Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LennardJones
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     int              ewitab;
84     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
85     real             *ewtab;
86
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = fr->epsfac;
99     charge           = mdatoms->chargeA;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     sh_ewald         = fr->ic->sh_ewald;
105     ewtab            = fr->ic->tabq_coul_FDV0;
106     ewtabscale       = fr->ic->tabq_scale;
107     ewtabhalfspace   = 0.5/ewtabscale;
108
109     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
110     rcutoff          = fr->rcoulomb;
111     rcutoff2         = rcutoff*rcutoff;
112
113     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
114     rvdw             = fr->rvdw;
115
116     outeriter        = 0;
117     inneriter        = 0;
118
119     /* Start outer loop over neighborlists */
120     for(iidx=0; iidx<nri; iidx++)
121     {
122         /* Load shift vector for this list */
123         i_shift_offset   = DIM*shiftidx[iidx];
124         shX              = shiftvec[i_shift_offset+XX];
125         shY              = shiftvec[i_shift_offset+YY];
126         shZ              = shiftvec[i_shift_offset+ZZ];
127
128         /* Load limits for loop over neighbors */
129         j_index_start    = jindex[iidx];
130         j_index_end      = jindex[iidx+1];
131
132         /* Get outer coordinate index */
133         inr              = iinr[iidx];
134         i_coord_offset   = DIM*inr;
135
136         /* Load i particle coords and add shift vector */
137         ix0              = shX + x[i_coord_offset+DIM*0+XX];
138         iy0              = shY + x[i_coord_offset+DIM*0+YY];
139         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
140
141         fix0             = 0.0;
142         fiy0             = 0.0;
143         fiz0             = 0.0;
144
145         /* Load parameters for i particles */
146         iq0              = facel*charge[inr+0];
147         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
148
149         /* Reset potential sums */
150         velecsum         = 0.0;
151         vvdwsum          = 0.0;
152
153         /* Start inner kernel loop */
154         for(jidx=j_index_start; jidx<j_index_end; jidx++)
155         {
156             /* Get j neighbor index, and coordinate index */
157             jnr              = jjnr[jidx];
158             j_coord_offset   = DIM*jnr;
159
160             /* load j atom coordinates */
161             jx0              = x[j_coord_offset+DIM*0+XX];
162             jy0              = x[j_coord_offset+DIM*0+YY];
163             jz0              = x[j_coord_offset+DIM*0+ZZ];
164
165             /* Calculate displacement vector */
166             dx00             = ix0 - jx0;
167             dy00             = iy0 - jy0;
168             dz00             = iz0 - jz0;
169
170             /* Calculate squared distance and things based on it */
171             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
172
173             rinv00           = gmx_invsqrt(rsq00);
174
175             rinvsq00         = rinv00*rinv00;
176
177             /* Load parameters for j particles */
178             jq0              = charge[jnr+0];
179             vdwjidx0         = 2*vdwtype[jnr+0];
180
181             /**************************
182              * CALCULATE INTERACTIONS *
183              **************************/
184
185             if (rsq00<rcutoff2)
186             {
187
188             r00              = rsq00*rinv00;
189
190             qq00             = iq0*jq0;
191             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
192             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
193
194             /* EWALD ELECTROSTATICS */
195
196             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
197             ewrt             = r00*ewtabscale;
198             ewitab           = ewrt;
199             eweps            = ewrt-ewitab;
200             ewitab           = 4*ewitab;
201             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
202             velec            = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
203             felec            = qq00*rinv00*(rinvsq00-felec);
204
205             /* LENNARD-JONES DISPERSION/REPULSION */
206
207             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
208             vvdw6            = c6_00*rinvsix;
209             vvdw12           = c12_00*rinvsix*rinvsix;
210             vvdw             = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
211             fvdw             = (vvdw12-vvdw6)*rinvsq00;
212
213             /* Update potential sums from outer loop */
214             velecsum        += velec;
215             vvdwsum         += vvdw;
216
217             fscal            = felec+fvdw;
218
219             /* Calculate temporary vectorial force */
220             tx               = fscal*dx00;
221             ty               = fscal*dy00;
222             tz               = fscal*dz00;
223
224             /* Update vectorial force */
225             fix0            += tx;
226             fiy0            += ty;
227             fiz0            += tz;
228             f[j_coord_offset+DIM*0+XX] -= tx;
229             f[j_coord_offset+DIM*0+YY] -= ty;
230             f[j_coord_offset+DIM*0+ZZ] -= tz;
231
232             }
233
234             /* Inner loop uses 59 flops */
235         }
236         /* End of innermost loop */
237
238         tx = ty = tz = 0;
239         f[i_coord_offset+DIM*0+XX] += fix0;
240         f[i_coord_offset+DIM*0+YY] += fiy0;
241         f[i_coord_offset+DIM*0+ZZ] += fiz0;
242         tx                         += fix0;
243         ty                         += fiy0;
244         tz                         += fiz0;
245         fshift[i_shift_offset+XX]  += tx;
246         fshift[i_shift_offset+YY]  += ty;
247         fshift[i_shift_offset+ZZ]  += tz;
248
249         ggid                        = gid[iidx];
250         /* Update potential energies */
251         kernel_data->energygrp_elec[ggid] += velecsum;
252         kernel_data->energygrp_vdw[ggid] += vvdwsum;
253
254         /* Increment number of inner iterations */
255         inneriter                  += j_index_end - j_index_start;
256
257         /* Outer loop uses 15 flops */
258     }
259
260     /* Increment number of outer iterations */
261     outeriter        += nri;
262
263     /* Update outer/inner flops */
264
265     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*59);
266 }
267 /*
268  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_c
269  * Electrostatics interaction: Ewald
270  * VdW interaction:            LennardJones
271  * Geometry:                   Particle-Particle
272  * Calculate force/pot:        Force
273  */
274 void
275 nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_c
276                     (t_nblist                    * gmx_restrict       nlist,
277                      rvec                        * gmx_restrict          xx,
278                      rvec                        * gmx_restrict          ff,
279                      t_forcerec                  * gmx_restrict          fr,
280                      t_mdatoms                   * gmx_restrict     mdatoms,
281                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
282                      t_nrnb                      * gmx_restrict        nrnb)
283 {
284     int              i_shift_offset,i_coord_offset,j_coord_offset;
285     int              j_index_start,j_index_end;
286     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
287     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
288     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
289     real             *shiftvec,*fshift,*x,*f;
290     int              vdwioffset0;
291     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
292     int              vdwjidx0;
293     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
294     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
295     real             velec,felec,velecsum,facel,crf,krf,krf2;
296     real             *charge;
297     int              nvdwtype;
298     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
299     int              *vdwtype;
300     real             *vdwparam;
301     int              ewitab;
302     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
303     real             *ewtab;
304
305     x                = xx[0];
306     f                = ff[0];
307
308     nri              = nlist->nri;
309     iinr             = nlist->iinr;
310     jindex           = nlist->jindex;
311     jjnr             = nlist->jjnr;
312     shiftidx         = nlist->shift;
313     gid              = nlist->gid;
314     shiftvec         = fr->shift_vec[0];
315     fshift           = fr->fshift[0];
316     facel            = fr->epsfac;
317     charge           = mdatoms->chargeA;
318     nvdwtype         = fr->ntype;
319     vdwparam         = fr->nbfp;
320     vdwtype          = mdatoms->typeA;
321
322     sh_ewald         = fr->ic->sh_ewald;
323     ewtab            = fr->ic->tabq_coul_F;
324     ewtabscale       = fr->ic->tabq_scale;
325     ewtabhalfspace   = 0.5/ewtabscale;
326
327     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
328     rcutoff          = fr->rcoulomb;
329     rcutoff2         = rcutoff*rcutoff;
330
331     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
332     rvdw             = fr->rvdw;
333
334     outeriter        = 0;
335     inneriter        = 0;
336
337     /* Start outer loop over neighborlists */
338     for(iidx=0; iidx<nri; iidx++)
339     {
340         /* Load shift vector for this list */
341         i_shift_offset   = DIM*shiftidx[iidx];
342         shX              = shiftvec[i_shift_offset+XX];
343         shY              = shiftvec[i_shift_offset+YY];
344         shZ              = shiftvec[i_shift_offset+ZZ];
345
346         /* Load limits for loop over neighbors */
347         j_index_start    = jindex[iidx];
348         j_index_end      = jindex[iidx+1];
349
350         /* Get outer coordinate index */
351         inr              = iinr[iidx];
352         i_coord_offset   = DIM*inr;
353
354         /* Load i particle coords and add shift vector */
355         ix0              = shX + x[i_coord_offset+DIM*0+XX];
356         iy0              = shY + x[i_coord_offset+DIM*0+YY];
357         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
358
359         fix0             = 0.0;
360         fiy0             = 0.0;
361         fiz0             = 0.0;
362
363         /* Load parameters for i particles */
364         iq0              = facel*charge[inr+0];
365         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
366
367         /* Start inner kernel loop */
368         for(jidx=j_index_start; jidx<j_index_end; jidx++)
369         {
370             /* Get j neighbor index, and coordinate index */
371             jnr              = jjnr[jidx];
372             j_coord_offset   = DIM*jnr;
373
374             /* load j atom coordinates */
375             jx0              = x[j_coord_offset+DIM*0+XX];
376             jy0              = x[j_coord_offset+DIM*0+YY];
377             jz0              = x[j_coord_offset+DIM*0+ZZ];
378
379             /* Calculate displacement vector */
380             dx00             = ix0 - jx0;
381             dy00             = iy0 - jy0;
382             dz00             = iz0 - jz0;
383
384             /* Calculate squared distance and things based on it */
385             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
386
387             rinv00           = gmx_invsqrt(rsq00);
388
389             rinvsq00         = rinv00*rinv00;
390
391             /* Load parameters for j particles */
392             jq0              = charge[jnr+0];
393             vdwjidx0         = 2*vdwtype[jnr+0];
394
395             /**************************
396              * CALCULATE INTERACTIONS *
397              **************************/
398
399             if (rsq00<rcutoff2)
400             {
401
402             r00              = rsq00*rinv00;
403
404             qq00             = iq0*jq0;
405             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
406             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
407
408             /* EWALD ELECTROSTATICS */
409
410             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
411             ewrt             = r00*ewtabscale;
412             ewitab           = ewrt;
413             eweps            = ewrt-ewitab;
414             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
415             felec            = qq00*rinv00*(rinvsq00-felec);
416
417             /* LENNARD-JONES DISPERSION/REPULSION */
418
419             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
420             fvdw             = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
421
422             fscal            = felec+fvdw;
423
424             /* Calculate temporary vectorial force */
425             tx               = fscal*dx00;
426             ty               = fscal*dy00;
427             tz               = fscal*dz00;
428
429             /* Update vectorial force */
430             fix0            += tx;
431             fiy0            += ty;
432             fiz0            += tz;
433             f[j_coord_offset+DIM*0+XX] -= tx;
434             f[j_coord_offset+DIM*0+YY] -= ty;
435             f[j_coord_offset+DIM*0+ZZ] -= tz;
436
437             }
438
439             /* Inner loop uses 41 flops */
440         }
441         /* End of innermost loop */
442
443         tx = ty = tz = 0;
444         f[i_coord_offset+DIM*0+XX] += fix0;
445         f[i_coord_offset+DIM*0+YY] += fiy0;
446         f[i_coord_offset+DIM*0+ZZ] += fiz0;
447         tx                         += fix0;
448         ty                         += fiy0;
449         tz                         += fiz0;
450         fshift[i_shift_offset+XX]  += tx;
451         fshift[i_shift_offset+YY]  += ty;
452         fshift[i_shift_offset+ZZ]  += tz;
453
454         /* Increment number of inner iterations */
455         inneriter                  += j_index_end - j_index_start;
456
457         /* Outer loop uses 13 flops */
458     }
459
460     /* Increment number of outer iterations */
461     outeriter        += nri;
462
463     /* Update outer/inner flops */
464
465     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*41);
466 }