Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwioffset3;
79     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0;
81     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86     real             velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     real             c6grid_00;
93     real             c6grid_10;
94     real             c6grid_20;
95     real             c6grid_30;
96     real             ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
97     real             *vdwgridparam;
98     int              ewitab;
99     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
100     real             *ewtab;
101
102     x                = xx[0];
103     f                = ff[0];
104
105     nri              = nlist->nri;
106     iinr             = nlist->iinr;
107     jindex           = nlist->jindex;
108     jjnr             = nlist->jjnr;
109     shiftidx         = nlist->shift;
110     gid              = nlist->gid;
111     shiftvec         = fr->shift_vec[0];
112     fshift           = fr->fshift[0];
113     facel            = fr->epsfac;
114     charge           = mdatoms->chargeA;
115     nvdwtype         = fr->ntype;
116     vdwparam         = fr->nbfp;
117     vdwtype          = mdatoms->typeA;
118     vdwgridparam     = fr->ljpme_c6grid;
119     ewclj            = fr->ewaldcoeff_lj;
120     sh_lj_ewald      = fr->ic->sh_lj_ewald;
121     ewclj2           = ewclj*ewclj;
122     ewclj6           = ewclj2*ewclj2*ewclj2;
123
124     sh_ewald         = fr->ic->sh_ewald;
125     ewtab            = fr->ic->tabq_coul_FDV0;
126     ewtabscale       = fr->ic->tabq_scale;
127     ewtabhalfspace   = 0.5/ewtabscale;
128
129     /* Setup water-specific parameters */
130     inr              = nlist->iinr[0];
131     iq1              = facel*charge[inr+1];
132     iq2              = facel*charge[inr+2];
133     iq3              = facel*charge[inr+3];
134     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
135
136     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
137     rcutoff          = fr->rcoulomb;
138     rcutoff2         = rcutoff*rcutoff;
139
140     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
141     rvdw             = fr->rvdw;
142
143     outeriter        = 0;
144     inneriter        = 0;
145
146     /* Start outer loop over neighborlists */
147     for(iidx=0; iidx<nri; iidx++)
148     {
149         /* Load shift vector for this list */
150         i_shift_offset   = DIM*shiftidx[iidx];
151         shX              = shiftvec[i_shift_offset+XX];
152         shY              = shiftvec[i_shift_offset+YY];
153         shZ              = shiftvec[i_shift_offset+ZZ];
154
155         /* Load limits for loop over neighbors */
156         j_index_start    = jindex[iidx];
157         j_index_end      = jindex[iidx+1];
158
159         /* Get outer coordinate index */
160         inr              = iinr[iidx];
161         i_coord_offset   = DIM*inr;
162
163         /* Load i particle coords and add shift vector */
164         ix0              = shX + x[i_coord_offset+DIM*0+XX];
165         iy0              = shY + x[i_coord_offset+DIM*0+YY];
166         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
167         ix1              = shX + x[i_coord_offset+DIM*1+XX];
168         iy1              = shY + x[i_coord_offset+DIM*1+YY];
169         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
170         ix2              = shX + x[i_coord_offset+DIM*2+XX];
171         iy2              = shY + x[i_coord_offset+DIM*2+YY];
172         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
173         ix3              = shX + x[i_coord_offset+DIM*3+XX];
174         iy3              = shY + x[i_coord_offset+DIM*3+YY];
175         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
176
177         fix0             = 0.0;
178         fiy0             = 0.0;
179         fiz0             = 0.0;
180         fix1             = 0.0;
181         fiy1             = 0.0;
182         fiz1             = 0.0;
183         fix2             = 0.0;
184         fiy2             = 0.0;
185         fiz2             = 0.0;
186         fix3             = 0.0;
187         fiy3             = 0.0;
188         fiz3             = 0.0;
189
190         /* Reset potential sums */
191         velecsum         = 0.0;
192         vvdwsum          = 0.0;
193
194         /* Start inner kernel loop */
195         for(jidx=j_index_start; jidx<j_index_end; jidx++)
196         {
197             /* Get j neighbor index, and coordinate index */
198             jnr              = jjnr[jidx];
199             j_coord_offset   = DIM*jnr;
200
201             /* load j atom coordinates */
202             jx0              = x[j_coord_offset+DIM*0+XX];
203             jy0              = x[j_coord_offset+DIM*0+YY];
204             jz0              = x[j_coord_offset+DIM*0+ZZ];
205
206             /* Calculate displacement vector */
207             dx00             = ix0 - jx0;
208             dy00             = iy0 - jy0;
209             dz00             = iz0 - jz0;
210             dx10             = ix1 - jx0;
211             dy10             = iy1 - jy0;
212             dz10             = iz1 - jz0;
213             dx20             = ix2 - jx0;
214             dy20             = iy2 - jy0;
215             dz20             = iz2 - jz0;
216             dx30             = ix3 - jx0;
217             dy30             = iy3 - jy0;
218             dz30             = iz3 - jz0;
219
220             /* Calculate squared distance and things based on it */
221             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
222             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
223             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
224             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
225
226             rinv00           = gmx_invsqrt(rsq00);
227             rinv10           = gmx_invsqrt(rsq10);
228             rinv20           = gmx_invsqrt(rsq20);
229             rinv30           = gmx_invsqrt(rsq30);
230
231             rinvsq00         = rinv00*rinv00;
232             rinvsq10         = rinv10*rinv10;
233             rinvsq20         = rinv20*rinv20;
234             rinvsq30         = rinv30*rinv30;
235
236             /* Load parameters for j particles */
237             jq0              = charge[jnr+0];
238             vdwjidx0         = 2*vdwtype[jnr+0];
239
240             /**************************
241              * CALCULATE INTERACTIONS *
242              **************************/
243
244             if (rsq00<rcutoff2)
245             {
246
247             r00              = rsq00*rinv00;
248
249             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
250             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
251             c6grid_00        = vdwgridparam[vdwioffset0+vdwjidx0];
252
253             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
254             ewcljrsq         = ewclj2*rsq00;
255             exponent         = exp(-ewcljrsq);
256             poly             = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
257             vvdw6            = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
258             vvdw12           = c12_00*rinvsix*rinvsix;
259             vvdw             = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6 - c6grid_00*sh_lj_ewald)*(1.0/6.0);
260             fvdw             = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
261
262             /* Update potential sums from outer loop */
263             vvdwsum         += vvdw;
264
265             fscal            = fvdw;
266
267             /* Calculate temporary vectorial force */
268             tx               = fscal*dx00;
269             ty               = fscal*dy00;
270             tz               = fscal*dz00;
271
272             /* Update vectorial force */
273             fix0            += tx;
274             fiy0            += ty;
275             fiz0            += tz;
276             f[j_coord_offset+DIM*0+XX] -= tx;
277             f[j_coord_offset+DIM*0+YY] -= ty;
278             f[j_coord_offset+DIM*0+ZZ] -= tz;
279
280             }
281
282             /**************************
283              * CALCULATE INTERACTIONS *
284              **************************/
285
286             if (rsq10<rcutoff2)
287             {
288
289             r10              = rsq10*rinv10;
290
291             qq10             = iq1*jq0;
292
293             /* EWALD ELECTROSTATICS */
294
295             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
296             ewrt             = r10*ewtabscale;
297             ewitab           = ewrt;
298             eweps            = ewrt-ewitab;
299             ewitab           = 4*ewitab;
300             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
301             velec            = qq10*((rinv10-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
302             felec            = qq10*rinv10*(rinvsq10-felec);
303
304             /* Update potential sums from outer loop */
305             velecsum        += velec;
306
307             fscal            = felec;
308
309             /* Calculate temporary vectorial force */
310             tx               = fscal*dx10;
311             ty               = fscal*dy10;
312             tz               = fscal*dz10;
313
314             /* Update vectorial force */
315             fix1            += tx;
316             fiy1            += ty;
317             fiz1            += tz;
318             f[j_coord_offset+DIM*0+XX] -= tx;
319             f[j_coord_offset+DIM*0+YY] -= ty;
320             f[j_coord_offset+DIM*0+ZZ] -= tz;
321
322             }
323
324             /**************************
325              * CALCULATE INTERACTIONS *
326              **************************/
327
328             if (rsq20<rcutoff2)
329             {
330
331             r20              = rsq20*rinv20;
332
333             qq20             = iq2*jq0;
334
335             /* EWALD ELECTROSTATICS */
336
337             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
338             ewrt             = r20*ewtabscale;
339             ewitab           = ewrt;
340             eweps            = ewrt-ewitab;
341             ewitab           = 4*ewitab;
342             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
343             velec            = qq20*((rinv20-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
344             felec            = qq20*rinv20*(rinvsq20-felec);
345
346             /* Update potential sums from outer loop */
347             velecsum        += velec;
348
349             fscal            = felec;
350
351             /* Calculate temporary vectorial force */
352             tx               = fscal*dx20;
353             ty               = fscal*dy20;
354             tz               = fscal*dz20;
355
356             /* Update vectorial force */
357             fix2            += tx;
358             fiy2            += ty;
359             fiz2            += tz;
360             f[j_coord_offset+DIM*0+XX] -= tx;
361             f[j_coord_offset+DIM*0+YY] -= ty;
362             f[j_coord_offset+DIM*0+ZZ] -= tz;
363
364             }
365
366             /**************************
367              * CALCULATE INTERACTIONS *
368              **************************/
369
370             if (rsq30<rcutoff2)
371             {
372
373             r30              = rsq30*rinv30;
374
375             qq30             = iq3*jq0;
376
377             /* EWALD ELECTROSTATICS */
378
379             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
380             ewrt             = r30*ewtabscale;
381             ewitab           = ewrt;
382             eweps            = ewrt-ewitab;
383             ewitab           = 4*ewitab;
384             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
385             velec            = qq30*((rinv30-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
386             felec            = qq30*rinv30*(rinvsq30-felec);
387
388             /* Update potential sums from outer loop */
389             velecsum        += velec;
390
391             fscal            = felec;
392
393             /* Calculate temporary vectorial force */
394             tx               = fscal*dx30;
395             ty               = fscal*dy30;
396             tz               = fscal*dz30;
397
398             /* Update vectorial force */
399             fix3            += tx;
400             fiy3            += ty;
401             fiz3            += tz;
402             f[j_coord_offset+DIM*0+XX] -= tx;
403             f[j_coord_offset+DIM*0+YY] -= ty;
404             f[j_coord_offset+DIM*0+ZZ] -= tz;
405
406             }
407
408             /* Inner loop uses 181 flops */
409         }
410         /* End of innermost loop */
411
412         tx = ty = tz = 0;
413         f[i_coord_offset+DIM*0+XX] += fix0;
414         f[i_coord_offset+DIM*0+YY] += fiy0;
415         f[i_coord_offset+DIM*0+ZZ] += fiz0;
416         tx                         += fix0;
417         ty                         += fiy0;
418         tz                         += fiz0;
419         f[i_coord_offset+DIM*1+XX] += fix1;
420         f[i_coord_offset+DIM*1+YY] += fiy1;
421         f[i_coord_offset+DIM*1+ZZ] += fiz1;
422         tx                         += fix1;
423         ty                         += fiy1;
424         tz                         += fiz1;
425         f[i_coord_offset+DIM*2+XX] += fix2;
426         f[i_coord_offset+DIM*2+YY] += fiy2;
427         f[i_coord_offset+DIM*2+ZZ] += fiz2;
428         tx                         += fix2;
429         ty                         += fiy2;
430         tz                         += fiz2;
431         f[i_coord_offset+DIM*3+XX] += fix3;
432         f[i_coord_offset+DIM*3+YY] += fiy3;
433         f[i_coord_offset+DIM*3+ZZ] += fiz3;
434         tx                         += fix3;
435         ty                         += fiy3;
436         tz                         += fiz3;
437         fshift[i_shift_offset+XX]  += tx;
438         fshift[i_shift_offset+YY]  += ty;
439         fshift[i_shift_offset+ZZ]  += tz;
440
441         ggid                        = gid[iidx];
442         /* Update potential energies */
443         kernel_data->energygrp_elec[ggid] += velecsum;
444         kernel_data->energygrp_vdw[ggid] += vvdwsum;
445
446         /* Increment number of inner iterations */
447         inneriter                  += j_index_end - j_index_start;
448
449         /* Outer loop uses 41 flops */
450     }
451
452     /* Increment number of outer iterations */
453     outeriter        += nri;
454
455     /* Update outer/inner flops */
456
457     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*181);
458 }
459 /*
460  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_c
461  * Electrostatics interaction: Ewald
462  * VdW interaction:            LJEwald
463  * Geometry:                   Water4-Particle
464  * Calculate force/pot:        Force
465  */
466 void
467 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW4P1_F_c
468                     (t_nblist                    * gmx_restrict       nlist,
469                      rvec                        * gmx_restrict          xx,
470                      rvec                        * gmx_restrict          ff,
471                      t_forcerec                  * gmx_restrict          fr,
472                      t_mdatoms                   * gmx_restrict     mdatoms,
473                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
474                      t_nrnb                      * gmx_restrict        nrnb)
475 {
476     int              i_shift_offset,i_coord_offset,j_coord_offset;
477     int              j_index_start,j_index_end;
478     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
479     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
480     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
481     real             *shiftvec,*fshift,*x,*f;
482     int              vdwioffset0;
483     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
484     int              vdwioffset1;
485     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
486     int              vdwioffset2;
487     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
488     int              vdwioffset3;
489     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
490     int              vdwjidx0;
491     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
492     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
493     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
494     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
495     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
496     real             velec,felec,velecsum,facel,crf,krf,krf2;
497     real             *charge;
498     int              nvdwtype;
499     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
500     int              *vdwtype;
501     real             *vdwparam;
502     real             c6grid_00;
503     real             c6grid_10;
504     real             c6grid_20;
505     real             c6grid_30;
506     real             ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
507     real             *vdwgridparam;
508     int              ewitab;
509     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
510     real             *ewtab;
511
512     x                = xx[0];
513     f                = ff[0];
514
515     nri              = nlist->nri;
516     iinr             = nlist->iinr;
517     jindex           = nlist->jindex;
518     jjnr             = nlist->jjnr;
519     shiftidx         = nlist->shift;
520     gid              = nlist->gid;
521     shiftvec         = fr->shift_vec[0];
522     fshift           = fr->fshift[0];
523     facel            = fr->epsfac;
524     charge           = mdatoms->chargeA;
525     nvdwtype         = fr->ntype;
526     vdwparam         = fr->nbfp;
527     vdwtype          = mdatoms->typeA;
528     vdwgridparam     = fr->ljpme_c6grid;
529     ewclj            = fr->ewaldcoeff_lj;
530     sh_lj_ewald      = fr->ic->sh_lj_ewald;
531     ewclj2           = ewclj*ewclj;
532     ewclj6           = ewclj2*ewclj2*ewclj2;
533
534     sh_ewald         = fr->ic->sh_ewald;
535     ewtab            = fr->ic->tabq_coul_F;
536     ewtabscale       = fr->ic->tabq_scale;
537     ewtabhalfspace   = 0.5/ewtabscale;
538
539     /* Setup water-specific parameters */
540     inr              = nlist->iinr[0];
541     iq1              = facel*charge[inr+1];
542     iq2              = facel*charge[inr+2];
543     iq3              = facel*charge[inr+3];
544     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
545
546     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
547     rcutoff          = fr->rcoulomb;
548     rcutoff2         = rcutoff*rcutoff;
549
550     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
551     rvdw             = fr->rvdw;
552
553     outeriter        = 0;
554     inneriter        = 0;
555
556     /* Start outer loop over neighborlists */
557     for(iidx=0; iidx<nri; iidx++)
558     {
559         /* Load shift vector for this list */
560         i_shift_offset   = DIM*shiftidx[iidx];
561         shX              = shiftvec[i_shift_offset+XX];
562         shY              = shiftvec[i_shift_offset+YY];
563         shZ              = shiftvec[i_shift_offset+ZZ];
564
565         /* Load limits for loop over neighbors */
566         j_index_start    = jindex[iidx];
567         j_index_end      = jindex[iidx+1];
568
569         /* Get outer coordinate index */
570         inr              = iinr[iidx];
571         i_coord_offset   = DIM*inr;
572
573         /* Load i particle coords and add shift vector */
574         ix0              = shX + x[i_coord_offset+DIM*0+XX];
575         iy0              = shY + x[i_coord_offset+DIM*0+YY];
576         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
577         ix1              = shX + x[i_coord_offset+DIM*1+XX];
578         iy1              = shY + x[i_coord_offset+DIM*1+YY];
579         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
580         ix2              = shX + x[i_coord_offset+DIM*2+XX];
581         iy2              = shY + x[i_coord_offset+DIM*2+YY];
582         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
583         ix3              = shX + x[i_coord_offset+DIM*3+XX];
584         iy3              = shY + x[i_coord_offset+DIM*3+YY];
585         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
586
587         fix0             = 0.0;
588         fiy0             = 0.0;
589         fiz0             = 0.0;
590         fix1             = 0.0;
591         fiy1             = 0.0;
592         fiz1             = 0.0;
593         fix2             = 0.0;
594         fiy2             = 0.0;
595         fiz2             = 0.0;
596         fix3             = 0.0;
597         fiy3             = 0.0;
598         fiz3             = 0.0;
599
600         /* Start inner kernel loop */
601         for(jidx=j_index_start; jidx<j_index_end; jidx++)
602         {
603             /* Get j neighbor index, and coordinate index */
604             jnr              = jjnr[jidx];
605             j_coord_offset   = DIM*jnr;
606
607             /* load j atom coordinates */
608             jx0              = x[j_coord_offset+DIM*0+XX];
609             jy0              = x[j_coord_offset+DIM*0+YY];
610             jz0              = x[j_coord_offset+DIM*0+ZZ];
611
612             /* Calculate displacement vector */
613             dx00             = ix0 - jx0;
614             dy00             = iy0 - jy0;
615             dz00             = iz0 - jz0;
616             dx10             = ix1 - jx0;
617             dy10             = iy1 - jy0;
618             dz10             = iz1 - jz0;
619             dx20             = ix2 - jx0;
620             dy20             = iy2 - jy0;
621             dz20             = iz2 - jz0;
622             dx30             = ix3 - jx0;
623             dy30             = iy3 - jy0;
624             dz30             = iz3 - jz0;
625
626             /* Calculate squared distance and things based on it */
627             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
628             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
629             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
630             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
631
632             rinv00           = gmx_invsqrt(rsq00);
633             rinv10           = gmx_invsqrt(rsq10);
634             rinv20           = gmx_invsqrt(rsq20);
635             rinv30           = gmx_invsqrt(rsq30);
636
637             rinvsq00         = rinv00*rinv00;
638             rinvsq10         = rinv10*rinv10;
639             rinvsq20         = rinv20*rinv20;
640             rinvsq30         = rinv30*rinv30;
641
642             /* Load parameters for j particles */
643             jq0              = charge[jnr+0];
644             vdwjidx0         = 2*vdwtype[jnr+0];
645
646             /**************************
647              * CALCULATE INTERACTIONS *
648              **************************/
649
650             if (rsq00<rcutoff2)
651             {
652
653             r00              = rsq00*rinv00;
654
655             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
656             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
657             c6grid_00        = vdwgridparam[vdwioffset0+vdwjidx0];
658
659             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
660             ewcljrsq         = ewclj2*rsq00;
661             exponent         = exp(-ewcljrsq);
662             poly             = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
663             fvdw             = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
664
665             fscal            = fvdw;
666
667             /* Calculate temporary vectorial force */
668             tx               = fscal*dx00;
669             ty               = fscal*dy00;
670             tz               = fscal*dz00;
671
672             /* Update vectorial force */
673             fix0            += tx;
674             fiy0            += ty;
675             fiz0            += tz;
676             f[j_coord_offset+DIM*0+XX] -= tx;
677             f[j_coord_offset+DIM*0+YY] -= ty;
678             f[j_coord_offset+DIM*0+ZZ] -= tz;
679
680             }
681
682             /**************************
683              * CALCULATE INTERACTIONS *
684              **************************/
685
686             if (rsq10<rcutoff2)
687             {
688
689             r10              = rsq10*rinv10;
690
691             qq10             = iq1*jq0;
692
693             /* EWALD ELECTROSTATICS */
694
695             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
696             ewrt             = r10*ewtabscale;
697             ewitab           = ewrt;
698             eweps            = ewrt-ewitab;
699             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
700             felec            = qq10*rinv10*(rinvsq10-felec);
701
702             fscal            = felec;
703
704             /* Calculate temporary vectorial force */
705             tx               = fscal*dx10;
706             ty               = fscal*dy10;
707             tz               = fscal*dz10;
708
709             /* Update vectorial force */
710             fix1            += tx;
711             fiy1            += ty;
712             fiz1            += tz;
713             f[j_coord_offset+DIM*0+XX] -= tx;
714             f[j_coord_offset+DIM*0+YY] -= ty;
715             f[j_coord_offset+DIM*0+ZZ] -= tz;
716
717             }
718
719             /**************************
720              * CALCULATE INTERACTIONS *
721              **************************/
722
723             if (rsq20<rcutoff2)
724             {
725
726             r20              = rsq20*rinv20;
727
728             qq20             = iq2*jq0;
729
730             /* EWALD ELECTROSTATICS */
731
732             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
733             ewrt             = r20*ewtabscale;
734             ewitab           = ewrt;
735             eweps            = ewrt-ewitab;
736             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
737             felec            = qq20*rinv20*(rinvsq20-felec);
738
739             fscal            = felec;
740
741             /* Calculate temporary vectorial force */
742             tx               = fscal*dx20;
743             ty               = fscal*dy20;
744             tz               = fscal*dz20;
745
746             /* Update vectorial force */
747             fix2            += tx;
748             fiy2            += ty;
749             fiz2            += tz;
750             f[j_coord_offset+DIM*0+XX] -= tx;
751             f[j_coord_offset+DIM*0+YY] -= ty;
752             f[j_coord_offset+DIM*0+ZZ] -= tz;
753
754             }
755
756             /**************************
757              * CALCULATE INTERACTIONS *
758              **************************/
759
760             if (rsq30<rcutoff2)
761             {
762
763             r30              = rsq30*rinv30;
764
765             qq30             = iq3*jq0;
766
767             /* EWALD ELECTROSTATICS */
768
769             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
770             ewrt             = r30*ewtabscale;
771             ewitab           = ewrt;
772             eweps            = ewrt-ewitab;
773             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
774             felec            = qq30*rinv30*(rinvsq30-felec);
775
776             fscal            = felec;
777
778             /* Calculate temporary vectorial force */
779             tx               = fscal*dx30;
780             ty               = fscal*dy30;
781             tz               = fscal*dz30;
782
783             /* Update vectorial force */
784             fix3            += tx;
785             fiy3            += ty;
786             fiz3            += tz;
787             f[j_coord_offset+DIM*0+XX] -= tx;
788             f[j_coord_offset+DIM*0+YY] -= ty;
789             f[j_coord_offset+DIM*0+ZZ] -= tz;
790
791             }
792
793             /* Inner loop uses 146 flops */
794         }
795         /* End of innermost loop */
796
797         tx = ty = tz = 0;
798         f[i_coord_offset+DIM*0+XX] += fix0;
799         f[i_coord_offset+DIM*0+YY] += fiy0;
800         f[i_coord_offset+DIM*0+ZZ] += fiz0;
801         tx                         += fix0;
802         ty                         += fiy0;
803         tz                         += fiz0;
804         f[i_coord_offset+DIM*1+XX] += fix1;
805         f[i_coord_offset+DIM*1+YY] += fiy1;
806         f[i_coord_offset+DIM*1+ZZ] += fiz1;
807         tx                         += fix1;
808         ty                         += fiy1;
809         tz                         += fiz1;
810         f[i_coord_offset+DIM*2+XX] += fix2;
811         f[i_coord_offset+DIM*2+YY] += fiy2;
812         f[i_coord_offset+DIM*2+ZZ] += fiz2;
813         tx                         += fix2;
814         ty                         += fiy2;
815         tz                         += fiz2;
816         f[i_coord_offset+DIM*3+XX] += fix3;
817         f[i_coord_offset+DIM*3+YY] += fiy3;
818         f[i_coord_offset+DIM*3+ZZ] += fiz3;
819         tx                         += fix3;
820         ty                         += fiy3;
821         tz                         += fiz3;
822         fshift[i_shift_offset+XX]  += tx;
823         fshift[i_shift_offset+YY]  += ty;
824         fshift[i_shift_offset+ZZ]  += tz;
825
826         /* Increment number of inner iterations */
827         inneriter                  += j_index_end - j_index_start;
828
829         /* Outer loop uses 39 flops */
830     }
831
832     /* Increment number of outer iterations */
833     outeriter        += nri;
834
835     /* Update outer/inner flops */
836
837     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*146);
838 }