Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwBhamSw_GeomW3P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwBhamSw_GeomW3P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            Buckingham
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwBhamSw_GeomW3P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83     real             velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     int              ewitab;
90     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
91     real             *ewtab;
92     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
93
94     x                = xx[0];
95     f                = ff[0];
96
97     nri              = nlist->nri;
98     iinr             = nlist->iinr;
99     jindex           = nlist->jindex;
100     jjnr             = nlist->jjnr;
101     shiftidx         = nlist->shift;
102     gid              = nlist->gid;
103     shiftvec         = fr->shift_vec[0];
104     fshift           = fr->fshift[0];
105     facel            = fr->epsfac;
106     charge           = mdatoms->chargeA;
107     nvdwtype         = fr->ntype;
108     vdwparam         = fr->nbfp;
109     vdwtype          = mdatoms->typeA;
110
111     sh_ewald         = fr->ic->sh_ewald;
112     ewtab            = fr->ic->tabq_coul_FDV0;
113     ewtabscale       = fr->ic->tabq_scale;
114     ewtabhalfspace   = 0.5/ewtabscale;
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq0              = facel*charge[inr+0];
119     iq1              = facel*charge[inr+1];
120     iq2              = facel*charge[inr+2];
121     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
122
123     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
124     rcutoff          = fr->rcoulomb;
125     rcutoff2         = rcutoff*rcutoff;
126
127     rswitch          = fr->rcoulomb_switch;
128     /* Setup switch parameters */
129     d                = rcutoff-rswitch;
130     swV3             = -10.0/(d*d*d);
131     swV4             =  15.0/(d*d*d*d);
132     swV5             =  -6.0/(d*d*d*d*d);
133     swF2             = -30.0/(d*d*d);
134     swF3             =  60.0/(d*d*d*d);
135     swF4             = -30.0/(d*d*d*d*d);
136
137     outeriter        = 0;
138     inneriter        = 0;
139
140     /* Start outer loop over neighborlists */
141     for(iidx=0; iidx<nri; iidx++)
142     {
143         /* Load shift vector for this list */
144         i_shift_offset   = DIM*shiftidx[iidx];
145         shX              = shiftvec[i_shift_offset+XX];
146         shY              = shiftvec[i_shift_offset+YY];
147         shZ              = shiftvec[i_shift_offset+ZZ];
148
149         /* Load limits for loop over neighbors */
150         j_index_start    = jindex[iidx];
151         j_index_end      = jindex[iidx+1];
152
153         /* Get outer coordinate index */
154         inr              = iinr[iidx];
155         i_coord_offset   = DIM*inr;
156
157         /* Load i particle coords and add shift vector */
158         ix0              = shX + x[i_coord_offset+DIM*0+XX];
159         iy0              = shY + x[i_coord_offset+DIM*0+YY];
160         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
161         ix1              = shX + x[i_coord_offset+DIM*1+XX];
162         iy1              = shY + x[i_coord_offset+DIM*1+YY];
163         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
164         ix2              = shX + x[i_coord_offset+DIM*2+XX];
165         iy2              = shY + x[i_coord_offset+DIM*2+YY];
166         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
167
168         fix0             = 0.0;
169         fiy0             = 0.0;
170         fiz0             = 0.0;
171         fix1             = 0.0;
172         fiy1             = 0.0;
173         fiz1             = 0.0;
174         fix2             = 0.0;
175         fiy2             = 0.0;
176         fiz2             = 0.0;
177
178         /* Reset potential sums */
179         velecsum         = 0.0;
180         vvdwsum          = 0.0;
181
182         /* Start inner kernel loop */
183         for(jidx=j_index_start; jidx<j_index_end; jidx++)
184         {
185             /* Get j neighbor index, and coordinate index */
186             jnr              = jjnr[jidx];
187             j_coord_offset   = DIM*jnr;
188
189             /* load j atom coordinates */
190             jx0              = x[j_coord_offset+DIM*0+XX];
191             jy0              = x[j_coord_offset+DIM*0+YY];
192             jz0              = x[j_coord_offset+DIM*0+ZZ];
193
194             /* Calculate displacement vector */
195             dx00             = ix0 - jx0;
196             dy00             = iy0 - jy0;
197             dz00             = iz0 - jz0;
198             dx10             = ix1 - jx0;
199             dy10             = iy1 - jy0;
200             dz10             = iz1 - jz0;
201             dx20             = ix2 - jx0;
202             dy20             = iy2 - jy0;
203             dz20             = iz2 - jz0;
204
205             /* Calculate squared distance and things based on it */
206             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
207             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
208             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
209
210             rinv00           = gmx_invsqrt(rsq00);
211             rinv10           = gmx_invsqrt(rsq10);
212             rinv20           = gmx_invsqrt(rsq20);
213
214             rinvsq00         = rinv00*rinv00;
215             rinvsq10         = rinv10*rinv10;
216             rinvsq20         = rinv20*rinv20;
217
218             /* Load parameters for j particles */
219             jq0              = charge[jnr+0];
220             vdwjidx0         = 3*vdwtype[jnr+0];
221
222             /**************************
223              * CALCULATE INTERACTIONS *
224              **************************/
225
226             if (rsq00<rcutoff2)
227             {
228
229             r00              = rsq00*rinv00;
230
231             qq00             = iq0*jq0;
232             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
233             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
234             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
235
236             /* EWALD ELECTROSTATICS */
237
238             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
239             ewrt             = r00*ewtabscale;
240             ewitab           = ewrt;
241             eweps            = ewrt-ewitab;
242             ewitab           = 4*ewitab;
243             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
244             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
245             felec            = qq00*rinv00*(rinvsq00-felec);
246
247             /* BUCKINGHAM DISPERSION/REPULSION */
248             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
249             vvdw6            = c6_00*rinvsix;
250             br               = cexp2_00*r00;
251             vvdwexp          = cexp1_00*exp(-br);
252             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
253             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
254
255             d                = r00-rswitch;
256             d                = (d>0.0) ? d : 0.0;
257             d2               = d*d;
258             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
259
260             dsw              = d2*(swF2+d*(swF3+d*swF4));
261
262             /* Evaluate switch function */
263             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
264             felec            = felec*sw - rinv00*velec*dsw;
265             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
266             velec           *= sw;
267             vvdw            *= sw;
268
269             /* Update potential sums from outer loop */
270             velecsum        += velec;
271             vvdwsum         += vvdw;
272
273             fscal            = felec+fvdw;
274
275             /* Calculate temporary vectorial force */
276             tx               = fscal*dx00;
277             ty               = fscal*dy00;
278             tz               = fscal*dz00;
279
280             /* Update vectorial force */
281             fix0            += tx;
282             fiy0            += ty;
283             fiz0            += tz;
284             f[j_coord_offset+DIM*0+XX] -= tx;
285             f[j_coord_offset+DIM*0+YY] -= ty;
286             f[j_coord_offset+DIM*0+ZZ] -= tz;
287
288             }
289
290             /**************************
291              * CALCULATE INTERACTIONS *
292              **************************/
293
294             if (rsq10<rcutoff2)
295             {
296
297             r10              = rsq10*rinv10;
298
299             qq10             = iq1*jq0;
300
301             /* EWALD ELECTROSTATICS */
302
303             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
304             ewrt             = r10*ewtabscale;
305             ewitab           = ewrt;
306             eweps            = ewrt-ewitab;
307             ewitab           = 4*ewitab;
308             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
309             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
310             felec            = qq10*rinv10*(rinvsq10-felec);
311
312             d                = r10-rswitch;
313             d                = (d>0.0) ? d : 0.0;
314             d2               = d*d;
315             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
316
317             dsw              = d2*(swF2+d*(swF3+d*swF4));
318
319             /* Evaluate switch function */
320             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
321             felec            = felec*sw - rinv10*velec*dsw;
322             velec           *= sw;
323
324             /* Update potential sums from outer loop */
325             velecsum        += velec;
326
327             fscal            = felec;
328
329             /* Calculate temporary vectorial force */
330             tx               = fscal*dx10;
331             ty               = fscal*dy10;
332             tz               = fscal*dz10;
333
334             /* Update vectorial force */
335             fix1            += tx;
336             fiy1            += ty;
337             fiz1            += tz;
338             f[j_coord_offset+DIM*0+XX] -= tx;
339             f[j_coord_offset+DIM*0+YY] -= ty;
340             f[j_coord_offset+DIM*0+ZZ] -= tz;
341
342             }
343
344             /**************************
345              * CALCULATE INTERACTIONS *
346              **************************/
347
348             if (rsq20<rcutoff2)
349             {
350
351             r20              = rsq20*rinv20;
352
353             qq20             = iq2*jq0;
354
355             /* EWALD ELECTROSTATICS */
356
357             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
358             ewrt             = r20*ewtabscale;
359             ewitab           = ewrt;
360             eweps            = ewrt-ewitab;
361             ewitab           = 4*ewitab;
362             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
363             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
364             felec            = qq20*rinv20*(rinvsq20-felec);
365
366             d                = r20-rswitch;
367             d                = (d>0.0) ? d : 0.0;
368             d2               = d*d;
369             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
370
371             dsw              = d2*(swF2+d*(swF3+d*swF4));
372
373             /* Evaluate switch function */
374             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
375             felec            = felec*sw - rinv20*velec*dsw;
376             velec           *= sw;
377
378             /* Update potential sums from outer loop */
379             velecsum        += velec;
380
381             fscal            = felec;
382
383             /* Calculate temporary vectorial force */
384             tx               = fscal*dx20;
385             ty               = fscal*dy20;
386             tz               = fscal*dz20;
387
388             /* Update vectorial force */
389             fix2            += tx;
390             fiy2            += ty;
391             fiz2            += tz;
392             f[j_coord_offset+DIM*0+XX] -= tx;
393             f[j_coord_offset+DIM*0+YY] -= ty;
394             f[j_coord_offset+DIM*0+ZZ] -= tz;
395
396             }
397
398             /* Inner loop uses 219 flops */
399         }
400         /* End of innermost loop */
401
402         tx = ty = tz = 0;
403         f[i_coord_offset+DIM*0+XX] += fix0;
404         f[i_coord_offset+DIM*0+YY] += fiy0;
405         f[i_coord_offset+DIM*0+ZZ] += fiz0;
406         tx                         += fix0;
407         ty                         += fiy0;
408         tz                         += fiz0;
409         f[i_coord_offset+DIM*1+XX] += fix1;
410         f[i_coord_offset+DIM*1+YY] += fiy1;
411         f[i_coord_offset+DIM*1+ZZ] += fiz1;
412         tx                         += fix1;
413         ty                         += fiy1;
414         tz                         += fiz1;
415         f[i_coord_offset+DIM*2+XX] += fix2;
416         f[i_coord_offset+DIM*2+YY] += fiy2;
417         f[i_coord_offset+DIM*2+ZZ] += fiz2;
418         tx                         += fix2;
419         ty                         += fiy2;
420         tz                         += fiz2;
421         fshift[i_shift_offset+XX]  += tx;
422         fshift[i_shift_offset+YY]  += ty;
423         fshift[i_shift_offset+ZZ]  += tz;
424
425         ggid                        = gid[iidx];
426         /* Update potential energies */
427         kernel_data->energygrp_elec[ggid] += velecsum;
428         kernel_data->energygrp_vdw[ggid] += vvdwsum;
429
430         /* Increment number of inner iterations */
431         inneriter                  += j_index_end - j_index_start;
432
433         /* Outer loop uses 32 flops */
434     }
435
436     /* Increment number of outer iterations */
437     outeriter        += nri;
438
439     /* Update outer/inner flops */
440
441     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*219);
442 }
443 /*
444  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwBhamSw_GeomW3P1_F_c
445  * Electrostatics interaction: Ewald
446  * VdW interaction:            Buckingham
447  * Geometry:                   Water3-Particle
448  * Calculate force/pot:        Force
449  */
450 void
451 nb_kernel_ElecEwSw_VdwBhamSw_GeomW3P1_F_c
452                     (t_nblist                    * gmx_restrict       nlist,
453                      rvec                        * gmx_restrict          xx,
454                      rvec                        * gmx_restrict          ff,
455                      t_forcerec                  * gmx_restrict          fr,
456                      t_mdatoms                   * gmx_restrict     mdatoms,
457                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
458                      t_nrnb                      * gmx_restrict        nrnb)
459 {
460     int              i_shift_offset,i_coord_offset,j_coord_offset;
461     int              j_index_start,j_index_end;
462     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
463     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
464     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
465     real             *shiftvec,*fshift,*x,*f;
466     int              vdwioffset0;
467     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
468     int              vdwioffset1;
469     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
470     int              vdwioffset2;
471     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
472     int              vdwjidx0;
473     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
474     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
475     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
476     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
477     real             velec,felec,velecsum,facel,crf,krf,krf2;
478     real             *charge;
479     int              nvdwtype;
480     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
481     int              *vdwtype;
482     real             *vdwparam;
483     int              ewitab;
484     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
485     real             *ewtab;
486     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
487
488     x                = xx[0];
489     f                = ff[0];
490
491     nri              = nlist->nri;
492     iinr             = nlist->iinr;
493     jindex           = nlist->jindex;
494     jjnr             = nlist->jjnr;
495     shiftidx         = nlist->shift;
496     gid              = nlist->gid;
497     shiftvec         = fr->shift_vec[0];
498     fshift           = fr->fshift[0];
499     facel            = fr->epsfac;
500     charge           = mdatoms->chargeA;
501     nvdwtype         = fr->ntype;
502     vdwparam         = fr->nbfp;
503     vdwtype          = mdatoms->typeA;
504
505     sh_ewald         = fr->ic->sh_ewald;
506     ewtab            = fr->ic->tabq_coul_FDV0;
507     ewtabscale       = fr->ic->tabq_scale;
508     ewtabhalfspace   = 0.5/ewtabscale;
509
510     /* Setup water-specific parameters */
511     inr              = nlist->iinr[0];
512     iq0              = facel*charge[inr+0];
513     iq1              = facel*charge[inr+1];
514     iq2              = facel*charge[inr+2];
515     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
516
517     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
518     rcutoff          = fr->rcoulomb;
519     rcutoff2         = rcutoff*rcutoff;
520
521     rswitch          = fr->rcoulomb_switch;
522     /* Setup switch parameters */
523     d                = rcutoff-rswitch;
524     swV3             = -10.0/(d*d*d);
525     swV4             =  15.0/(d*d*d*d);
526     swV5             =  -6.0/(d*d*d*d*d);
527     swF2             = -30.0/(d*d*d);
528     swF3             =  60.0/(d*d*d*d);
529     swF4             = -30.0/(d*d*d*d*d);
530
531     outeriter        = 0;
532     inneriter        = 0;
533
534     /* Start outer loop over neighborlists */
535     for(iidx=0; iidx<nri; iidx++)
536     {
537         /* Load shift vector for this list */
538         i_shift_offset   = DIM*shiftidx[iidx];
539         shX              = shiftvec[i_shift_offset+XX];
540         shY              = shiftvec[i_shift_offset+YY];
541         shZ              = shiftvec[i_shift_offset+ZZ];
542
543         /* Load limits for loop over neighbors */
544         j_index_start    = jindex[iidx];
545         j_index_end      = jindex[iidx+1];
546
547         /* Get outer coordinate index */
548         inr              = iinr[iidx];
549         i_coord_offset   = DIM*inr;
550
551         /* Load i particle coords and add shift vector */
552         ix0              = shX + x[i_coord_offset+DIM*0+XX];
553         iy0              = shY + x[i_coord_offset+DIM*0+YY];
554         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
555         ix1              = shX + x[i_coord_offset+DIM*1+XX];
556         iy1              = shY + x[i_coord_offset+DIM*1+YY];
557         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
558         ix2              = shX + x[i_coord_offset+DIM*2+XX];
559         iy2              = shY + x[i_coord_offset+DIM*2+YY];
560         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
561
562         fix0             = 0.0;
563         fiy0             = 0.0;
564         fiz0             = 0.0;
565         fix1             = 0.0;
566         fiy1             = 0.0;
567         fiz1             = 0.0;
568         fix2             = 0.0;
569         fiy2             = 0.0;
570         fiz2             = 0.0;
571
572         /* Start inner kernel loop */
573         for(jidx=j_index_start; jidx<j_index_end; jidx++)
574         {
575             /* Get j neighbor index, and coordinate index */
576             jnr              = jjnr[jidx];
577             j_coord_offset   = DIM*jnr;
578
579             /* load j atom coordinates */
580             jx0              = x[j_coord_offset+DIM*0+XX];
581             jy0              = x[j_coord_offset+DIM*0+YY];
582             jz0              = x[j_coord_offset+DIM*0+ZZ];
583
584             /* Calculate displacement vector */
585             dx00             = ix0 - jx0;
586             dy00             = iy0 - jy0;
587             dz00             = iz0 - jz0;
588             dx10             = ix1 - jx0;
589             dy10             = iy1 - jy0;
590             dz10             = iz1 - jz0;
591             dx20             = ix2 - jx0;
592             dy20             = iy2 - jy0;
593             dz20             = iz2 - jz0;
594
595             /* Calculate squared distance and things based on it */
596             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
597             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
598             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
599
600             rinv00           = gmx_invsqrt(rsq00);
601             rinv10           = gmx_invsqrt(rsq10);
602             rinv20           = gmx_invsqrt(rsq20);
603
604             rinvsq00         = rinv00*rinv00;
605             rinvsq10         = rinv10*rinv10;
606             rinvsq20         = rinv20*rinv20;
607
608             /* Load parameters for j particles */
609             jq0              = charge[jnr+0];
610             vdwjidx0         = 3*vdwtype[jnr+0];
611
612             /**************************
613              * CALCULATE INTERACTIONS *
614              **************************/
615
616             if (rsq00<rcutoff2)
617             {
618
619             r00              = rsq00*rinv00;
620
621             qq00             = iq0*jq0;
622             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
623             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
624             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
625
626             /* EWALD ELECTROSTATICS */
627
628             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
629             ewrt             = r00*ewtabscale;
630             ewitab           = ewrt;
631             eweps            = ewrt-ewitab;
632             ewitab           = 4*ewitab;
633             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
634             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
635             felec            = qq00*rinv00*(rinvsq00-felec);
636
637             /* BUCKINGHAM DISPERSION/REPULSION */
638             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
639             vvdw6            = c6_00*rinvsix;
640             br               = cexp2_00*r00;
641             vvdwexp          = cexp1_00*exp(-br);
642             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
643             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
644
645             d                = r00-rswitch;
646             d                = (d>0.0) ? d : 0.0;
647             d2               = d*d;
648             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
649
650             dsw              = d2*(swF2+d*(swF3+d*swF4));
651
652             /* Evaluate switch function */
653             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
654             felec            = felec*sw - rinv00*velec*dsw;
655             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
656
657             fscal            = felec+fvdw;
658
659             /* Calculate temporary vectorial force */
660             tx               = fscal*dx00;
661             ty               = fscal*dy00;
662             tz               = fscal*dz00;
663
664             /* Update vectorial force */
665             fix0            += tx;
666             fiy0            += ty;
667             fiz0            += tz;
668             f[j_coord_offset+DIM*0+XX] -= tx;
669             f[j_coord_offset+DIM*0+YY] -= ty;
670             f[j_coord_offset+DIM*0+ZZ] -= tz;
671
672             }
673
674             /**************************
675              * CALCULATE INTERACTIONS *
676              **************************/
677
678             if (rsq10<rcutoff2)
679             {
680
681             r10              = rsq10*rinv10;
682
683             qq10             = iq1*jq0;
684
685             /* EWALD ELECTROSTATICS */
686
687             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
688             ewrt             = r10*ewtabscale;
689             ewitab           = ewrt;
690             eweps            = ewrt-ewitab;
691             ewitab           = 4*ewitab;
692             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
693             velec            = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
694             felec            = qq10*rinv10*(rinvsq10-felec);
695
696             d                = r10-rswitch;
697             d                = (d>0.0) ? d : 0.0;
698             d2               = d*d;
699             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
700
701             dsw              = d2*(swF2+d*(swF3+d*swF4));
702
703             /* Evaluate switch function */
704             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
705             felec            = felec*sw - rinv10*velec*dsw;
706
707             fscal            = felec;
708
709             /* Calculate temporary vectorial force */
710             tx               = fscal*dx10;
711             ty               = fscal*dy10;
712             tz               = fscal*dz10;
713
714             /* Update vectorial force */
715             fix1            += tx;
716             fiy1            += ty;
717             fiz1            += tz;
718             f[j_coord_offset+DIM*0+XX] -= tx;
719             f[j_coord_offset+DIM*0+YY] -= ty;
720             f[j_coord_offset+DIM*0+ZZ] -= tz;
721
722             }
723
724             /**************************
725              * CALCULATE INTERACTIONS *
726              **************************/
727
728             if (rsq20<rcutoff2)
729             {
730
731             r20              = rsq20*rinv20;
732
733             qq20             = iq2*jq0;
734
735             /* EWALD ELECTROSTATICS */
736
737             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
738             ewrt             = r20*ewtabscale;
739             ewitab           = ewrt;
740             eweps            = ewrt-ewitab;
741             ewitab           = 4*ewitab;
742             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
743             velec            = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
744             felec            = qq20*rinv20*(rinvsq20-felec);
745
746             d                = r20-rswitch;
747             d                = (d>0.0) ? d : 0.0;
748             d2               = d*d;
749             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
750
751             dsw              = d2*(swF2+d*(swF3+d*swF4));
752
753             /* Evaluate switch function */
754             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
755             felec            = felec*sw - rinv20*velec*dsw;
756
757             fscal            = felec;
758
759             /* Calculate temporary vectorial force */
760             tx               = fscal*dx20;
761             ty               = fscal*dy20;
762             tz               = fscal*dz20;
763
764             /* Update vectorial force */
765             fix2            += tx;
766             fiy2            += ty;
767             fiz2            += tz;
768             f[j_coord_offset+DIM*0+XX] -= tx;
769             f[j_coord_offset+DIM*0+YY] -= ty;
770             f[j_coord_offset+DIM*0+ZZ] -= tz;
771
772             }
773
774             /* Inner loop uses 211 flops */
775         }
776         /* End of innermost loop */
777
778         tx = ty = tz = 0;
779         f[i_coord_offset+DIM*0+XX] += fix0;
780         f[i_coord_offset+DIM*0+YY] += fiy0;
781         f[i_coord_offset+DIM*0+ZZ] += fiz0;
782         tx                         += fix0;
783         ty                         += fiy0;
784         tz                         += fiz0;
785         f[i_coord_offset+DIM*1+XX] += fix1;
786         f[i_coord_offset+DIM*1+YY] += fiy1;
787         f[i_coord_offset+DIM*1+ZZ] += fiz1;
788         tx                         += fix1;
789         ty                         += fiy1;
790         tz                         += fiz1;
791         f[i_coord_offset+DIM*2+XX] += fix2;
792         f[i_coord_offset+DIM*2+YY] += fiy2;
793         f[i_coord_offset+DIM*2+ZZ] += fiz2;
794         tx                         += fix2;
795         ty                         += fiy2;
796         tz                         += fiz2;
797         fshift[i_shift_offset+XX]  += tx;
798         fshift[i_shift_offset+YY]  += ty;
799         fshift[i_shift_offset+ZZ]  += tz;
800
801         /* Increment number of inner iterations */
802         inneriter                  += j_index_end - j_index_start;
803
804         /* Outer loop uses 30 flops */
805     }
806
807     /* Increment number of outer iterations */
808     outeriter        += nri;
809
810     /* Update outer/inner flops */
811
812     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*211);
813 }