Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwBhamSw_GeomW4P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwBhamSw_GeomW4P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            Buckingham
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwBhamSw_GeomW4P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwioffset3;
79     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0;
81     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86     real             velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     int              ewitab;
93     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
94     real             *ewtab;
95     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
96
97     x                = xx[0];
98     f                = ff[0];
99
100     nri              = nlist->nri;
101     iinr             = nlist->iinr;
102     jindex           = nlist->jindex;
103     jjnr             = nlist->jjnr;
104     shiftidx         = nlist->shift;
105     gid              = nlist->gid;
106     shiftvec         = fr->shift_vec[0];
107     fshift           = fr->fshift[0];
108     facel            = fr->epsfac;
109     charge           = mdatoms->chargeA;
110     nvdwtype         = fr->ntype;
111     vdwparam         = fr->nbfp;
112     vdwtype          = mdatoms->typeA;
113
114     sh_ewald         = fr->ic->sh_ewald;
115     ewtab            = fr->ic->tabq_coul_FDV0;
116     ewtabscale       = fr->ic->tabq_scale;
117     ewtabhalfspace   = 0.5/ewtabscale;
118
119     /* Setup water-specific parameters */
120     inr              = nlist->iinr[0];
121     iq1              = facel*charge[inr+1];
122     iq2              = facel*charge[inr+2];
123     iq3              = facel*charge[inr+3];
124     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
125
126     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
127     rcutoff          = fr->rcoulomb;
128     rcutoff2         = rcutoff*rcutoff;
129
130     rswitch          = fr->rcoulomb_switch;
131     /* Setup switch parameters */
132     d                = rcutoff-rswitch;
133     swV3             = -10.0/(d*d*d);
134     swV4             =  15.0/(d*d*d*d);
135     swV5             =  -6.0/(d*d*d*d*d);
136     swF2             = -30.0/(d*d*d);
137     swF3             =  60.0/(d*d*d*d);
138     swF4             = -30.0/(d*d*d*d*d);
139
140     outeriter        = 0;
141     inneriter        = 0;
142
143     /* Start outer loop over neighborlists */
144     for(iidx=0; iidx<nri; iidx++)
145     {
146         /* Load shift vector for this list */
147         i_shift_offset   = DIM*shiftidx[iidx];
148         shX              = shiftvec[i_shift_offset+XX];
149         shY              = shiftvec[i_shift_offset+YY];
150         shZ              = shiftvec[i_shift_offset+ZZ];
151
152         /* Load limits for loop over neighbors */
153         j_index_start    = jindex[iidx];
154         j_index_end      = jindex[iidx+1];
155
156         /* Get outer coordinate index */
157         inr              = iinr[iidx];
158         i_coord_offset   = DIM*inr;
159
160         /* Load i particle coords and add shift vector */
161         ix0              = shX + x[i_coord_offset+DIM*0+XX];
162         iy0              = shY + x[i_coord_offset+DIM*0+YY];
163         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
164         ix1              = shX + x[i_coord_offset+DIM*1+XX];
165         iy1              = shY + x[i_coord_offset+DIM*1+YY];
166         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
167         ix2              = shX + x[i_coord_offset+DIM*2+XX];
168         iy2              = shY + x[i_coord_offset+DIM*2+YY];
169         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
170         ix3              = shX + x[i_coord_offset+DIM*3+XX];
171         iy3              = shY + x[i_coord_offset+DIM*3+YY];
172         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
173
174         fix0             = 0.0;
175         fiy0             = 0.0;
176         fiz0             = 0.0;
177         fix1             = 0.0;
178         fiy1             = 0.0;
179         fiz1             = 0.0;
180         fix2             = 0.0;
181         fiy2             = 0.0;
182         fiz2             = 0.0;
183         fix3             = 0.0;
184         fiy3             = 0.0;
185         fiz3             = 0.0;
186
187         /* Reset potential sums */
188         velecsum         = 0.0;
189         vvdwsum          = 0.0;
190
191         /* Start inner kernel loop */
192         for(jidx=j_index_start; jidx<j_index_end; jidx++)
193         {
194             /* Get j neighbor index, and coordinate index */
195             jnr              = jjnr[jidx];
196             j_coord_offset   = DIM*jnr;
197
198             /* load j atom coordinates */
199             jx0              = x[j_coord_offset+DIM*0+XX];
200             jy0              = x[j_coord_offset+DIM*0+YY];
201             jz0              = x[j_coord_offset+DIM*0+ZZ];
202
203             /* Calculate displacement vector */
204             dx00             = ix0 - jx0;
205             dy00             = iy0 - jy0;
206             dz00             = iz0 - jz0;
207             dx10             = ix1 - jx0;
208             dy10             = iy1 - jy0;
209             dz10             = iz1 - jz0;
210             dx20             = ix2 - jx0;
211             dy20             = iy2 - jy0;
212             dz20             = iz2 - jz0;
213             dx30             = ix3 - jx0;
214             dy30             = iy3 - jy0;
215             dz30             = iz3 - jz0;
216
217             /* Calculate squared distance and things based on it */
218             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
219             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
220             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
221             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
222
223             rinv00           = gmx_invsqrt(rsq00);
224             rinv10           = gmx_invsqrt(rsq10);
225             rinv20           = gmx_invsqrt(rsq20);
226             rinv30           = gmx_invsqrt(rsq30);
227
228             rinvsq00         = rinv00*rinv00;
229             rinvsq10         = rinv10*rinv10;
230             rinvsq20         = rinv20*rinv20;
231             rinvsq30         = rinv30*rinv30;
232
233             /* Load parameters for j particles */
234             jq0              = charge[jnr+0];
235             vdwjidx0         = 3*vdwtype[jnr+0];
236
237             /**************************
238              * CALCULATE INTERACTIONS *
239              **************************/
240
241             if (rsq00<rcutoff2)
242             {
243
244             r00              = rsq00*rinv00;
245
246             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
247             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
248             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
249
250             /* BUCKINGHAM DISPERSION/REPULSION */
251             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
252             vvdw6            = c6_00*rinvsix;
253             br               = cexp2_00*r00;
254             vvdwexp          = cexp1_00*exp(-br);
255             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
256             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
257
258             d                = r00-rswitch;
259             d                = (d>0.0) ? d : 0.0;
260             d2               = d*d;
261             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
262
263             dsw              = d2*(swF2+d*(swF3+d*swF4));
264
265             /* Evaluate switch function */
266             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
267             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
268             vvdw            *= sw;
269
270             /* Update potential sums from outer loop */
271             vvdwsum         += vvdw;
272
273             fscal            = fvdw;
274
275             /* Calculate temporary vectorial force */
276             tx               = fscal*dx00;
277             ty               = fscal*dy00;
278             tz               = fscal*dz00;
279
280             /* Update vectorial force */
281             fix0            += tx;
282             fiy0            += ty;
283             fiz0            += tz;
284             f[j_coord_offset+DIM*0+XX] -= tx;
285             f[j_coord_offset+DIM*0+YY] -= ty;
286             f[j_coord_offset+DIM*0+ZZ] -= tz;
287
288             }
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             if (rsq10<rcutoff2)
295             {
296
297             r10              = rsq10*rinv10;
298
299             qq10             = iq1*jq0;
300
301             /* EWALD ELECTROSTATICS */
302
303             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
304             ewrt             = r10*ewtabscale;
305             ewitab           = ewrt;
306             eweps            = ewrt-ewitab;
307             ewitab           = 4*ewitab;
308             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
309             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
310             felec            = qq10*rinv10*(rinvsq10-felec);
311
312             d                = r10-rswitch;
313             d                = (d>0.0) ? d : 0.0;
314             d2               = d*d;
315             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
316
317             dsw              = d2*(swF2+d*(swF3+d*swF4));
318
319             /* Evaluate switch function */
320             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
321             felec            = felec*sw - rinv10*velec*dsw;
322             velec           *= sw;
323
324             /* Update potential sums from outer loop */
325             velecsum        += velec;
326
327             fscal            = felec;
328
329             /* Calculate temporary vectorial force */
330             tx               = fscal*dx10;
331             ty               = fscal*dy10;
332             tz               = fscal*dz10;
333
334             /* Update vectorial force */
335             fix1            += tx;
336             fiy1            += ty;
337             fiz1            += tz;
338             f[j_coord_offset+DIM*0+XX] -= tx;
339             f[j_coord_offset+DIM*0+YY] -= ty;
340             f[j_coord_offset+DIM*0+ZZ] -= tz;
341
342             }
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             if (rsq20<rcutoff2)
349             {
350
351             r20              = rsq20*rinv20;
352
353             qq20             = iq2*jq0;
354
355             /* EWALD ELECTROSTATICS */
356
357             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
358             ewrt             = r20*ewtabscale;
359             ewitab           = ewrt;
360             eweps            = ewrt-ewitab;
361             ewitab           = 4*ewitab;
362             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
363             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
364             felec            = qq20*rinv20*(rinvsq20-felec);
365
366             d                = r20-rswitch;
367             d                = (d>0.0) ? d : 0.0;
368             d2               = d*d;
369             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
370
371             dsw              = d2*(swF2+d*(swF3+d*swF4));
372
373             /* Evaluate switch function */
374             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
375             felec            = felec*sw - rinv20*velec*dsw;
376             velec           *= sw;
377
378             /* Update potential sums from outer loop */
379             velecsum        += velec;
380
381             fscal            = felec;
382
383             /* Calculate temporary vectorial force */
384             tx               = fscal*dx20;
385             ty               = fscal*dy20;
386             tz               = fscal*dz20;
387
388             /* Update vectorial force */
389             fix2            += tx;
390             fiy2            += ty;
391             fiz2            += tz;
392             f[j_coord_offset+DIM*0+XX] -= tx;
393             f[j_coord_offset+DIM*0+YY] -= ty;
394             f[j_coord_offset+DIM*0+ZZ] -= tz;
395
396             }
397
398             /**************************
399              * CALCULATE INTERACTIONS *
400              **************************/
401
402             if (rsq30<rcutoff2)
403             {
404
405             r30              = rsq30*rinv30;
406
407             qq30             = iq3*jq0;
408
409             /* EWALD ELECTROSTATICS */
410
411             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
412             ewrt             = r30*ewtabscale;
413             ewitab           = ewrt;
414             eweps            = ewrt-ewitab;
415             ewitab           = 4*ewitab;
416             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
417             velec            = qq30*(rinv30-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
418             felec            = qq30*rinv30*(rinvsq30-felec);
419
420             d                = r30-rswitch;
421             d                = (d>0.0) ? d : 0.0;
422             d2               = d*d;
423             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
424
425             dsw              = d2*(swF2+d*(swF3+d*swF4));
426
427             /* Evaluate switch function */
428             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
429             felec            = felec*sw - rinv30*velec*dsw;
430             velec           *= sw;
431
432             /* Update potential sums from outer loop */
433             velecsum        += velec;
434
435             fscal            = felec;
436
437             /* Calculate temporary vectorial force */
438             tx               = fscal*dx30;
439             ty               = fscal*dy30;
440             tz               = fscal*dz30;
441
442             /* Update vectorial force */
443             fix3            += tx;
444             fiy3            += ty;
445             fiz3            += tz;
446             f[j_coord_offset+DIM*0+XX] -= tx;
447             f[j_coord_offset+DIM*0+YY] -= ty;
448             f[j_coord_offset+DIM*0+ZZ] -= tz;
449
450             }
451
452             /* Inner loop uses 256 flops */
453         }
454         /* End of innermost loop */
455
456         tx = ty = tz = 0;
457         f[i_coord_offset+DIM*0+XX] += fix0;
458         f[i_coord_offset+DIM*0+YY] += fiy0;
459         f[i_coord_offset+DIM*0+ZZ] += fiz0;
460         tx                         += fix0;
461         ty                         += fiy0;
462         tz                         += fiz0;
463         f[i_coord_offset+DIM*1+XX] += fix1;
464         f[i_coord_offset+DIM*1+YY] += fiy1;
465         f[i_coord_offset+DIM*1+ZZ] += fiz1;
466         tx                         += fix1;
467         ty                         += fiy1;
468         tz                         += fiz1;
469         f[i_coord_offset+DIM*2+XX] += fix2;
470         f[i_coord_offset+DIM*2+YY] += fiy2;
471         f[i_coord_offset+DIM*2+ZZ] += fiz2;
472         tx                         += fix2;
473         ty                         += fiy2;
474         tz                         += fiz2;
475         f[i_coord_offset+DIM*3+XX] += fix3;
476         f[i_coord_offset+DIM*3+YY] += fiy3;
477         f[i_coord_offset+DIM*3+ZZ] += fiz3;
478         tx                         += fix3;
479         ty                         += fiy3;
480         tz                         += fiz3;
481         fshift[i_shift_offset+XX]  += tx;
482         fshift[i_shift_offset+YY]  += ty;
483         fshift[i_shift_offset+ZZ]  += tz;
484
485         ggid                        = gid[iidx];
486         /* Update potential energies */
487         kernel_data->energygrp_elec[ggid] += velecsum;
488         kernel_data->energygrp_vdw[ggid] += vvdwsum;
489
490         /* Increment number of inner iterations */
491         inneriter                  += j_index_end - j_index_start;
492
493         /* Outer loop uses 41 flops */
494     }
495
496     /* Increment number of outer iterations */
497     outeriter        += nri;
498
499     /* Update outer/inner flops */
500
501     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*256);
502 }
503 /*
504  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwBhamSw_GeomW4P1_F_c
505  * Electrostatics interaction: Ewald
506  * VdW interaction:            Buckingham
507  * Geometry:                   Water4-Particle
508  * Calculate force/pot:        Force
509  */
510 void
511 nb_kernel_ElecEwSw_VdwBhamSw_GeomW4P1_F_c
512                     (t_nblist                    * gmx_restrict       nlist,
513                      rvec                        * gmx_restrict          xx,
514                      rvec                        * gmx_restrict          ff,
515                      t_forcerec                  * gmx_restrict          fr,
516                      t_mdatoms                   * gmx_restrict     mdatoms,
517                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
518                      t_nrnb                      * gmx_restrict        nrnb)
519 {
520     int              i_shift_offset,i_coord_offset,j_coord_offset;
521     int              j_index_start,j_index_end;
522     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
523     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
524     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
525     real             *shiftvec,*fshift,*x,*f;
526     int              vdwioffset0;
527     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
528     int              vdwioffset1;
529     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
530     int              vdwioffset2;
531     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
532     int              vdwioffset3;
533     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
534     int              vdwjidx0;
535     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
536     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
537     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
538     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
539     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
540     real             velec,felec,velecsum,facel,crf,krf,krf2;
541     real             *charge;
542     int              nvdwtype;
543     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
544     int              *vdwtype;
545     real             *vdwparam;
546     int              ewitab;
547     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
548     real             *ewtab;
549     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
550
551     x                = xx[0];
552     f                = ff[0];
553
554     nri              = nlist->nri;
555     iinr             = nlist->iinr;
556     jindex           = nlist->jindex;
557     jjnr             = nlist->jjnr;
558     shiftidx         = nlist->shift;
559     gid              = nlist->gid;
560     shiftvec         = fr->shift_vec[0];
561     fshift           = fr->fshift[0];
562     facel            = fr->epsfac;
563     charge           = mdatoms->chargeA;
564     nvdwtype         = fr->ntype;
565     vdwparam         = fr->nbfp;
566     vdwtype          = mdatoms->typeA;
567
568     sh_ewald         = fr->ic->sh_ewald;
569     ewtab            = fr->ic->tabq_coul_FDV0;
570     ewtabscale       = fr->ic->tabq_scale;
571     ewtabhalfspace   = 0.5/ewtabscale;
572
573     /* Setup water-specific parameters */
574     inr              = nlist->iinr[0];
575     iq1              = facel*charge[inr+1];
576     iq2              = facel*charge[inr+2];
577     iq3              = facel*charge[inr+3];
578     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
579
580     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
581     rcutoff          = fr->rcoulomb;
582     rcutoff2         = rcutoff*rcutoff;
583
584     rswitch          = fr->rcoulomb_switch;
585     /* Setup switch parameters */
586     d                = rcutoff-rswitch;
587     swV3             = -10.0/(d*d*d);
588     swV4             =  15.0/(d*d*d*d);
589     swV5             =  -6.0/(d*d*d*d*d);
590     swF2             = -30.0/(d*d*d);
591     swF3             =  60.0/(d*d*d*d);
592     swF4             = -30.0/(d*d*d*d*d);
593
594     outeriter        = 0;
595     inneriter        = 0;
596
597     /* Start outer loop over neighborlists */
598     for(iidx=0; iidx<nri; iidx++)
599     {
600         /* Load shift vector for this list */
601         i_shift_offset   = DIM*shiftidx[iidx];
602         shX              = shiftvec[i_shift_offset+XX];
603         shY              = shiftvec[i_shift_offset+YY];
604         shZ              = shiftvec[i_shift_offset+ZZ];
605
606         /* Load limits for loop over neighbors */
607         j_index_start    = jindex[iidx];
608         j_index_end      = jindex[iidx+1];
609
610         /* Get outer coordinate index */
611         inr              = iinr[iidx];
612         i_coord_offset   = DIM*inr;
613
614         /* Load i particle coords and add shift vector */
615         ix0              = shX + x[i_coord_offset+DIM*0+XX];
616         iy0              = shY + x[i_coord_offset+DIM*0+YY];
617         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
618         ix1              = shX + x[i_coord_offset+DIM*1+XX];
619         iy1              = shY + x[i_coord_offset+DIM*1+YY];
620         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
621         ix2              = shX + x[i_coord_offset+DIM*2+XX];
622         iy2              = shY + x[i_coord_offset+DIM*2+YY];
623         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
624         ix3              = shX + x[i_coord_offset+DIM*3+XX];
625         iy3              = shY + x[i_coord_offset+DIM*3+YY];
626         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
627
628         fix0             = 0.0;
629         fiy0             = 0.0;
630         fiz0             = 0.0;
631         fix1             = 0.0;
632         fiy1             = 0.0;
633         fiz1             = 0.0;
634         fix2             = 0.0;
635         fiy2             = 0.0;
636         fiz2             = 0.0;
637         fix3             = 0.0;
638         fiy3             = 0.0;
639         fiz3             = 0.0;
640
641         /* Start inner kernel loop */
642         for(jidx=j_index_start; jidx<j_index_end; jidx++)
643         {
644             /* Get j neighbor index, and coordinate index */
645             jnr              = jjnr[jidx];
646             j_coord_offset   = DIM*jnr;
647
648             /* load j atom coordinates */
649             jx0              = x[j_coord_offset+DIM*0+XX];
650             jy0              = x[j_coord_offset+DIM*0+YY];
651             jz0              = x[j_coord_offset+DIM*0+ZZ];
652
653             /* Calculate displacement vector */
654             dx00             = ix0 - jx0;
655             dy00             = iy0 - jy0;
656             dz00             = iz0 - jz0;
657             dx10             = ix1 - jx0;
658             dy10             = iy1 - jy0;
659             dz10             = iz1 - jz0;
660             dx20             = ix2 - jx0;
661             dy20             = iy2 - jy0;
662             dz20             = iz2 - jz0;
663             dx30             = ix3 - jx0;
664             dy30             = iy3 - jy0;
665             dz30             = iz3 - jz0;
666
667             /* Calculate squared distance and things based on it */
668             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
669             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
670             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
671             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
672
673             rinv00           = gmx_invsqrt(rsq00);
674             rinv10           = gmx_invsqrt(rsq10);
675             rinv20           = gmx_invsqrt(rsq20);
676             rinv30           = gmx_invsqrt(rsq30);
677
678             rinvsq00         = rinv00*rinv00;
679             rinvsq10         = rinv10*rinv10;
680             rinvsq20         = rinv20*rinv20;
681             rinvsq30         = rinv30*rinv30;
682
683             /* Load parameters for j particles */
684             jq0              = charge[jnr+0];
685             vdwjidx0         = 3*vdwtype[jnr+0];
686
687             /**************************
688              * CALCULATE INTERACTIONS *
689              **************************/
690
691             if (rsq00<rcutoff2)
692             {
693
694             r00              = rsq00*rinv00;
695
696             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
697             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
698             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
699
700             /* BUCKINGHAM DISPERSION/REPULSION */
701             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
702             vvdw6            = c6_00*rinvsix;
703             br               = cexp2_00*r00;
704             vvdwexp          = cexp1_00*exp(-br);
705             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
706             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
707
708             d                = r00-rswitch;
709             d                = (d>0.0) ? d : 0.0;
710             d2               = d*d;
711             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
712
713             dsw              = d2*(swF2+d*(swF3+d*swF4));
714
715             /* Evaluate switch function */
716             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
717             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
718
719             fscal            = fvdw;
720
721             /* Calculate temporary vectorial force */
722             tx               = fscal*dx00;
723             ty               = fscal*dy00;
724             tz               = fscal*dz00;
725
726             /* Update vectorial force */
727             fix0            += tx;
728             fiy0            += ty;
729             fiz0            += tz;
730             f[j_coord_offset+DIM*0+XX] -= tx;
731             f[j_coord_offset+DIM*0+YY] -= ty;
732             f[j_coord_offset+DIM*0+ZZ] -= tz;
733
734             }
735
736             /**************************
737              * CALCULATE INTERACTIONS *
738              **************************/
739
740             if (rsq10<rcutoff2)
741             {
742
743             r10              = rsq10*rinv10;
744
745             qq10             = iq1*jq0;
746
747             /* EWALD ELECTROSTATICS */
748
749             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
750             ewrt             = r10*ewtabscale;
751             ewitab           = ewrt;
752             eweps            = ewrt-ewitab;
753             ewitab           = 4*ewitab;
754             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
755             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
756             felec            = qq10*rinv10*(rinvsq10-felec);
757
758             d                = r10-rswitch;
759             d                = (d>0.0) ? d : 0.0;
760             d2               = d*d;
761             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
762
763             dsw              = d2*(swF2+d*(swF3+d*swF4));
764
765             /* Evaluate switch function */
766             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
767             felec            = felec*sw - rinv10*velec*dsw;
768
769             fscal            = felec;
770
771             /* Calculate temporary vectorial force */
772             tx               = fscal*dx10;
773             ty               = fscal*dy10;
774             tz               = fscal*dz10;
775
776             /* Update vectorial force */
777             fix1            += tx;
778             fiy1            += ty;
779             fiz1            += tz;
780             f[j_coord_offset+DIM*0+XX] -= tx;
781             f[j_coord_offset+DIM*0+YY] -= ty;
782             f[j_coord_offset+DIM*0+ZZ] -= tz;
783
784             }
785
786             /**************************
787              * CALCULATE INTERACTIONS *
788              **************************/
789
790             if (rsq20<rcutoff2)
791             {
792
793             r20              = rsq20*rinv20;
794
795             qq20             = iq2*jq0;
796
797             /* EWALD ELECTROSTATICS */
798
799             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
800             ewrt             = r20*ewtabscale;
801             ewitab           = ewrt;
802             eweps            = ewrt-ewitab;
803             ewitab           = 4*ewitab;
804             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
805             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
806             felec            = qq20*rinv20*(rinvsq20-felec);
807
808             d                = r20-rswitch;
809             d                = (d>0.0) ? d : 0.0;
810             d2               = d*d;
811             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
812
813             dsw              = d2*(swF2+d*(swF3+d*swF4));
814
815             /* Evaluate switch function */
816             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
817             felec            = felec*sw - rinv20*velec*dsw;
818
819             fscal            = felec;
820
821             /* Calculate temporary vectorial force */
822             tx               = fscal*dx20;
823             ty               = fscal*dy20;
824             tz               = fscal*dz20;
825
826             /* Update vectorial force */
827             fix2            += tx;
828             fiy2            += ty;
829             fiz2            += tz;
830             f[j_coord_offset+DIM*0+XX] -= tx;
831             f[j_coord_offset+DIM*0+YY] -= ty;
832             f[j_coord_offset+DIM*0+ZZ] -= tz;
833
834             }
835
836             /**************************
837              * CALCULATE INTERACTIONS *
838              **************************/
839
840             if (rsq30<rcutoff2)
841             {
842
843             r30              = rsq30*rinv30;
844
845             qq30             = iq3*jq0;
846
847             /* EWALD ELECTROSTATICS */
848
849             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
850             ewrt             = r30*ewtabscale;
851             ewitab           = ewrt;
852             eweps            = ewrt-ewitab;
853             ewitab           = 4*ewitab;
854             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
855             velec            = qq30*(rinv30-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
856             felec            = qq30*rinv30*(rinvsq30-felec);
857
858             d                = r30-rswitch;
859             d                = (d>0.0) ? d : 0.0;
860             d2               = d*d;
861             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
862
863             dsw              = d2*(swF2+d*(swF3+d*swF4));
864
865             /* Evaluate switch function */
866             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
867             felec            = felec*sw - rinv30*velec*dsw;
868
869             fscal            = felec;
870
871             /* Calculate temporary vectorial force */
872             tx               = fscal*dx30;
873             ty               = fscal*dy30;
874             tz               = fscal*dz30;
875
876             /* Update vectorial force */
877             fix3            += tx;
878             fiy3            += ty;
879             fiz3            += tz;
880             f[j_coord_offset+DIM*0+XX] -= tx;
881             f[j_coord_offset+DIM*0+YY] -= ty;
882             f[j_coord_offset+DIM*0+ZZ] -= tz;
883
884             }
885
886             /* Inner loop uses 248 flops */
887         }
888         /* End of innermost loop */
889
890         tx = ty = tz = 0;
891         f[i_coord_offset+DIM*0+XX] += fix0;
892         f[i_coord_offset+DIM*0+YY] += fiy0;
893         f[i_coord_offset+DIM*0+ZZ] += fiz0;
894         tx                         += fix0;
895         ty                         += fiy0;
896         tz                         += fiz0;
897         f[i_coord_offset+DIM*1+XX] += fix1;
898         f[i_coord_offset+DIM*1+YY] += fiy1;
899         f[i_coord_offset+DIM*1+ZZ] += fiz1;
900         tx                         += fix1;
901         ty                         += fiy1;
902         tz                         += fiz1;
903         f[i_coord_offset+DIM*2+XX] += fix2;
904         f[i_coord_offset+DIM*2+YY] += fiy2;
905         f[i_coord_offset+DIM*2+ZZ] += fiz2;
906         tx                         += fix2;
907         ty                         += fiy2;
908         tz                         += fiz2;
909         f[i_coord_offset+DIM*3+XX] += fix3;
910         f[i_coord_offset+DIM*3+YY] += fiy3;
911         f[i_coord_offset+DIM*3+ZZ] += fiz3;
912         tx                         += fix3;
913         ty                         += fiy3;
914         tz                         += fiz3;
915         fshift[i_shift_offset+XX]  += tx;
916         fshift[i_shift_offset+YY]  += ty;
917         fshift[i_shift_offset+ZZ]  += tz;
918
919         /* Increment number of inner iterations */
920         inneriter                  += j_index_end - j_index_start;
921
922         /* Outer loop uses 39 flops */
923     }
924
925     /* Increment number of outer iterations */
926     outeriter        += nri;
927
928     /* Update outer/inner flops */
929
930     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*248);
931 }