            *= sw;
267
268             /* Update potential sums from outer loop */
269             velecsum        += velec;
270             vvdwsum         += vvdw;
271
272             fscal            = felec+fvdw;
273
274             /* Calculate temporary vectorial force */
275             tx               = fscal*dx00;
276             ty               = fscal*dy00;
277             tz               = fscal*dz00;
278
279             /* Update vectorial force */
280             fix0            += tx;
281             fiy0            += ty;
282             fiz0            += tz;
283             f[j_coord_offset+DIM*0+XX] -= tx;
284             f[j_coord_offset+DIM*0+YY] -= ty;
285             f[j_coord_offset+DIM*0+ZZ] -= tz;
286
287             }
288
289             /**************************
290              * CALCULATE INTERACTIONS *
291              **************************/
292
293             if (rsq10<rcutoff2)
294             {
295
296             r10              = rsq10*rinv10;
297
298             qq10             = iq1*jq0;
299
300             /* EWALD ELECTROSTATICS */
301
302             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
303             ewrt             = r10*ewtabscale;
304             ewitab           = ewrt;
305             eweps            = ewrt-ewitab;
306             ewitab           = 4*ewitab;
307             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
308             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
309             felec            = qq10*rinv10*(rinvsq10-felec);
310
311             d                = r10-rswitch;
312             d                = (d>0.0) ? d : 0.0;
313             d2               = d*d;
314             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
315
316             dsw              = d2*(swF2+d*(swF3+d*swF4));
317
318             /* Evaluate switch function */
319             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
320             felec            = felec*sw - rinv10*velec*dsw;
321             velec           *= sw;
322
323             /* Update potential sums from outer loop */
324             velecsum        += velec;
325
326             fscal            = felec;
327
328             /* Calculate temporary vectorial force */
329             tx               = fscal*dx10;
330             ty               = fscal*dy10;
331             tz               = fscal*dz10;
332
333             /* Update vectorial force */
334             fix1            += tx;
335             fiy1            += ty;
336             fiz1            += tz;
337             f[j_coord_offset+DIM*0+XX] -= tx;
338             f[j_coord_offset+DIM*0+YY] -= ty;
339             f[j_coord_offset+DIM*0+ZZ] -= tz;
340
341             }
342
343             /**************************
344              * CALCULATE INTERACTIONS *
345              **************************/
346
347             if (rsq20<rcutoff2)
348             {
349
350             r20              = rsq20*rinv20;
351
352             qq20             = iq2*jq0;
353
354             /* EWALD ELECTROSTATICS */
355
356             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
357             ewrt             = r20*ewtabscale;
358             ewitab           = ewrt;
359             eweps            = ewrt-ewitab;
360             ewitab           = 4*ewitab;
361             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
362             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
363             felec            = qq20*rinv20*(rinvsq20-felec);
364
365             d                = r20-rswitch;
366             d                = (d>0.0) ? d : 0.0;
367             d2               = d*d;
368             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
369
370             dsw              = d2*(swF2+d*(swF3+d*swF4));
371
372             /* Evaluate switch function */
373             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
374             felec            = felec*sw - rinv20*velec*dsw;
375             velec           *= sw;
376
377             /* Update potential sums from outer loop */
378             velecsum        += velec;
379
380             fscal            = felec;
381
382             /* Calculate temporary vectorial force */
383             tx               = fscal*dx20;
384             ty               = fscal*dy20;
385             tz               = fscal*dz20;
386
387             /* Update vectorial force */
388             fix2            += tx;
389             fiy2            += ty;
390             fiz2            += tz;
391             f[j_coord_offset+DIM*0+XX] -= tx;
392             f[j_coord_offset+DIM*0+YY] -= ty;
393             f[j_coord_offset+DIM*0+ZZ] -= tz;
394
395             }
396
397             /* Inner loop uses 193 flops */
398         }
399         /* End of innermost loop */
400
401         tx = ty = tz = 0;
402         f[i_coord_offset+DIM*0+XX] += fix0;
403         f[i_coord_offset+DIM*0+YY] += fiy0;
404         f[i_coord_offset+DIM*0+ZZ] += fiz0;
405         tx                         += fix0;
406         ty                         += fiy0;
407         tz                         += fiz0;
408         f[i_coord_offset+DIM*1+XX] += fix1;
409         f[i_coord_offset+DIM*1+YY] += fiy1;
410         f[i_coord_offset+DIM*1+ZZ] += fiz1;
411         tx                         += fix1;
412         ty                         += fiy1;
413         tz                         += fiz1;
414         f[i_coord_offset+DIM*2+XX] += fix2;
415         f[i_coord_offset+DIM*2+YY] += fiy2;
416         f[i_coord_offset+DIM*2+ZZ] += fiz2;
417         tx                         += fix2;
418         ty                         += fiy2;
419         tz                         += fiz2;
420         fshift[i_shift_offset+XX]  += tx;
421         fshift[i_shift_offset+YY]  += ty;
422         fshift[i_shift_offset+ZZ]  += tz;
423
424         ggid                        = gid[iidx];
425         /* Update potential energies */
426         kernel_data->energygrp_elec[ggid] += velecsum;
427         kernel_data->energygrp_vdw[ggid] += vvdwsum;
428
429         /* Increment number of inner iterations */
430         inneriter                  += j_index_end - j_index_start;
431
432         /* Outer loop uses 32 flops */
433     }
434
435     /* Increment number of outer iterations */
436     outeriter        += nri;
437
438     /* Update outer/inner flops */
439
440     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*193);
441 }
442 /*
443  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_c
444  * Electrostatics interaction: Ewald
445  * VdW interaction:            LennardJones
446  * Geometry:                   Water3-Particle
447  * Calculate force/pot:        Force
448  */
449 void
450 nb_kernel_ElecEwSw_VdwLJSw_GeomW3P1_F_c
451                     (t_nblist                    * gmx_restrict       nlist,
452                      rvec                        * gmx_restrict          xx,
453                      rvec                        * gmx_restrict          ff,
454                      t_forcerec                  * gmx_restrict          fr,
455                      t_mdatoms                   * gmx_restrict     mdatoms,
456                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
457                      t_nrnb                      * gmx_restrict        nrnb)
458 {
459     int              i_shift_offset,i_coord_offset,j_coord_offset;
460     int              j_index_start,j_index_end;
461     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
462     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
463     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
464     real             *shiftvec,*fshift,*x,*f;
465     int              vdwioffset0;
466     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
467     int              vdwioffset1;
468     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
469     int              vdwioffset2;
470     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
471     int              vdwjidx0;
472     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
473     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
474     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
475     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
476     real             velec,felec,velecsum,facel,crf,krf,krf2;
477     real             *charge;
478     int              nvdwtype;
479     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
480     int              *vdwtype;
481     real             *vdwparam;
482     int              ewitab;
483     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
484     real             *ewtab;
485     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
486
487     x                = xx[0];
488     f                = ff[0];
489
490     nri              = nlist->nri;
491     iinr             = nlist->iinr;
492     jindex           = nlist->jindex;
493     jjnr             = nlist->jjnr;
494     shiftidx         = nlist->shift;
495     gid              = nlist->gid;
496     shiftvec         = fr->shift_vec[0];
497     fshift           = fr->fshift[0];
498     facel            = fr->epsfac;
499     charge           = mdatoms->chargeA;
500     nvdwtype         = fr->ntype;
501     vdwparam         = fr->nbfp;
502     vdwtype          = mdatoms->typeA;
503
504     sh_ewald         = fr->ic->sh_ewald;
505     ewtab            = fr->ic->tabq_coul_FDV0;
506     ewtabscale       = fr->ic->tabq_scale;
507     ewtabhalfspace   = 0.5/ewtabscale;
508
509     /* Setup water-specific parameters */
510     inr              = nlist->iinr[0];
511     iq0              = facel*charge[inr+0];
512     iq1              = facel*charge[inr+1];
513     iq2              = facel*charge[inr+2];
514     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
515
516     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
517     rcutoff          = fr->rcoulomb;
518     rcutoff2         = rcutoff*rcutoff;
519
520     rswitch          = fr->rcoulomb_switch;
521     /* Setup switch parameters */
522     d                = rcutoff-rswitch;
523     swV3             = -10.0/(d*d*d);
524     swV4             =  15.0/(d*d*d*d);
525     swV5             =  -6.0/(d*d*d*d*d);
526     swF2             = -30.0/(d*d*d);
527     swF3             =  60.0/(d*d*d*d);
528     swF4             = -30.0/(d*d*d*d*d);
529
530     outeriter        = 0;
531     inneriter        = 0;
532
533     /* Start outer loop over neighborlists */
534     for(iidx=0; iidx<nri; iidx++)
535     {
536         /* Load shift vector for this list */
537         i_shift_offset   = DIM*shiftidx[iidx];
538         shX              = shiftvec[i_shift_offset+XX];
539         shY              = shiftvec[i_shift_offset+YY];
540         shZ              = shiftvec[i_shift_offset+ZZ];
541
542         /* Load limits for loop over neighbors */
543         j_index_start    = jindex[iidx];
544         j_index_end      = jindex[iidx+1];
545
546         /* Get outer coordinate index */
547         inr              = iinr[iidx];
548         i_coord_offset   = DIM*inr;
549
550         /* Load i particle coords and add shift vector */
551         ix0              = shX + x[i_coord_offset+DIM*0+XX];
552         iy0              = shY + x[i_coord_offset+DIM*0+YY];
553         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
554         ix1              = shX + x[i_coord_offset+DIM*1+XX];
555         iy1              = shY + x[i_coord_offset+DIM*1+YY];
556         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
557         ix2              = shX + x[i_coord_offset+DIM*2+XX];
558         iy2              = shY + x[i_coord_offset+DIM*2+YY];
559         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
560
561         fix0             = 0.0;
562         fiy0             = 0.0;
563         fiz0             = 0.0;
564         fix1             = 0.0;
565         fiy1             = 0.0;
566         fiz1             = 0.0;
567         fix2             = 0.0;
568         fiy2             = 0.0;
569         fiz2             = 0.0;
570
571         /* Start inner kernel loop */
572         for(jidx=j_index_start; jidx<j_index_end; jidx++)
573         {
574             /* Get j neighbor index, and coordinate index */
575             jnr              = jjnr[jidx];
576             j_coord_offset   = DIM*jnr;
577
578             /* load j atom coordinates */
579             jx0              = x[j_coord_offset+DIM*0+XX];
580             jy0              = x[j_coord_offset+DIM*0+YY];
581             jz0              = x[j_coord_offset+DIM*0+ZZ];
582
583             /* Calculate displacement vector */
584             dx00             = ix0 - jx0;
585             dy00             = iy0 - jy0;
586             dz00             = iz0 - jz0;
587             dx10             = ix1 - jx0;
588             dy10             = iy1 - jy0;
589             dz10             = iz1 - jz0;
590             dx20             = ix2 - jx0;
591             dy20             = iy2 - jy0;
592             dz20             = iz2 - jz0;
593
594             /* Calculate squared distance and things based on it */
595             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
596             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
597             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
598
599             rinv00           = gmx_invsqrt(rsq00);
600             rinv10           = gmx_invsqrt(rsq10);
601             rinv20           = gmx_invsqrt(rsq20);
602
603             rinvsq00         = rinv00*rinv00;
604             rinvsq10         = rinv10*rinv10;
605             rinvsq20         = rinv20*rinv20;
606
607             /* Load parameters for j particles */
608             jq0              = charge[jnr+0];
609             vdwjidx0         = 2*vdwtype[jnr+0];
610
611             /**************************
612              * CALCULATE INTERACTIONS *
613              **************************/
614
615             if (rsq00<rcutoff2)
616             {
617
618             r00              = rsq00*rinv00;
619
620             qq00             = iq0*jq0;
621             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
622             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
623
624             /* EWALD ELECTROSTATICS */
625
626             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
627             ewrt             = r00*ewtabscale;
628             ewitab           = ewrt;
629             eweps            = ewrt-ewitab;
630             ewitab           = 4*ewitab;
631             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
632             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
633             felec            = qq00*rinv00*(rinvsq00-felec);
634
635             /* LENNARD-JONES DISPERSION/REPULSION */
636
637             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
638             vvdw6            = c6_00*rinvsix;
639             vvdw12           = c12_00*rinvsix*rinvsix;
640             vvdw             = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
641             fvdw             = (vvdw12-vvdw6)*rinvsq00;
642
643             d                = r00-rswitch;
644             d                = (d>0.0) ? d : 0.0;
645             d2               = d*d;
646             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
647
648             dsw              = d2*(swF2+d*(swF3+d*swF4));
649
650             /* Evaluate switch function */
651             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
652             felec            = felec*sw - rinv00*velec*dsw;
653             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
654
655             fscal            = felec+fvdw;
656
657             /* Calculate temporary vectorial force */
658             tx               = fscal*dx00;
659             ty               = fscal*dy00;
660             tz               = fscal*dz00;
661
662             /* Update vectorial force */
663             fix0            += tx;
664             fiy0            += ty;
665             fiz0            += tz;
666             f[j_coord_offset+DIM*0+XX] -= tx;
667             f[j_coord_offset+DIM*0+YY] -= ty;
668             f[j_coord_offset+DIM*0+ZZ] -= tz;
669
670             }
671
672             /**************************
673              * CALCULATE INTERACTIONS *
674              **************************/
675
676             if (rsq10<rcutoff2)
677             {
678
679             r10              = rsq10*rinv10;
680
681             qq10             = iq1*jq0;
682
683             /* EWALD ELECTROSTATICS */
684
685             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
686             ewrt             = r10*ewtabscale;
687             ewitab           = ewrt;
688             eweps            = ewrt-ewitab;
689             ewitab           = 4*ewitab;
690             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
691             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
692             felec            = qq10*rinv10*(rinvsq10-felec);
693
694             d                = r10-rswitch;
695             d                = (d>0.0) ? d : 0.0;
696             d2               = d*d;
697             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
698
699             dsw              = d2*(swF2+d*(swF3+d*swF4));
700
701             /* Evaluate switch function */
702             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
703             felec            = felec*sw - rinv10*velec*dsw;
704
705             fscal            = felec;
706
707             /* Calculate temporary vectorial force */
708             tx               = fscal*dx10;
709             ty               = fscal*dy10;
710             tz               = fscal*dz10;
711
712             /* Update vectorial force */
713             fix1            += tx;
714             fiy1            += ty;
715             fiz1            += tz;
716             f[j_coord_offset+DIM*0+XX] -= tx;
717             f[j_coord_offset+DIM*0+YY] -= ty;
718             f[j_coord_offset+DIM*0+ZZ] -= tz;
719
720             }
721
722             /**************************
723              * CALCULATE INTERACTIONS *
724              **************************/
725
726             if (rsq20<rcutoff2)
727             {
728
729             r20              = rsq20*rinv20;
730
731             qq20             = iq2*jq0;
732
733             /* EWALD ELECTROSTATICS */
734
735             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
736             ewrt             = r20*ewtabscale;
737             ewitab           = ewrt;
738             eweps            = ewrt-ewitab;
739             ewitab           = 4*ewitab;
740             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
741             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
742             felec            = qq20*rinv20*(rinvsq20-felec);
743
744             d                = r20-rswitch;
745             d                = (d>0.0) ? d : 0.0;
746             d2               = d*d;
747             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
748
749             dsw              = d2*(swF2+d*(swF3+d*swF4));
750
751             /* Evaluate switch function */
752             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
753             felec            = felec*sw - rinv20*velec*dsw;
754
755             fscal            = felec;
756
757             /* Calculate temporary vectorial force */
758             tx               = fscal*dx20;
759             ty               = fscal*dy20;
760             tz               = fscal*dz20;
761
762             /* Update vectorial force */
763             fix2            += tx;
764             fiy2            += ty;
765             fiz2            += tz;
766             f[j_coord_offset+DIM*0+XX] -= tx;
767             f[j_coord_offset+DIM*0+YY] -= ty;
768             f[j_coord_offset+DIM*0+ZZ] -= tz;
769
770             }
771
772             /* Inner loop uses 185 flops */
773         }
774         /* End of innermost loop */
775
776         tx = ty = tz = 0;
777         f[i_coord_offset+DIM*0+XX] += fix0;
778         f[i_coord_offset+DIM*0+YY] += fiy0;
779         f[i_coord_offset+DIM*0+ZZ] += fiz0;
780         tx                         += fix0;
781         ty                         += fiy0;
782         tz                         += fiz0;
783         f[i_coord_offset+DIM*1+XX] += fix1;
784         f[i_coord_offset+DIM*1+YY] += fiy1;
785         f[i_coord_offset+DIM*1+ZZ] += fiz1;
786         tx                         += fix1;
787         ty                         += fiy1;
788         tz                         += fiz1;
789         f[i_coord_offset+DIM*2+XX] += fix2;
790         f[i_coord_offset+DIM*2+YY] += fiy2;
791         f[i_coord_offset+DIM*2+ZZ] += fiz2;
792         tx                         += fix2;
793         ty                         += fiy2;
794         tz                         += fiz2;
795         fshift[i_shift_offset+XX]  += tx;
796         fshift[i_shift_offset+YY]  += ty;
797         fshift[i_shift_offset+ZZ]  += tz;
798
799         /* Increment number of inner iterations */
800         inneriter                  += j_index_end - j_index_start;
801
802         /* Outer loop uses 30 flops */
803     }
804
805     /* Increment number of outer iterations */
806     outeriter        += nri;
807
808     /* Update outer/inner flops */
809
810     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*185);
811 }