Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSw_VdwBhamSw_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwBhamSw_GeomP1P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            Buckingham
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSw_VdwBhamSw_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     int              ewitab;
84     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
85     real             *ewtab;
86     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
87
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = fr->epsfac;
100     charge           = mdatoms->chargeA;
101     nvdwtype         = fr->ntype;
102     vdwparam         = fr->nbfp;
103     vdwtype          = mdatoms->typeA;
104
105     sh_ewald         = fr->ic->sh_ewald;
106     ewtab            = fr->ic->tabq_coul_FDV0;
107     ewtabscale       = fr->ic->tabq_scale;
108     ewtabhalfspace   = 0.5/ewtabscale;
109
110     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
111     rcutoff          = fr->rcoulomb;
112     rcutoff2         = rcutoff*rcutoff;
113
114     rswitch          = fr->rcoulomb_switch;
115     /* Setup switch parameters */
116     d                = rcutoff-rswitch;
117     swV3             = -10.0/(d*d*d);
118     swV4             =  15.0/(d*d*d*d);
119     swV5             =  -6.0/(d*d*d*d*d);
120     swF2             = -30.0/(d*d*d);
121     swF3             =  60.0/(d*d*d*d);
122     swF4             = -30.0/(d*d*d*d*d);
123
124     outeriter        = 0;
125     inneriter        = 0;
126
127     /* Start outer loop over neighborlists */
128     for(iidx=0; iidx<nri; iidx++)
129     {
130         /* Load shift vector for this list */
131         i_shift_offset   = DIM*shiftidx[iidx];
132         shX              = shiftvec[i_shift_offset+XX];
133         shY              = shiftvec[i_shift_offset+YY];
134         shZ              = shiftvec[i_shift_offset+ZZ];
135
136         /* Load limits for loop over neighbors */
137         j_index_start    = jindex[iidx];
138         j_index_end      = jindex[iidx+1];
139
140         /* Get outer coordinate index */
141         inr              = iinr[iidx];
142         i_coord_offset   = DIM*inr;
143
144         /* Load i particle coords and add shift vector */
145         ix0              = shX + x[i_coord_offset+DIM*0+XX];
146         iy0              = shY + x[i_coord_offset+DIM*0+YY];
147         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
148
149         fix0             = 0.0;
150         fiy0             = 0.0;
151         fiz0             = 0.0;
152
153         /* Load parameters for i particles */
154         iq0              = facel*charge[inr+0];
155         vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
156
157         /* Reset potential sums */
158         velecsum         = 0.0;
159         vvdwsum          = 0.0;
160
161         /* Start inner kernel loop */
162         for(jidx=j_index_start; jidx<j_index_end; jidx++)
163         {
164             /* Get j neighbor index, and coordinate index */
165             jnr              = jjnr[jidx];
166             j_coord_offset   = DIM*jnr;
167
168             /* load j atom coordinates */
169             jx0              = x[j_coord_offset+DIM*0+XX];
170             jy0              = x[j_coord_offset+DIM*0+YY];
171             jz0              = x[j_coord_offset+DIM*0+ZZ];
172
173             /* Calculate displacement vector */
174             dx00             = ix0 - jx0;
175             dy00             = iy0 - jy0;
176             dz00             = iz0 - jz0;
177
178             /* Calculate squared distance and things based on it */
179             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
180
181             rinv00           = gmx_invsqrt(rsq00);
182
183             rinvsq00         = rinv00*rinv00;
184
185             /* Load parameters for j particles */
186             jq0              = charge[jnr+0];
187             vdwjidx0         = 3*vdwtype[jnr+0];
188
189             /**************************
190              * CALCULATE INTERACTIONS *
191              **************************/
192
193             if (rsq00<rcutoff2)
194             {
195
196             r00              = rsq00*rinv00;
197
198             qq00             = iq0*jq0;
199             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
200             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
201             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
202
203             /* EWALD ELECTROSTATICS */
204
205             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
206             ewrt             = r00*ewtabscale;
207             ewitab           = ewrt;
208             eweps            = ewrt-ewitab;
209             ewitab           = 4*ewitab;
210             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
211             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
212             felec            = qq00*rinv00*(rinvsq00-felec);
213
214             /* BUCKINGHAM DISPERSION/REPULSION */
215             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
216             vvdw6            = c6_00*rinvsix;
217             br               = cexp2_00*r00;
218             vvdwexp          = cexp1_00*exp(-br);
219             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
220             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
221
222             d                = r00-rswitch;
223             d                = (d>0.0) ? d : 0.0;
224             d2               = d*d;
225             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
226
227             dsw              = d2*(swF2+d*(swF3+d*swF4));
228
229             /* Evaluate switch function */
230             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
231             felec            = felec*sw - rinv00*velec*dsw;
232             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
233             velec           *= sw;
234             vvdw            *= sw;
235
236             /* Update potential sums from outer loop */
237             velecsum        += velec;
238             vvdwsum         += vvdw;
239
240             fscal            = felec+fvdw;
241
242             /* Calculate temporary vectorial force */
243             tx               = fscal*dx00;
244             ty               = fscal*dy00;
245             tz               = fscal*dz00;
246
247             /* Update vectorial force */
248             fix0            += tx;
249             fiy0            += ty;
250             fiz0            += tz;
251             f[j_coord_offset+DIM*0+XX] -= tx;
252             f[j_coord_offset+DIM*0+YY] -= ty;
253             f[j_coord_offset+DIM*0+ZZ] -= tz;
254
255             }
256
257             /* Inner loop uses 101 flops */
258         }
259         /* End of innermost loop */
260
261         tx = ty = tz = 0;
262         f[i_coord_offset+DIM*0+XX] += fix0;
263         f[i_coord_offset+DIM*0+YY] += fiy0;
264         f[i_coord_offset+DIM*0+ZZ] += fiz0;
265         tx                         += fix0;
266         ty                         += fiy0;
267         tz                         += fiz0;
268         fshift[i_shift_offset+XX]  += tx;
269         fshift[i_shift_offset+YY]  += ty;
270         fshift[i_shift_offset+ZZ]  += tz;
271
272         ggid                        = gid[iidx];
273         /* Update potential energies */
274         kernel_data->energygrp_elec[ggid] += velecsum;
275         kernel_data->energygrp_vdw[ggid] += vvdwsum;
276
277         /* Increment number of inner iterations */
278         inneriter                  += j_index_end - j_index_start;
279
280         /* Outer loop uses 15 flops */
281     }
282
283     /* Increment number of outer iterations */
284     outeriter        += nri;
285
286     /* Update outer/inner flops */
287
288     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*101);
289 }
290 /*
291  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSw_VdwBhamSw_GeomP1P1_F_c
292  * Electrostatics interaction: Ewald
293  * VdW interaction:            Buckingham
294  * Geometry:                   Particle-Particle
295  * Calculate force/pot:        Force
296  */
297 void
298 nb_kernel_ElecEwSw_VdwBhamSw_GeomP1P1_F_c
299                     (t_nblist                    * gmx_restrict       nlist,
300                      rvec                        * gmx_restrict          xx,
301                      rvec                        * gmx_restrict          ff,
302                      t_forcerec                  * gmx_restrict          fr,
303                      t_mdatoms                   * gmx_restrict     mdatoms,
304                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
305                      t_nrnb                      * gmx_restrict        nrnb)
306 {
307     int              i_shift_offset,i_coord_offset,j_coord_offset;
308     int              j_index_start,j_index_end;
309     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
310     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
311     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
312     real             *shiftvec,*fshift,*x,*f;
313     int              vdwioffset0;
314     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
315     int              vdwjidx0;
316     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
317     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
318     real             velec,felec,velecsum,facel,crf,krf,krf2;
319     real             *charge;
320     int              nvdwtype;
321     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
322     int              *vdwtype;
323     real             *vdwparam;
324     int              ewitab;
325     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
326     real             *ewtab;
327     real             rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
328
329     x                = xx[0];
330     f                = ff[0];
331
332     nri              = nlist->nri;
333     iinr             = nlist->iinr;
334     jindex           = nlist->jindex;
335     jjnr             = nlist->jjnr;
336     shiftidx         = nlist->shift;
337     gid              = nlist->gid;
338     shiftvec         = fr->shift_vec[0];
339     fshift           = fr->fshift[0];
340     facel            = fr->epsfac;
341     charge           = mdatoms->chargeA;
342     nvdwtype         = fr->ntype;
343     vdwparam         = fr->nbfp;
344     vdwtype          = mdatoms->typeA;
345
346     sh_ewald         = fr->ic->sh_ewald;
347     ewtab            = fr->ic->tabq_coul_FDV0;
348     ewtabscale       = fr->ic->tabq_scale;
349     ewtabhalfspace   = 0.5/ewtabscale;
350
351     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
352     rcutoff          = fr->rcoulomb;
353     rcutoff2         = rcutoff*rcutoff;
354
355     rswitch          = fr->rcoulomb_switch;
356     /* Setup switch parameters */
357     d                = rcutoff-rswitch;
358     swV3             = -10.0/(d*d*d);
359     swV4             =  15.0/(d*d*d*d);
360     swV5             =  -6.0/(d*d*d*d*d);
361     swF2             = -30.0/(d*d*d);
362     swF3             =  60.0/(d*d*d*d);
363     swF4             = -30.0/(d*d*d*d*d);
364
365     outeriter        = 0;
366     inneriter        = 0;
367
368     /* Start outer loop over neighborlists */
369     for(iidx=0; iidx<nri; iidx++)
370     {
371         /* Load shift vector for this list */
372         i_shift_offset   = DIM*shiftidx[iidx];
373         shX              = shiftvec[i_shift_offset+XX];
374         shY              = shiftvec[i_shift_offset+YY];
375         shZ              = shiftvec[i_shift_offset+ZZ];
376
377         /* Load limits for loop over neighbors */
378         j_index_start    = jindex[iidx];
379         j_index_end      = jindex[iidx+1];
380
381         /* Get outer coordinate index */
382         inr              = iinr[iidx];
383         i_coord_offset   = DIM*inr;
384
385         /* Load i particle coords and add shift vector */
386         ix0              = shX + x[i_coord_offset+DIM*0+XX];
387         iy0              = shY + x[i_coord_offset+DIM*0+YY];
388         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
389
390         fix0             = 0.0;
391         fiy0             = 0.0;
392         fiz0             = 0.0;
393
394         /* Load parameters for i particles */
395         iq0              = facel*charge[inr+0];
396         vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
397
398         /* Start inner kernel loop */
399         for(jidx=j_index_start; jidx<j_index_end; jidx++)
400         {
401             /* Get j neighbor index, and coordinate index */
402             jnr              = jjnr[jidx];
403             j_coord_offset   = DIM*jnr;
404
405             /* load j atom coordinates */
406             jx0              = x[j_coord_offset+DIM*0+XX];
407             jy0              = x[j_coord_offset+DIM*0+YY];
408             jz0              = x[j_coord_offset+DIM*0+ZZ];
409
410             /* Calculate displacement vector */
411             dx00             = ix0 - jx0;
412             dy00             = iy0 - jy0;
413             dz00             = iz0 - jz0;
414
415             /* Calculate squared distance and things based on it */
416             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
417
418             rinv00           = gmx_invsqrt(rsq00);
419
420             rinvsq00         = rinv00*rinv00;
421
422             /* Load parameters for j particles */
423             jq0              = charge[jnr+0];
424             vdwjidx0         = 3*vdwtype[jnr+0];
425
426             /**************************
427              * CALCULATE INTERACTIONS *
428              **************************/
429
430             if (rsq00<rcutoff2)
431             {
432
433             r00              = rsq00*rinv00;
434
435             qq00             = iq0*jq0;
436             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
437             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
438             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
439
440             /* EWALD ELECTROSTATICS */
441
442             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
443             ewrt             = r00*ewtabscale;
444             ewitab           = ewrt;
445             eweps            = ewrt-ewitab;
446             ewitab           = 4*ewitab;
447             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
448             velec            = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
449             felec            = qq00*rinv00*(rinvsq00-felec);
450
451             /* BUCKINGHAM DISPERSION/REPULSION */
452             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
453             vvdw6            = c6_00*rinvsix;
454             br               = cexp2_00*r00;
455             vvdwexp          = cexp1_00*exp(-br);
456             vvdw             = vvdwexp - vvdw6*(1.0/6.0);
457             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
458
459             d                = r00-rswitch;
460             d                = (d>0.0) ? d : 0.0;
461             d2               = d*d;
462             sw               = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
463
464             dsw              = d2*(swF2+d*(swF3+d*swF4));
465
466             /* Evaluate switch function */
467             /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
468             felec            = felec*sw - rinv00*velec*dsw;
469             fvdw             = fvdw*sw - rinv00*vvdw*dsw;
470
471             fscal            = felec+fvdw;
472
473             /* Calculate temporary vectorial force */
474             tx               = fscal*dx00;
475             ty               = fscal*dy00;
476             tz               = fscal*dz00;
477
478             /* Update vectorial force */
479             fix0            += tx;
480             fiy0            += ty;
481             fiz0            += tz;
482             f[j_coord_offset+DIM*0+XX] -= tx;
483             f[j_coord_offset+DIM*0+YY] -= ty;
484             f[j_coord_offset+DIM*0+ZZ] -= tz;
485
486             }
487
488             /* Inner loop uses 97 flops */
489         }
490         /* End of innermost loop */
491
492         tx = ty = tz = 0;
493         f[i_coord_offset+DIM*0+XX] += fix0;
494         f[i_coord_offset+DIM*0+YY] += fiy0;
495         f[i_coord_offset+DIM*0+ZZ] += fiz0;
496         tx                         += fix0;
497         ty                         += fiy0;
498         tz                         += fiz0;
499         fshift[i_shift_offset+XX]  += tx;
500         fshift[i_shift_offset+YY]  += ty;
501         fshift[i_shift_offset+ZZ]  += tz;
502
503         /* Increment number of inner iterations */
504         inneriter                  += j_index_end - j_index_start;
505
506         /* Outer loop uses 13 flops */
507     }
508
509     /* Increment number of outer iterations */
510     outeriter        += nri;
511
512     /* Update outer/inner flops */
513
514     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*97);
515 }