Version bumps after new release
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwBhamSw_GeomW4W4_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwBhamSw_GeomW4W4_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            Buckingham
53  * Geometry:                   Water4-Water4
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwBhamSw_GeomW4W4_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwioffset3;
79     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0;
81     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     int              vdwjidx1;
83     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84     int              vdwjidx2;
85     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86     int              vdwjidx3;
87     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98     real             velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     int              ewitab;
105     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
106     real             *ewtab;
107     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
108
109     x                = xx[0];
110     f                = ff[0];
111
112     nri              = nlist->nri;
113     iinr             = nlist->iinr;
114     jindex           = nlist->jindex;
115     jjnr             = nlist->jjnr;
116     shiftidx         = nlist->shift;
117     gid              = nlist->gid;
118     shiftvec         = fr->shift_vec[0];
119     fshift           = fr->fshift[0];
120     facel            = fr->epsfac;
121     charge           = mdatoms->chargeA;
122     nvdwtype         = fr->ntype;
123     vdwparam         = fr->nbfp;
124     vdwtype          = mdatoms->typeA;
125
126     sh_ewald         = fr->ic->sh_ewald;
127     ewtab            = fr->ic->tabq_coul_FDV0;
128     ewtabscale       = fr->ic->tabq_scale;
129     ewtabhalfspace   = 0.5/ewtabscale;
130
131     /* Setup water-specific parameters */
132     inr              = nlist->iinr[0];
133     iq1              = facel*charge[inr+1];
134     iq2              = facel*charge[inr+2];
135     iq3              = facel*charge[inr+3];
136     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
137
138     jq1              = charge[inr+1];
139     jq2              = charge[inr+2];
140     jq3              = charge[inr+3];
141     vdwjidx0         = 3*vdwtype[inr+0];
142     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
143     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
144     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
145     qq11             = iq1*jq1;
146     qq12             = iq1*jq2;
147     qq13             = iq1*jq3;
148     qq21             = iq2*jq1;
149     qq22             = iq2*jq2;
150     qq23             = iq2*jq3;
151     qq31             = iq3*jq1;
152     qq32             = iq3*jq2;
153     qq33             = iq3*jq3;
154
155     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
156     rcutoff          = fr->rcoulomb;
157     rcutoff2         = rcutoff*rcutoff;
158
159     rswitch          = fr->rcoulomb_switch;
160     /* Setup switch parameters */
161     d                = rcutoff-rswitch;
162     swV3             = -10.0/(d*d*d);
163     swV4             =  15.0/(d*d*d*d);
164     swV5             =  -6.0/(d*d*d*d*d);
165     swF2             = -30.0/(d*d*d);
166     swF3             =  60.0/(d*d*d*d);
167     swF4             = -30.0/(d*d*d*d*d);
168
169     outeriter        = 0;
170     inneriter        = 0;
171
172     /* Start outer loop over neighborlists */
173     for(iidx=0; iidx<nri; iidx++)
174     {
175         /* Load shift vector for this list */
176         i_shift_offset   = DIM*shiftidx[iidx];
177         shX              = shiftvec[i_shift_offset+XX];
178         shY              = shiftvec[i_shift_offset+YY];
179         shZ              = shiftvec[i_shift_offset+ZZ];
180
181         /* Load limits for loop over neighbors */
182         j_index_start    = jindex[iidx];
183         j_index_end      = jindex[iidx+1];
184
185         /* Get outer coordinate index */
186         inr              = iinr[iidx];
187         i_coord_offset   = DIM*inr;
188
189         /* Load i particle coords and add shift vector */
190         ix0              = shX + x[i_coord_offset+DIM*0+XX];
191         iy0              = shY + x[i_coord_offset+DIM*0+YY];
192         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
193         ix1              = shX + x[i_coord_offset+DIM*1+XX];
194         iy1              = shY + x[i_coord_offset+DIM*1+YY];
195         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
196         ix2              = shX + x[i_coord_offset+DIM*2+XX];
197         iy2              = shY + x[i_coord_offset+DIM*2+YY];
198         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
199         ix3              = shX + x[i_coord_offset+DIM*3+XX];
200         iy3              = shY + x[i_coord_offset+DIM*3+YY];
201         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
202
203         fix0             = 0.0;
204         fiy0             = 0.0;
205         fiz0             = 0.0;
206         fix1             = 0.0;
207         fiy1             = 0.0;
208         fiz1             = 0.0;
209         fix2             = 0.0;
210         fiy2             = 0.0;
211         fiz2             = 0.0;
212         fix3             = 0.0;
213         fiy3             = 0.0;
214         fiz3             = 0.0;
215
216         /* Reset potential sums */
217         velecsum         = 0.0;
218         vvdwsum          = 0.0;
219
220         /* Start inner kernel loop */
221         for(jidx=j_index_start; jidx<j_index_end; jidx++)
222         {
223             /* Get j neighbor index, and coordinate index */
224             jnr              = jjnr[jidx];
225             j_coord_offset   = DIM*jnr;
226
227             /* load j atom coordinates */
228             jx0              = x[j_coord_offset+DIM*0+XX];
229             jy0              = x[j_coord_offset+DIM*0+YY];
230             jz0              = x[j_coord_offset+DIM*0+ZZ];
231             jx1              = x[j_coord_offset+DIM*1+XX];
232             jy1              = x[j_coord_offset+DIM*1+YY];
233             jz1              = x[j_coord_offset+DIM*1+ZZ];
234             jx2              = x[j_coord_offset+DIM*2+XX];
235             jy2              = x[j_coord_offset+DIM*2+YY];
236             jz2              = x[j_coord_offset+DIM*2+ZZ];
237             jx3              = x[j_coord_offset+DIM*3+XX];
238             jy3              = x[j_coord_offset+DIM*3+YY];
239             jz3              = x[j_coord_offset+DIM*3+ZZ];
240
241             /* Calculate displacement vector */
242             dx00             = ix0 - jx0;
243             dy00             = iy0 - jy0;
244             dz00             = iz0 - jz0;
245             dx11             = ix1 - jx1;
246             dy11             = iy1 - jy1;
247             dz11             = iz1 - jz1;
248             dx12             = ix1 - jx2;
249             dy12             = iy1 - jy2;
250             dz12             = iz1 - jz2;
251             dx13             = ix1 - jx3;
252             dy13             = iy1 - jy3;
253             dz13             = iz1 - jz3;
254             dx21             = ix2 - jx1;
255             dy21             = iy2 - jy1;
256             dz21             = iz2 - jz1;
257             dx22             = ix2 - jx2;
258             dy22             = iy2 - jy2;
259             dz22             = iz2 - jz2;
260             dx23             = ix2 - jx3;
261             dy23             = iy2 - jy3;
262             dz23             = iz2 - jz3;
263             dx31             = ix3 - jx1;
264             dy31             = iy3 - jy1;
265             dz31             = iz3 - jz1;
266             dx32             = ix3 - jx2;
267             dy32             = iy3 - jy2;
268             dz32             = iz3 - jz2;
269             dx33             = ix3 - jx3;
270             dy33             = iy3 - jy3;
271             dz33             = iz3 - jz3;
272
273             /* Calculate squared distance and things based on it */
274             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
275             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
276             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
277             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
278             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
279             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
280             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
281             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
282             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
283             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
284
285             rinv00           = gmx_invsqrt(rsq00);
286             rinv11           = gmx_invsqrt(rsq11);
287             rinv12           = gmx_invsqrt(rsq12);
288             rinv13           = gmx_invsqrt(rsq13);
289             rinv21           = gmx_invsqrt(rsq21);
290             rinv22           = gmx_invsqrt(rsq22);
291             rinv23           = gmx_invsqrt(rsq23);
292             rinv31           = gmx_invsqrt(rsq31);
293             rinv32           = gmx_invsqrt(rsq32);
294             rinv33           = gmx_invsqrt(rsq33);
295
296             rinvsq00         = rinv00*rinv00;
297             rinvsq11         = rinv11*rinv11;
298             rinvsq12         = rinv12*rinv12;
299             rinvsq13         = rinv13*rinv13;
300             rinvsq21         = rinv21*rinv21;
301             rinvsq22         = rinv22*rinv22;
302             rinvsq23         = rinv23*rinv23;
303             rinvsq31         = rinv31*rinv31;
304             rinvsq32         = rinv32*rinv32;
305             rinvsq33         = rinv33*rinv33;
306
307             /**************************
308              * CALCULATE INTERACTIONS *
309              **************************/
310
311             if (rsq00<rcutoff2)
312             {
313
314             r00              = rsq00*rinv00;
315
316             /* BUCKINGHAM DISPERSION/REPULSION */
317             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
318             vvdw6            = c6_00*rinvsix;
319             br               = cexp2_00*r00;
320             vvdwexp          = cexp1_00*exp(-br);
321             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
322             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
323
324             d                = r00-rswitch;
325             d                = (d>0.0) ? d : 0.0;
326             d2               = d*d;
327             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
328
329             dsw              = d2*(swF2+d*(swF3+d*swF4));
330
331             /* Evaluate switch function */
332             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
333             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
334             vvdw            *= sw;
335
336             /* Update potential sums from outer loop */
337             vvdwsum         += vvdw;
338
339             fscal            = fvdw;
340
341             /* Calculate temporary vectorial force */
342             tx               = fscal*dx00;
343             ty               = fscal*dy00;
344             tz               = fscal*dz00;
345
346             /* Update vectorial force */
347             fix0            += tx;
348             fiy0            += ty;
349             fiz0            += tz;
350             f[j_coord_offset+DIM*0+XX] -= tx;
351             f[j_coord_offset+DIM*0+YY] -= ty;
352             f[j_coord_offset+DIM*0+ZZ] -= tz;
353
354             }
355
356             /**************************
357              * CALCULATE INTERACTIONS *
358              **************************/
359
360             if (rsq11<rcutoff2)
361             {
362
363             r11              = rsq11*rinv11;
364
365             /* EWALD ELECTROSTATICS */
366
367             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
368             ewrt             = r11*ewtabscale;
369             ewitab           = ewrt;
370             eweps            = ewrt-ewitab;
371             ewitab           = 4*ewitab;
372             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
373             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
374             felec            = qq11*rinv11*(rinvsq11-felec);
375
376             d                = r11-rswitch;
377             d                = (d>0.0) ? d : 0.0;
378             d2               = d*d;
379             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
380
381             dsw              = d2*(swF2+d*(swF3+d*swF4));
382
383             /* Evaluate switch function */
384             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
385             felec            = felec*sw - rinv11*velec*dsw;
386             velec           *= sw;
387
388             /* Update potential sums from outer loop */
389             velecsum        += velec;
390
391             fscal            = felec;
392
393             /* Calculate temporary vectorial force */
394             tx               = fscal*dx11;
395             ty               = fscal*dy11;
396             tz               = fscal*dz11;
397
398             /* Update vectorial force */
399             fix1            += tx;
400             fiy1            += ty;
401             fiz1            += tz;
402             f[j_coord_offset+DIM*1+XX] -= tx;
403             f[j_coord_offset+DIM*1+YY] -= ty;
404             f[j_coord_offset+DIM*1+ZZ] -= tz;
405
406             }
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             if (rsq12<rcutoff2)
413             {
414
415             r12              = rsq12*rinv12;
416
417             /* EWALD ELECTROSTATICS */
418
419             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
420             ewrt             = r12*ewtabscale;
421             ewitab           = ewrt;
422             eweps            = ewrt-ewitab;
423             ewitab           = 4*ewitab;
424             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
425             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
426             felec            = qq12*rinv12*(rinvsq12-felec);
427
428             d                = r12-rswitch;
429             d                = (d>0.0) ? d : 0.0;
430             d2               = d*d;
431             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
432
433             dsw              = d2*(swF2+d*(swF3+d*swF4));
434
435             /* Evaluate switch function */
436             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
437             felec            = felec*sw - rinv12*velec*dsw;
438             velec           *= sw;
439
440             /* Update potential sums from outer loop */
441             velecsum        += velec;
442
443             fscal            = felec;
444
445             /* Calculate temporary vectorial force */
446             tx               = fscal*dx12;
447             ty               = fscal*dy12;
448             tz               = fscal*dz12;
449
450             /* Update vectorial force */
451             fix1            += tx;
452             fiy1            += ty;
453             fiz1            += tz;
454             f[j_coord_offset+DIM*2+XX] -= tx;
455             f[j_coord_offset+DIM*2+YY] -= ty;
456             f[j_coord_offset+DIM*2+ZZ] -= tz;
457
458             }
459
460             /**************************
461              * CALCULATE INTERACTIONS *
462              **************************/
463
464             if (rsq13<rcutoff2)
465             {
466
467             r13              = rsq13*rinv13;
468
469             /* EWALD ELECTROSTATICS */
470
471             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
472             ewrt             = r13*ewtabscale;
473             ewitab           = ewrt;
474             eweps            = ewrt-ewitab;
475             ewitab           = 4*ewitab;
476             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
477             velec            = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
478             felec            = qq13*rinv13*(rinvsq13-felec);
479
480             d                = r13-rswitch;
481             d                = (d>0.0) ? d : 0.0;
482             d2               = d*d;
483             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
484
485             dsw              = d2*(swF2+d*(swF3+d*swF4));
486
487             /* Evaluate switch function */
488             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
489             felec            = felec*sw - rinv13*velec*dsw;
490             velec           *= sw;
491
492             /* Update potential sums from outer loop */
493             velecsum        += velec;
494
495             fscal            = felec;
496
497             /* Calculate temporary vectorial force */
498             tx               = fscal*dx13;
499             ty               = fscal*dy13;
500             tz               = fscal*dz13;
501
502             /* Update vectorial force */
503             fix1            += tx;
504             fiy1            += ty;
505             fiz1            += tz;
506             f[j_coord_offset+DIM*3+XX] -= tx;
507             f[j_coord_offset+DIM*3+YY] -= ty;
508             f[j_coord_offset+DIM*3+ZZ] -= tz;
509
510             }
511
512             /**************************
513              * CALCULATE INTERACTIONS *
514              **************************/
515
516             if (rsq21<rcutoff2)
517             {
518
519             r21              = rsq21*rinv21;
520
521             /* EWALD ELECTROSTATICS */
522
523             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
524             ewrt             = r21*ewtabscale;
525             ewitab           = ewrt;
526             eweps            = ewrt-ewitab;
527             ewitab           = 4*ewitab;
528             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
529             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
530             felec            = qq21*rinv21*(rinvsq21-felec);
531
532             d                = r21-rswitch;
533             d                = (d>0.0) ? d : 0.0;
534             d2               = d*d;
535             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
536
537             dsw              = d2*(swF2+d*(swF3+d*swF4));
538
539             /* Evaluate switch function */
540             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
541             felec            = felec*sw - rinv21*velec*dsw;
542             velec           *= sw;
543
544             /* Update potential sums from outer loop */
545             velecsum        += velec;
546
547             fscal            = felec;
548
549             /* Calculate temporary vectorial force */
550             tx               = fscal*dx21;
551             ty               = fscal*dy21;
552             tz               = fscal*dz21;
553
554             /* Update vectorial force */
555             fix2            += tx;
556             fiy2            += ty;
557             fiz2            += tz;
558             f[j_coord_offset+DIM*1+XX] -= tx;
559             f[j_coord_offset+DIM*1+YY] -= ty;
560             f[j_coord_offset+DIM*1+ZZ] -= tz;
561
562             }
563
564             /**************************
565              * CALCULATE INTERACTIONS *
566              **************************/
567
568             if (rsq22<rcutoff2)
569             {
570
571             r22              = rsq22*rinv22;
572
573             /* EWALD ELECTROSTATICS */
574
575             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
576             ewrt             = r22*ewtabscale;
577             ewitab           = ewrt;
578             eweps            = ewrt-ewitab;
579             ewitab           = 4*ewitab;
580             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
581             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
582             felec            = qq22*rinv22*(rinvsq22-felec);
583
584             d                = r22-rswitch;
585             d                = (d>0.0) ? d : 0.0;
586             d2               = d*d;
587             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
588
589             dsw              = d2*(swF2+d*(swF3+d*swF4));
590
591             /* Evaluate switch function */
592             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
593             felec            = felec*sw - rinv22*velec*dsw;
594             velec           *= sw;
595
596             /* Update potential sums from outer loop */
597             velecsum        += velec;
598
599             fscal            = felec;
600
601             /* Calculate temporary vectorial force */
602             tx               = fscal*dx22;
603             ty               = fscal*dy22;
604             tz               = fscal*dz22;
605
606             /* Update vectorial force */
607             fix2            += tx;
608             fiy2            += ty;
609             fiz2            += tz;
610             f[j_coord_offset+DIM*2+XX] -= tx;
611             f[j_coord_offset+DIM*2+YY] -= ty;
612             f[j_coord_offset+DIM*2+ZZ] -= tz;
613
614             }
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             if (rsq23<rcutoff2)
621             {
622
623             r23              = rsq23*rinv23;
624
625             /* EWALD ELECTROSTATICS */
626
627             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
628             ewrt             = r23*ewtabscale;
629             ewitab           = ewrt;
630             eweps            = ewrt-ewitab;
631             ewitab           = 4*ewitab;
632             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
633             velec            = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
634             felec            = qq23*rinv23*(rinvsq23-felec);
635
636             d                = r23-rswitch;
637             d                = (d>0.0) ? d : 0.0;
638             d2               = d*d;
639             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
640
641             dsw              = d2*(swF2+d*(swF3+d*swF4));
642
643             /* Evaluate switch function */
644             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
645             felec            = felec*sw - rinv23*velec*dsw;
646             velec           *= sw;
647
648             /* Update potential sums from outer loop */
649             velecsum        += velec;
650
651             fscal            = felec;
652
653             /* Calculate temporary vectorial force */
654             tx               = fscal*dx23;
655             ty               = fscal*dy23;
656             tz               = fscal*dz23;
657
658             /* Update vectorial force */
659             fix2            += tx;
660             fiy2            += ty;
661             fiz2            += tz;
662             f[j_coord_offset+DIM*3+XX] -= tx;
663             f[j_coord_offset+DIM*3+YY] -= ty;
664             f[j_coord_offset+DIM*3+ZZ] -= tz;
665
666             }
667
668             /**************************
669              * CALCULATE INTERACTIONS *
670              **************************/
671
672             if (rsq31<rcutoff2)
673             {
674
675             r31              = rsq31*rinv31;
676
677             /* EWALD ELECTROSTATICS */
678
679             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
680             ewrt             = r31*ewtabscale;
681             ewitab           = ewrt;
682             eweps            = ewrt-ewitab;
683             ewitab           = 4*ewitab;
684             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
685             velec            = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
686             felec            = qq31*rinv31*(rinvsq31-felec);
687
688             d                = r31-rswitch;
689             d                = (d>0.0) ? d : 0.0;
690             d2               = d*d;
691             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
692
693             dsw              = d2*(swF2+d*(swF3+d*swF4));
694
695             /* Evaluate switch function */
696             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
697             felec            = felec*sw - rinv31*velec*dsw;
698             velec           *= sw;
699
700             /* Update potential sums from outer loop */
701             velecsum        += velec;
702
703             fscal            = felec;
704
705             /* Calculate temporary vectorial force */
706             tx               = fscal*dx31;
707             ty               = fscal*dy31;
708             tz               = fscal*dz31;
709
710             /* Update vectorial force */
711             fix3            += tx;
712             fiy3            += ty;
713             fiz3            += tz;
714             f[j_coord_offset+DIM*1+XX] -= tx;
715             f[j_coord_offset+DIM*1+YY] -= ty;
716             f[j_coord_offset+DIM*1+ZZ] -= tz;
717
718             }
719
720             /**************************
721              * CALCULATE INTERACTIONS *
722              **************************/
723
724             if (rsq32<rcutoff2)
725             {
726
727             r32              = rsq32*rinv32;
728
729             /* EWALD ELECTROSTATICS */
730
731             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
732             ewrt             = r32*ewtabscale;
733             ewitab           = ewrt;
734             eweps            = ewrt-ewitab;
735             ewitab           = 4*ewitab;
736             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
737             velec            = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
738             felec            = qq32*rinv32*(rinvsq32-felec);
739
740             d                = r32-rswitch;
741             d                = (d>0.0) ? d : 0.0;
742             d2               = d*d;
743             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
744
745             dsw              = d2*(swF2+d*(swF3+d*swF4));
746
747             /* Evaluate switch function */
748             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
749             felec            = felec*sw - rinv32*velec*dsw;
750             velec           *= sw;
751
752             /* Update potential sums from outer loop */
753             velecsum        += velec;
754
755             fscal            = felec;
756
757             /* Calculate temporary vectorial force */
758             tx               = fscal*dx32;
759             ty               = fscal*dy32;
760             tz               = fscal*dz32;
761
762             /* Update vectorial force */
763             fix3            += tx;
764             fiy3            += ty;
765             fiz3            += tz;
766             f[j_coord_offset+DIM*2+XX] -= tx;
767             f[j_coord_offset+DIM*2+YY] -= ty;
768             f[j_coord_offset+DIM*2+ZZ] -= tz;
769
770             }
771
772             /**************************
773              * CALCULATE INTERACTIONS *
774              **************************/
775
776             if (rsq33<rcutoff2)
777             {
778
779             r33              = rsq33*rinv33;
780
781             /* EWALD ELECTROSTATICS */
782
783             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
784             ewrt             = r33*ewtabscale;
785             ewitab           = ewrt;
786             eweps            = ewrt-ewitab;
787             ewitab           = 4*ewitab;
788             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
789             velec            = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
790             felec            = qq33*rinv33*(rinvsq33-felec);
791
792             d                = r33-rswitch;
793             d                = (d>0.0) ? d : 0.0;
794             d2               = d*d;
795             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
796
797             dsw              = d2*(swF2+d*(swF3+d*swF4));
798
799             /* Evaluate switch function */
800             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
801             felec            = felec*sw - rinv33*velec*dsw;
802             velec           *= sw;
803
804             /* Update potential sums from outer loop */
805             velecsum        += velec;
806
807             fscal            = felec;
808
809             /* Calculate temporary vectorial force */
810             tx               = fscal*dx33;
811             ty               = fscal*dy33;
812             tz               = fscal*dz33;
813
814             /* Update vectorial force */
815             fix3            += tx;
816             fiy3            += ty;
817             fiz3            += tz;
818             f[j_coord_offset+DIM*3+XX] -= tx;
819             f[j_coord_offset+DIM*3+YY] -= ty;
820             f[j_coord_offset+DIM*3+ZZ] -= tz;
821
822             }
823
824             /* Inner loop uses 601 flops */
825         }
826         /* End of innermost loop */
827
828         tx = ty = tz = 0;
829         f[i_coord_offset+DIM*0+XX] += fix0;
830         f[i_coord_offset+DIM*0+YY] += fiy0;
831         f[i_coord_offset+DIM*0+ZZ] += fiz0;
832         tx                         += fix0;
833         ty                         += fiy0;
834         tz                         += fiz0;
835         f[i_coord_offset+DIM*1+XX] += fix1;
836         f[i_coord_offset+DIM*1+YY] += fiy1;
837         f[i_coord_offset+DIM*1+ZZ] += fiz1;
838         tx                         += fix1;
839         ty                         += fiy1;
840         tz                         += fiz1;
841         f[i_coord_offset+DIM*2+XX] += fix2;
842         f[i_coord_offset+DIM*2+YY] += fiy2;
843         f[i_coord_offset+DIM*2+ZZ] += fiz2;
844         tx                         += fix2;
845         ty                         += fiy2;
846         tz                         += fiz2;
847         f[i_coord_offset+DIM*3+XX] += fix3;
848         f[i_coord_offset+DIM*3+YY] += fiy3;
849         f[i_coord_offset+DIM*3+ZZ] += fiz3;
850         tx                         += fix3;
851         ty                         += fiy3;
852         tz                         += fiz3;
853         fshift[i_shift_offset+XX]  += tx;
854         fshift[i_shift_offset+YY]  += ty;
855         fshift[i_shift_offset+ZZ]  += tz;
856
857         ggid                        = gid[iidx];
858         /* Update potential energies */
859         kernel_data->energygrp_elec[ggid] += velecsum;
860         kernel_data->energygrp_vdw[ggid] += vvdwsum;
861
862         /* Increment number of inner iterations */
863         inneriter                  += j_index_end - j_index_start;
864
865         /* Outer loop uses 41 flops */
866     }
867
868     /* Increment number of outer iterations */
869     outeriter        += nri;
870
871     /* Update outer/inner flops */
872
873     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*601);
874 }
875 /*
876  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwBhamSw_GeomW4W4_F_c
877  * Electrostatics interaction: Ewald
878  * VdW interaction:            Buckingham
879  * Geometry:                   Water4-Water4
880  * Calculate force/pot:        Force
881  */
882 void
883 nb_kernel_ElecEwSw_VdwBhamSw_GeomW4W4_F_c
884                     (t_nblist                    * gmx_restrict       nlist,
885                      rvec                        * gmx_restrict          xx,
886                      rvec                        * gmx_restrict          ff,
887                      t_forcerec                  * gmx_restrict          fr,
888                      t_mdatoms                   * gmx_restrict     mdatoms,
889                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
890                      t_nrnb                      * gmx_restrict        nrnb)
891 {
892     int              i_shift_offset,i_coord_offset,j_coord_offset;
893     int              j_index_start,j_index_end;
894     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
895     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
896     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
897     real             *shiftvec,*fshift,*x,*f;
898     int              vdwioffset0;
899     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
900     int              vdwioffset1;
901     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
902     int              vdwioffset2;
903     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
904     int              vdwioffset3;
905     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
906     int              vdwjidx0;
907     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
908     int              vdwjidx1;
909     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
910     int              vdwjidx2;
911     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
912     int              vdwjidx3;
913     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
914     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
915     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
916     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
917     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
918     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
919     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
920     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
921     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
922     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
923     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
924     real             velec,felec,velecsum,facel,crf,krf,krf2;
925     real             *charge;
926     int              nvdwtype;
927     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
928     int              *vdwtype;
929     real             *vdwparam;
930     int              ewitab;
931     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
932     real             *ewtab;
933     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
934
935     x                = xx[0];
936     f                = ff[0];
937
938     nri              = nlist->nri;
939     iinr             = nlist->iinr;
940     jindex           = nlist->jindex;
941     jjnr             = nlist->jjnr;
942     shiftidx         = nlist->shift;
943     gid              = nlist->gid;
944     shiftvec         = fr->shift_vec[0];
945     fshift           = fr->fshift[0];
946     facel            = fr->epsfac;
947     charge           = mdatoms->chargeA;
948     nvdwtype         = fr->ntype;
949     vdwparam         = fr->nbfp;
950     vdwtype          = mdatoms->typeA;
951
952     sh_ewald         = fr->ic->sh_ewald;
953     ewtab            = fr->ic->tabq_coul_FDV0;
954     ewtabscale       = fr->ic->tabq_scale;
955     ewtabhalfspace   = 0.5/ewtabscale;
956
957     /* Setup water-specific parameters */
958     inr              = nlist->iinr[0];
959     iq1              = facel*charge[inr+1];
960     iq2              = facel*charge[inr+2];
961     iq3              = facel*charge[inr+3];
962     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
963
964     jq1              = charge[inr+1];
965     jq2              = charge[inr+2];
966     jq3              = charge[inr+3];
967     vdwjidx0         = 3*vdwtype[inr+0];
968     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
969     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
970     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
971     qq11             = iq1*jq1;
972     qq12             = iq1*jq2;
973     qq13             = iq1*jq3;
974     qq21             = iq2*jq1;
975     qq22             = iq2*jq2;
976     qq23             = iq2*jq3;
977     qq31             = iq3*jq1;
978     qq32             = iq3*jq2;
979     qq33             = iq3*jq3;
980
981     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
982     rcutoff          = fr->rcoulomb;
983     rcutoff2         = rcutoff*rcutoff;
984
985     rswitch          = fr->rcoulomb_switch;
986     /* Setup switch parameters */
987     d                = rcutoff-rswitch;
988     swV3             = -10.0/(d*d*d);
989     swV4             =  15.0/(d*d*d*d);
990     swV5             =  -6.0/(d*d*d*d*d);
991     swF2             = -30.0/(d*d*d);
992     swF3             =  60.0/(d*d*d*d);
993     swF4             = -30.0/(d*d*d*d*d);
994
995     outeriter        = 0;
996     inneriter        = 0;
997
998     /* Start outer loop over neighborlists */
999     for(iidx=0; iidx<nri; iidx++)
1000     {
1001         /* Load shift vector for this list */
1002         i_shift_offset   = DIM*shiftidx[iidx];
1003         shX              = shiftvec[i_shift_offset+XX];
1004         shY              = shiftvec[i_shift_offset+YY];
1005         shZ              = shiftvec[i_shift_offset+ZZ];
1006
1007         /* Load limits for loop over neighbors */
1008         j_index_start    = jindex[iidx];
1009         j_index_end      = jindex[iidx+1];
1010
1011         /* Get outer coordinate index */
1012         inr              = iinr[iidx];
1013         i_coord_offset   = DIM*inr;
1014
1015         /* Load i particle coords and add shift vector */
1016         ix0              = shX + x[i_coord_offset+DIM*0+XX];
1017         iy0              = shY + x[i_coord_offset+DIM*0+YY];
1018         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
1019         ix1              = shX + x[i_coord_offset+DIM*1+XX];
1020         iy1              = shY + x[i_coord_offset+DIM*1+YY];
1021         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
1022         ix2              = shX + x[i_coord_offset+DIM*2+XX];
1023         iy2              = shY + x[i_coord_offset+DIM*2+YY];
1024         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
1025         ix3              = shX + x[i_coord_offset+DIM*3+XX];
1026         iy3              = shY + x[i_coord_offset+DIM*3+YY];
1027         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
1028
1029         fix0             = 0.0;
1030         fiy0             = 0.0;
1031         fiz0             = 0.0;
1032         fix1             = 0.0;
1033         fiy1             = 0.0;
1034         fiz1             = 0.0;
1035         fix2             = 0.0;
1036         fiy2             = 0.0;
1037         fiz2             = 0.0;
1038         fix3             = 0.0;
1039         fiy3             = 0.0;
1040         fiz3             = 0.0;
1041
1042         /* Start inner kernel loop */
1043         for(jidx=j_index_start; jidx<j_index_end; jidx++)
1044         {
1045             /* Get j neighbor index, and coordinate index */
1046             jnr              = jjnr[jidx];
1047             j_coord_offset   = DIM*jnr;
1048
1049             /* load j atom coordinates */
1050             jx0              = x[j_coord_offset+DIM*0+XX];
1051             jy0              = x[j_coord_offset+DIM*0+YY];
1052             jz0              = x[j_coord_offset+DIM*0+ZZ];
1053             jx1              = x[j_coord_offset+DIM*1+XX];
1054             jy1              = x[j_coord_offset+DIM*1+YY];
1055             jz1              = x[j_coord_offset+DIM*1+ZZ];
1056             jx2              = x[j_coord_offset+DIM*2+XX];
1057             jy2              = x[j_coord_offset+DIM*2+YY];
1058             jz2              = x[j_coord_offset+DIM*2+ZZ];
1059             jx3              = x[j_coord_offset+DIM*3+XX];
1060             jy3              = x[j_coord_offset+DIM*3+YY];
1061             jz3              = x[j_coord_offset+DIM*3+ZZ];
1062
1063             /* Calculate displacement vector */
1064             dx00             = ix0 - jx0;
1065             dy00             = iy0 - jy0;
1066             dz00             = iz0 - jz0;
1067             dx11             = ix1 - jx1;
1068             dy11             = iy1 - jy1;
1069             dz11             = iz1 - jz1;
1070             dx12             = ix1 - jx2;
1071             dy12             = iy1 - jy2;
1072             dz12             = iz1 - jz2;
1073             dx13             = ix1 - jx3;
1074             dy13             = iy1 - jy3;
1075             dz13             = iz1 - jz3;
1076             dx21             = ix2 - jx1;
1077             dy21             = iy2 - jy1;
1078             dz21             = iz2 - jz1;
1079             dx22             = ix2 - jx2;
1080             dy22             = iy2 - jy2;
1081             dz22             = iz2 - jz2;
1082             dx23             = ix2 - jx3;
1083             dy23             = iy2 - jy3;
1084             dz23             = iz2 - jz3;
1085             dx31             = ix3 - jx1;
1086             dy31             = iy3 - jy1;
1087             dz31             = iz3 - jz1;
1088             dx32             = ix3 - jx2;
1089             dy32             = iy3 - jy2;
1090             dz32             = iz3 - jz2;
1091             dx33             = ix3 - jx3;
1092             dy33             = iy3 - jy3;
1093             dz33             = iz3 - jz3;
1094
1095             /* Calculate squared distance and things based on it */
1096             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
1097             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
1098             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
1099             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
1100             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
1101             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
1102             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
1103             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
1104             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
1105             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
1106
1107             rinv00           = gmx_invsqrt(rsq00);
1108             rinv11           = gmx_invsqrt(rsq11);
1109             rinv12           = gmx_invsqrt(rsq12);
1110             rinv13           = gmx_invsqrt(rsq13);
1111             rinv21           = gmx_invsqrt(rsq21);
1112             rinv22           = gmx_invsqrt(rsq22);
1113             rinv23           = gmx_invsqrt(rsq23);
1114             rinv31           = gmx_invsqrt(rsq31);
1115             rinv32           = gmx_invsqrt(rsq32);
1116             rinv33           = gmx_invsqrt(rsq33);
1117
1118             rinvsq00         = rinv00*rinv00;
1119             rinvsq11         = rinv11*rinv11;
1120             rinvsq12         = rinv12*rinv12;
1121             rinvsq13         = rinv13*rinv13;
1122             rinvsq21         = rinv21*rinv21;
1123             rinvsq22         = rinv22*rinv22;
1124             rinvsq23         = rinv23*rinv23;
1125             rinvsq31         = rinv31*rinv31;
1126             rinvsq32         = rinv32*rinv32;
1127             rinvsq33         = rinv33*rinv33;
1128
1129             /**************************
1130              * CALCULATE INTERACTIONS *
1131              **************************/
1132
1133             if (rsq00<rcutoff2)
1134             {
1135
1136             r00              = rsq00*rinv00;
1137
1138             /* BUCKINGHAM DISPERSION/REPULSION */
1139             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
1140             vvdw6            = c6_00*rinvsix;
1141             br               = cexp2_00*r00;
1142             vvdwexp          = cexp1_00*exp(-br);
1143             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
1144             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
1145
1146             d                = r00-rswitch;
1147             d                = (d>0.0) ? d : 0.0;
1148             d2               = d*d;
1149             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1150
1151             dsw              = d2*(swF2+d*(swF3+d*swF4));
1152
1153             /* Evaluate switch function */
1154             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1155             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
1156
1157             fscal            = fvdw;
1158
1159             /* Calculate temporary vectorial force */
1160             tx               = fscal*dx00;
1161             ty               = fscal*dy00;
1162             tz               = fscal*dz00;
1163
1164             /* Update vectorial force */
1165             fix0            += tx;
1166             fiy0            += ty;
1167             fiz0            += tz;
1168             f[j_coord_offset+DIM*0+XX] -= tx;
1169             f[j_coord_offset+DIM*0+YY] -= ty;
1170             f[j_coord_offset+DIM*0+ZZ] -= tz;
1171
1172             }
1173
1174             /**************************
1175              * CALCULATE INTERACTIONS *
1176              **************************/
1177
1178             if (rsq11<rcutoff2)
1179             {
1180
1181             r11              = rsq11*rinv11;
1182
1183             /* EWALD ELECTROSTATICS */
1184
1185             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1186             ewrt             = r11*ewtabscale;
1187             ewitab           = ewrt;
1188             eweps            = ewrt-ewitab;
1189             ewitab           = 4*ewitab;
1190             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1191             velec            = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1192             felec            = qq11*rinv11*(rinvsq11-felec);
1193
1194             d                = r11-rswitch;
1195             d                = (d>0.0) ? d : 0.0;
1196             d2               = d*d;
1197             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1198
1199             dsw              = d2*(swF2+d*(swF3+d*swF4));
1200
1201             /* Evaluate switch function */
1202             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1203             felec            = felec*sw - rinv11*velec*dsw;
1204
1205             fscal            = felec;
1206
1207             /* Calculate temporary vectorial force */
1208             tx               = fscal*dx11;
1209             ty               = fscal*dy11;
1210             tz               = fscal*dz11;
1211
1212             /* Update vectorial force */
1213             fix1            += tx;
1214             fiy1            += ty;
1215             fiz1            += tz;
1216             f[j_coord_offset+DIM*1+XX] -= tx;
1217             f[j_coord_offset+DIM*1+YY] -= ty;
1218             f[j_coord_offset+DIM*1+ZZ] -= tz;
1219
1220             }
1221
1222             /**************************
1223              * CALCULATE INTERACTIONS *
1224              **************************/
1225
1226             if (rsq12<rcutoff2)
1227             {
1228
1229             r12              = rsq12*rinv12;
1230
1231             /* EWALD ELECTROSTATICS */
1232
1233             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1234             ewrt             = r12*ewtabscale;
1235             ewitab           = ewrt;
1236             eweps            = ewrt-ewitab;
1237             ewitab           = 4*ewitab;
1238             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1239             velec            = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1240             felec            = qq12*rinv12*(rinvsq12-felec);
1241
1242             d                = r12-rswitch;
1243             d                = (d>0.0) ? d : 0.0;
1244             d2               = d*d;
1245             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1246
1247             dsw              = d2*(swF2+d*(swF3+d*swF4));
1248
1249             /* Evaluate switch function */
1250             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1251             felec            = felec*sw - rinv12*velec*dsw;
1252
1253             fscal            = felec;
1254
1255             /* Calculate temporary vectorial force */
1256             tx               = fscal*dx12;
1257             ty               = fscal*dy12;
1258             tz               = fscal*dz12;
1259
1260             /* Update vectorial force */
1261             fix1            += tx;
1262             fiy1            += ty;
1263             fiz1            += tz;
1264             f[j_coord_offset+DIM*2+XX] -= tx;
1265             f[j_coord_offset+DIM*2+YY] -= ty;
1266             f[j_coord_offset+DIM*2+ZZ] -= tz;
1267
1268             }
1269
1270             /**************************
1271              * CALCULATE INTERACTIONS *
1272              **************************/
1273
1274             if (rsq13<rcutoff2)
1275             {
1276
1277             r13              = rsq13*rinv13;
1278
1279             /* EWALD ELECTROSTATICS */
1280
1281             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1282             ewrt             = r13*ewtabscale;
1283             ewitab           = ewrt;
1284             eweps            = ewrt-ewitab;
1285             ewitab           = 4*ewitab;
1286             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1287             velec            = qq13*(rinv13-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1288             felec            = qq13*rinv13*(rinvsq13-felec);
1289
1290             d                = r13-rswitch;
1291             d                = (d>0.0) ? d : 0.0;
1292             d2               = d*d;
1293             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1294
1295             dsw              = d2*(swF2+d*(swF3+d*swF4));
1296
1297             /* Evaluate switch function */
1298             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1299             felec            = felec*sw - rinv13*velec*dsw;
1300
1301             fscal            = felec;
1302
1303             /* Calculate temporary vectorial force */
1304             tx               = fscal*dx13;
1305             ty               = fscal*dy13;
1306             tz               = fscal*dz13;
1307
1308             /* Update vectorial force */
1309             fix1            += tx;
1310             fiy1            += ty;
1311             fiz1            += tz;
1312             f[j_coord_offset+DIM*3+XX] -= tx;
1313             f[j_coord_offset+DIM*3+YY] -= ty;
1314             f[j_coord_offset+DIM*3+ZZ] -= tz;
1315
1316             }
1317
1318             /**************************
1319              * CALCULATE INTERACTIONS *
1320              **************************/
1321
1322             if (rsq21<rcutoff2)
1323             {
1324
1325             r21              = rsq21*rinv21;
1326
1327             /* EWALD ELECTROSTATICS */
1328
1329             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1330             ewrt             = r21*ewtabscale;
1331             ewitab           = ewrt;
1332             eweps            = ewrt-ewitab;
1333             ewitab           = 4*ewitab;
1334             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1335             velec            = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1336             felec            = qq21*rinv21*(rinvsq21-felec);
1337
1338             d                = r21-rswitch;
1339             d                = (d>0.0) ? d : 0.0;
1340             d2               = d*d;
1341             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1342
1343             dsw              = d2*(swF2+d*(swF3+d*swF4));
1344
1345             /* Evaluate switch function */
1346             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1347             felec            = felec*sw - rinv21*velec*dsw;
1348
1349             fscal            = felec;
1350
1351             /* Calculate temporary vectorial force */
1352             tx               = fscal*dx21;
1353             ty               = fscal*dy21;
1354             tz               = fscal*dz21;
1355
1356             /* Update vectorial force */
1357             fix2            += tx;
1358             fiy2            += ty;
1359             fiz2            += tz;
1360             f[j_coord_offset+DIM*1+XX] -= tx;
1361             f[j_coord_offset+DIM*1+YY] -= ty;
1362             f[j_coord_offset+DIM*1+ZZ] -= tz;
1363
1364             }
1365
1366             /**************************
1367              * CALCULATE INTERACTIONS *
1368              **************************/
1369
1370             if (rsq22<rcutoff2)
1371             {
1372
1373             r22              = rsq22*rinv22;
1374
1375             /* EWALD ELECTROSTATICS */
1376
1377             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1378             ewrt             = r22*ewtabscale;
1379             ewitab           = ewrt;
1380             eweps            = ewrt-ewitab;
1381             ewitab           = 4*ewitab;
1382             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1383             velec            = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1384             felec            = qq22*rinv22*(rinvsq22-felec);
1385
1386             d                = r22-rswitch;
1387             d                = (d>0.0) ? d : 0.0;
1388             d2               = d*d;
1389             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1390
1391             dsw              = d2*(swF2+d*(swF3+d*swF4));
1392
1393             /* Evaluate switch function */
1394             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1395             felec            = felec*sw - rinv22*velec*dsw;
1396
1397             fscal            = felec;
1398
1399             /* Calculate temporary vectorial force */
1400             tx               = fscal*dx22;
1401             ty               = fscal*dy22;
1402             tz               = fscal*dz22;
1403
1404             /* Update vectorial force */
1405             fix2            += tx;
1406             fiy2            += ty;
1407             fiz2            += tz;
1408             f[j_coord_offset+DIM*2+XX] -= tx;
1409             f[j_coord_offset+DIM*2+YY] -= ty;
1410             f[j_coord_offset+DIM*2+ZZ] -= tz;
1411
1412             }
1413
1414             /**************************
1415              * CALCULATE INTERACTIONS *
1416              **************************/
1417
1418             if (rsq23<rcutoff2)
1419             {
1420
1421             r23              = rsq23*rinv23;
1422
1423             /* EWALD ELECTROSTATICS */
1424
1425             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1426             ewrt             = r23*ewtabscale;
1427             ewitab           = ewrt;
1428             eweps            = ewrt-ewitab;
1429             ewitab           = 4*ewitab;
1430             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1431             velec            = qq23*(rinv23-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1432             felec            = qq23*rinv23*(rinvsq23-felec);
1433
1434             d                = r23-rswitch;
1435             d                = (d>0.0) ? d : 0.0;
1436             d2               = d*d;
1437             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1438
1439             dsw              = d2*(swF2+d*(swF3+d*swF4));
1440
1441             /* Evaluate switch function */
1442             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1443             felec            = felec*sw - rinv23*velec*dsw;
1444
1445             fscal            = felec;
1446
1447             /* Calculate temporary vectorial force */
1448             tx               = fscal*dx23;
1449             ty               = fscal*dy23;
1450             tz               = fscal*dz23;
1451
1452             /* Update vectorial force */
1453             fix2            += tx;
1454             fiy2            += ty;
1455             fiz2            += tz;
1456             f[j_coord_offset+DIM*3+XX] -= tx;
1457             f[j_coord_offset+DIM*3+YY] -= ty;
1458             f[j_coord_offset+DIM*3+ZZ] -= tz;
1459
1460             }
1461
1462             /**************************
1463              * CALCULATE INTERACTIONS *
1464              **************************/
1465
1466             if (rsq31<rcutoff2)
1467             {
1468
1469             r31              = rsq31*rinv31;
1470
1471             /* EWALD ELECTROSTATICS */
1472
1473             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1474             ewrt             = r31*ewtabscale;
1475             ewitab           = ewrt;
1476             eweps            = ewrt-ewitab;
1477             ewitab           = 4*ewitab;
1478             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1479             velec            = qq31*(rinv31-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1480             felec            = qq31*rinv31*(rinvsq31-felec);
1481
1482             d                = r31-rswitch;
1483             d                = (d>0.0) ? d : 0.0;
1484             d2               = d*d;
1485             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1486
1487             dsw              = d2*(swF2+d*(swF3+d*swF4));
1488
1489             /* Evaluate switch function */
1490             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1491             felec            = felec*sw - rinv31*velec*dsw;
1492
1493             fscal            = felec;
1494
1495             /* Calculate temporary vectorial force */
1496             tx               = fscal*dx31;
1497             ty               = fscal*dy31;
1498             tz               = fscal*dz31;
1499
1500             /* Update vectorial force */
1501             fix3            += tx;
1502             fiy3            += ty;
1503             fiz3            += tz;
1504             f[j_coord_offset+DIM*1+XX] -= tx;
1505             f[j_coord_offset+DIM*1+YY] -= ty;
1506             f[j_coord_offset+DIM*1+ZZ] -= tz;
1507
1508             }
1509
1510             /**************************
1511              * CALCULATE INTERACTIONS *
1512              **************************/
1513
1514             if (rsq32<rcutoff2)
1515             {
1516
1517             r32              = rsq32*rinv32;
1518
1519             /* EWALD ELECTROSTATICS */
1520
1521             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1522             ewrt             = r32*ewtabscale;
1523             ewitab           = ewrt;
1524             eweps            = ewrt-ewitab;
1525             ewitab           = 4*ewitab;
1526             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1527             velec            = qq32*(rinv32-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1528             felec            = qq32*rinv32*(rinvsq32-felec);
1529
1530             d                = r32-rswitch;
1531             d                = (d>0.0) ? d : 0.0;
1532             d2               = d*d;
1533             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1534
1535             dsw              = d2*(swF2+d*(swF3+d*swF4));
1536
1537             /* Evaluate switch function */
1538             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1539             felec            = felec*sw - rinv32*velec*dsw;
1540
1541             fscal            = felec;
1542
1543             /* Calculate temporary vectorial force */
1544             tx               = fscal*dx32;
1545             ty               = fscal*dy32;
1546             tz               = fscal*dz32;
1547
1548             /* Update vectorial force */
1549             fix3            += tx;
1550             fiy3            += ty;
1551             fiz3            += tz;
1552             f[j_coord_offset+DIM*2+XX] -= tx;
1553             f[j_coord_offset+DIM*2+YY] -= ty;
1554             f[j_coord_offset+DIM*2+ZZ] -= tz;
1555
1556             }
1557
1558             /**************************
1559              * CALCULATE INTERACTIONS *
1560              **************************/
1561
1562             if (rsq33<rcutoff2)
1563             {
1564
1565             r33              = rsq33*rinv33;
1566
1567             /* EWALD ELECTROSTATICS */
1568
1569             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1570             ewrt             = r33*ewtabscale;
1571             ewitab           = ewrt;
1572             eweps            = ewrt-ewitab;
1573             ewitab           = 4*ewitab;
1574             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
1575             velec            = qq33*(rinv33-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
1576             felec            = qq33*rinv33*(rinvsq33-felec);
1577
1578             d                = r33-rswitch;
1579             d                = (d>0.0) ? d : 0.0;
1580             d2               = d*d;
1581             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
1582
1583             dsw              = d2*(swF2+d*(swF3+d*swF4));
1584
1585             /* Evaluate switch function */
1586             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1587             felec            = felec*sw - rinv33*velec*dsw;
1588
1589             fscal            = felec;
1590
1591             /* Calculate temporary vectorial force */
1592             tx               = fscal*dx33;
1593             ty               = fscal*dy33;
1594             tz               = fscal*dz33;
1595
1596             /* Update vectorial force */
1597             fix3            += tx;
1598             fiy3            += ty;
1599             fiz3            += tz;
1600             f[j_coord_offset+DIM*3+XX] -= tx;
1601             f[j_coord_offset+DIM*3+YY] -= ty;
1602             f[j_coord_offset+DIM*3+ZZ] -= tz;
1603
1604             }
1605
1606             /* Inner loop uses 581 flops */
1607         }
1608         /* End of innermost loop */
1609
1610         tx = ty = tz = 0;
1611         f[i_coord_offset+DIM*0+XX] += fix0;
1612         f[i_coord_offset+DIM*0+YY] += fiy0;
1613         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1614         tx                         += fix0;
1615         ty                         += fiy0;
1616         tz                         += fiz0;
1617         f[i_coord_offset+DIM*1+XX] += fix1;
1618         f[i_coord_offset+DIM*1+YY] += fiy1;
1619         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1620         tx                         += fix1;
1621         ty                         += fiy1;
1622         tz                         += fiz1;
1623         f[i_coord_offset+DIM*2+XX] += fix2;
1624         f[i_coord_offset+DIM*2+YY] += fiy2;
1625         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1626         tx                         += fix2;
1627         ty                         += fiy2;
1628         tz                         += fiz2;
1629         f[i_coord_offset+DIM*3+XX] += fix3;
1630         f[i_coord_offset+DIM*3+YY] += fiy3;
1631         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1632         tx                         += fix3;
1633         ty                         += fiy3;
1634         tz                         += fiz3;
1635         fshift[i_shift_offset+XX]  += tx;
1636         fshift[i_shift_offset+YY]  += ty;
1637         fshift[i_shift_offset+ZZ]  += tz;
1638
1639         /* Increment number of inner iterations */
1640         inneriter                  += j_index_end - j_index_start;
1641
1642         /* Outer loop uses 39 flops */
1643     }
1644
1645     /* Increment number of outer iterations */
1646     outeriter        += nri;
1647
1648     /* Update outer/inner flops */
1649
1650     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*581);
1651 }