Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            LJEwald
53  * Geometry:                   Water3-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83     real             velec,felec,velecsum,facel,crf,krf,krf2;
84     real             *charge;
85     int              nvdwtype;
86     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87     int              *vdwtype;
88     real             *vdwparam;
89     real             c6grid_00;
90     real             c6grid_10;
91     real             c6grid_20;
92     real             ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
93     real             *vdwgridparam;
94     int              ewitab;
95     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
96     real             *ewtab;
97
98     x                = xx[0];
99     f                = ff[0];
100
101     nri              = nlist->nri;
102     iinr             = nlist->iinr;
103     jindex           = nlist->jindex;
104     jjnr             = nlist->jjnr;
105     shiftidx         = nlist->shift;
106     gid              = nlist->gid;
107     shiftvec         = fr->shift_vec[0];
108     fshift           = fr->fshift[0];
109     facel            = fr->epsfac;
110     charge           = mdatoms->chargeA;
111     nvdwtype         = fr->ntype;
112     vdwparam         = fr->nbfp;
113     vdwtype          = mdatoms->typeA;
114     vdwgridparam     = fr->ljpme_c6grid;
115     ewclj            = fr->ewaldcoeff_lj;
116     sh_lj_ewald      = fr->ic->sh_lj_ewald;
117     ewclj2           = ewclj*ewclj;
118     ewclj6           = ewclj2*ewclj2*ewclj2;
119
120     sh_ewald         = fr->ic->sh_ewald;
121     ewtab            = fr->ic->tabq_coul_FDV0;
122     ewtabscale       = fr->ic->tabq_scale;
123     ewtabhalfspace   = 0.5/ewtabscale;
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq0              = facel*charge[inr+0];
128     iq1              = facel*charge[inr+1];
129     iq2              = facel*charge[inr+2];
130     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
131
132     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
133     rcutoff          = fr->rcoulomb;
134     rcutoff2         = rcutoff*rcutoff;
135
136     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
137     rvdw             = fr->rvdw;
138
139     outeriter        = 0;
140     inneriter        = 0;
141
142     /* Start outer loop over neighborlists */
143     for(iidx=0; iidx<nri; iidx++)
144     {
145         /* Load shift vector for this list */
146         i_shift_offset   = DIM*shiftidx[iidx];
147         shX              = shiftvec[i_shift_offset+XX];
148         shY              = shiftvec[i_shift_offset+YY];
149         shZ              = shiftvec[i_shift_offset+ZZ];
150
151         /* Load limits for loop over neighbors */
152         j_index_start    = jindex[iidx];
153         j_index_end      = jindex[iidx+1];
154
155         /* Get outer coordinate index */
156         inr              = iinr[iidx];
157         i_coord_offset   = DIM*inr;
158
159         /* Load i particle coords and add shift vector */
160         ix0              = shX + x[i_coord_offset+DIM*0+XX];
161         iy0              = shY + x[i_coord_offset+DIM*0+YY];
162         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
163         ix1              = shX + x[i_coord_offset+DIM*1+XX];
164         iy1              = shY + x[i_coord_offset+DIM*1+YY];
165         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
166         ix2              = shX + x[i_coord_offset+DIM*2+XX];
167         iy2              = shY + x[i_coord_offset+DIM*2+YY];
168         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
169
170         fix0             = 0.0;
171         fiy0             = 0.0;
172         fiz0             = 0.0;
173         fix1             = 0.0;
174         fiy1             = 0.0;
175         fiz1             = 0.0;
176         fix2             = 0.0;
177         fiy2             = 0.0;
178         fiz2             = 0.0;
179
180         /* Reset potential sums */
181         velecsum         = 0.0;
182         vvdwsum          = 0.0;
183
184         /* Start inner kernel loop */
185         for(jidx=j_index_start; jidx<j_index_end; jidx++)
186         {
187             /* Get j neighbor index, and coordinate index */
188             jnr              = jjnr[jidx];
189             j_coord_offset   = DIM*jnr;
190
191             /* load j atom coordinates */
192             jx0              = x[j_coord_offset+DIM*0+XX];
193             jy0              = x[j_coord_offset+DIM*0+YY];
194             jz0              = x[j_coord_offset+DIM*0+ZZ];
195
196             /* Calculate displacement vector */
197             dx00             = ix0 - jx0;
198             dy00             = iy0 - jy0;
199             dz00             = iz0 - jz0;
200             dx10             = ix1 - jx0;
201             dy10             = iy1 - jy0;
202             dz10             = iz1 - jz0;
203             dx20             = ix2 - jx0;
204             dy20             = iy2 - jy0;
205             dz20             = iz2 - jz0;
206
207             /* Calculate squared distance and things based on it */
208             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
209             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
210             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
211
212             rinv00           = gmx_invsqrt(rsq00);
213             rinv10           = gmx_invsqrt(rsq10);
214             rinv20           = gmx_invsqrt(rsq20);
215
216             rinvsq00         = rinv00*rinv00;
217             rinvsq10         = rinv10*rinv10;
218             rinvsq20         = rinv20*rinv20;
219
220             /* Load parameters for j particles */
221             jq0              = charge[jnr+0];
222             vdwjidx0         = 2*vdwtype[jnr+0];
223
224             /**************************
225              * CALCULATE INTERACTIONS *
226              **************************/
227
228             if (rsq00<rcutoff2)
229             {
230
231             r00              = rsq00*rinv00;
232
233             qq00             = iq0*jq0;
234             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
235             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
236             c6grid_00        = vdwgridparam[vdwioffset0+vdwjidx0];
237
238             /* EWALD ELECTROSTATICS */
239
240             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
241             ewrt             = r00*ewtabscale;
242             ewitab           = ewrt;
243             eweps            = ewrt-ewitab;
244             ewitab           = 4*ewitab;
245             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
246             velec            = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
247             felec            = qq00*rinv00*(rinvsq00-felec);
248
249             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
250             ewcljrsq         = ewclj2*rsq00;
251             exponent         = exp(-ewcljrsq);
252             poly             = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
253             vvdw6            = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
254             vvdw12           = c12_00*rinvsix*rinvsix;
255             vvdw             = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6 - c6grid_00*sh_lj_ewald)*(1.0/6.0);
256             fvdw             = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
257
258             /* Update potential sums from outer loop */
259             velecsum        += velec;
260             vvdwsum         += vvdw;
261
262             fscal            = felec+fvdw;
263
264             /* Calculate temporary vectorial force */
265             tx               = fscal*dx00;
266             ty               = fscal*dy00;
267             tz               = fscal*dz00;
268
269             /* Update vectorial force */
270             fix0            += tx;
271             fiy0            += ty;
272             fiz0            += tz;
273             f[j_coord_offset+DIM*0+XX] -= tx;
274             f[j_coord_offset+DIM*0+YY] -= ty;
275             f[j_coord_offset+DIM*0+ZZ] -= tz;
276
277             }
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             if (rsq10<rcutoff2)
284             {
285
286             r10              = rsq10*rinv10;
287
288             qq10             = iq1*jq0;
289
290             /* EWALD ELECTROSTATICS */
291
292             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
293             ewrt             = r10*ewtabscale;
294             ewitab           = ewrt;
295             eweps            = ewrt-ewitab;
296             ewitab           = 4*ewitab;
297             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
298             velec            = qq10*((rinv10-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
299             felec            = qq10*rinv10*(rinvsq10-felec);
300
301             /* Update potential sums from outer loop */
302             velecsum        += velec;
303
304             fscal            = felec;
305
306             /* Calculate temporary vectorial force */
307             tx               = fscal*dx10;
308             ty               = fscal*dy10;
309             tz               = fscal*dz10;
310
311             /* Update vectorial force */
312             fix1            += tx;
313             fiy1            += ty;
314             fiz1            += tz;
315             f[j_coord_offset+DIM*0+XX] -= tx;
316             f[j_coord_offset+DIM*0+YY] -= ty;
317             f[j_coord_offset+DIM*0+ZZ] -= tz;
318
319             }
320
321             /**************************
322              * CALCULATE INTERACTIONS *
323              **************************/
324
325             if (rsq20<rcutoff2)
326             {
327
328             r20              = rsq20*rinv20;
329
330             qq20             = iq2*jq0;
331
332             /* EWALD ELECTROSTATICS */
333
334             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
335             ewrt             = r20*ewtabscale;
336             ewitab           = ewrt;
337             eweps            = ewrt-ewitab;
338             ewitab           = 4*ewitab;
339             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
340             velec            = qq20*((rinv20-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
341             felec            = qq20*rinv20*(rinvsq20-felec);
342
343             /* Update potential sums from outer loop */
344             velecsum        += velec;
345
346             fscal            = felec;
347
348             /* Calculate temporary vectorial force */
349             tx               = fscal*dx20;
350             ty               = fscal*dy20;
351             tz               = fscal*dz20;
352
353             /* Update vectorial force */
354             fix2            += tx;
355             fiy2            += ty;
356             fiz2            += tz;
357             f[j_coord_offset+DIM*0+XX] -= tx;
358             f[j_coord_offset+DIM*0+YY] -= ty;
359             f[j_coord_offset+DIM*0+ZZ] -= tz;
360
361             }
362
363             /* Inner loop uses 158 flops */
364         }
365         /* End of innermost loop */
366
367         tx = ty = tz = 0;
368         f[i_coord_offset+DIM*0+XX] += fix0;
369         f[i_coord_offset+DIM*0+YY] += fiy0;
370         f[i_coord_offset+DIM*0+ZZ] += fiz0;
371         tx                         += fix0;
372         ty                         += fiy0;
373         tz                         += fiz0;
374         f[i_coord_offset+DIM*1+XX] += fix1;
375         f[i_coord_offset+DIM*1+YY] += fiy1;
376         f[i_coord_offset+DIM*1+ZZ] += fiz1;
377         tx                         += fix1;
378         ty                         += fiy1;
379         tz                         += fiz1;
380         f[i_coord_offset+DIM*2+XX] += fix2;
381         f[i_coord_offset+DIM*2+YY] += fiy2;
382         f[i_coord_offset+DIM*2+ZZ] += fiz2;
383         tx                         += fix2;
384         ty                         += fiy2;
385         tz                         += fiz2;
386         fshift[i_shift_offset+XX]  += tx;
387         fshift[i_shift_offset+YY]  += ty;
388         fshift[i_shift_offset+ZZ]  += tz;
389
390         ggid                        = gid[iidx];
391         /* Update potential energies */
392         kernel_data->energygrp_elec[ggid] += velecsum;
393         kernel_data->energygrp_vdw[ggid] += vvdwsum;
394
395         /* Increment number of inner iterations */
396         inneriter                  += j_index_end - j_index_start;
397
398         /* Outer loop uses 32 flops */
399     }
400
401     /* Increment number of outer iterations */
402     outeriter        += nri;
403
404     /* Update outer/inner flops */
405
406     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*158);
407 }
408 /*
409  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_c
410  * Electrostatics interaction: Ewald
411  * VdW interaction:            LJEwald
412  * Geometry:                   Water3-Particle
413  * Calculate force/pot:        Force
414  */
415 void
416 nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3P1_F_c
417                     (t_nblist                    * gmx_restrict       nlist,
418                      rvec                        * gmx_restrict          xx,
419                      rvec                        * gmx_restrict          ff,
420                      t_forcerec                  * gmx_restrict          fr,
421                      t_mdatoms                   * gmx_restrict     mdatoms,
422                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
423                      t_nrnb                      * gmx_restrict        nrnb)
424 {
425     int              i_shift_offset,i_coord_offset,j_coord_offset;
426     int              j_index_start,j_index_end;
427     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
428     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
429     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
430     real             *shiftvec,*fshift,*x,*f;
431     int              vdwioffset0;
432     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
433     int              vdwioffset1;
434     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
435     int              vdwioffset2;
436     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
437     int              vdwjidx0;
438     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
439     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
440     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
441     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
442     real             velec,felec,velecsum,facel,crf,krf,krf2;
443     real             *charge;
444     int              nvdwtype;
445     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
446     int              *vdwtype;
447     real             *vdwparam;
448     real             c6grid_00;
449     real             c6grid_10;
450     real             c6grid_20;
451     real             ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
452     real             *vdwgridparam;
453     int              ewitab;
454     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
455     real             *ewtab;
456
457     x                = xx[0];
458     f                = ff[0];
459
460     nri              = nlist->nri;
461     iinr             = nlist->iinr;
462     jindex           = nlist->jindex;
463     jjnr             = nlist->jjnr;
464     shiftidx         = nlist->shift;
465     gid              = nlist->gid;
466     shiftvec         = fr->shift_vec[0];
467     fshift           = fr->fshift[0];
468     facel            = fr->epsfac;
469     charge           = mdatoms->chargeA;
470     nvdwtype         = fr->ntype;
471     vdwparam         = fr->nbfp;
472     vdwtype          = mdatoms->typeA;
473     vdwgridparam     = fr->ljpme_c6grid;
474     ewclj            = fr->ewaldcoeff_lj;
475     sh_lj_ewald      = fr->ic->sh_lj_ewald;
476     ewclj2           = ewclj*ewclj;
477     ewclj6           = ewclj2*ewclj2*ewclj2;
478
479     sh_ewald         = fr->ic->sh_ewald;
480     ewtab            = fr->ic->tabq_coul_F;
481     ewtabscale       = fr->ic->tabq_scale;
482     ewtabhalfspace   = 0.5/ewtabscale;
483
484     /* Setup water-specific parameters */
485     inr              = nlist->iinr[0];
486     iq0              = facel*charge[inr+0];
487     iq1              = facel*charge[inr+1];
488     iq2              = facel*charge[inr+2];
489     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
490
491     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
492     rcutoff          = fr->rcoulomb;
493     rcutoff2         = rcutoff*rcutoff;
494
495     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
496     rvdw             = fr->rvdw;
497
498     outeriter        = 0;
499     inneriter        = 0;
500
501     /* Start outer loop over neighborlists */
502     for(iidx=0; iidx<nri; iidx++)
503     {
504         /* Load shift vector for this list */
505         i_shift_offset   = DIM*shiftidx[iidx];
506         shX              = shiftvec[i_shift_offset+XX];
507         shY              = shiftvec[i_shift_offset+YY];
508         shZ              = shiftvec[i_shift_offset+ZZ];
509
510         /* Load limits for loop over neighbors */
511         j_index_start    = jindex[iidx];
512         j_index_end      = jindex[iidx+1];
513
514         /* Get outer coordinate index */
515         inr              = iinr[iidx];
516         i_coord_offset   = DIM*inr;
517
518         /* Load i particle coords and add shift vector */
519         ix0              = shX + x[i_coord_offset+DIM*0+XX];
520         iy0              = shY + x[i_coord_offset+DIM*0+YY];
521         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
522         ix1              = shX + x[i_coord_offset+DIM*1+XX];
523         iy1              = shY + x[i_coord_offset+DIM*1+YY];
524         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
525         ix2              = shX + x[i_coord_offset+DIM*2+XX];
526         iy2              = shY + x[i_coord_offset+DIM*2+YY];
527         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
528
529         fix0             = 0.0;
530         fiy0             = 0.0;
531         fiz0             = 0.0;
532         fix1             = 0.0;
533         fiy1             = 0.0;
534         fiz1             = 0.0;
535         fix2             = 0.0;
536         fiy2             = 0.0;
537         fiz2             = 0.0;
538
539         /* Start inner kernel loop */
540         for(jidx=j_index_start; jidx<j_index_end; jidx++)
541         {
542             /* Get j neighbor index, and coordinate index */
543             jnr              = jjnr[jidx];
544             j_coord_offset   = DIM*jnr;
545
546             /* load j atom coordinates */
547             jx0              = x[j_coord_offset+DIM*0+XX];
548             jy0              = x[j_coord_offset+DIM*0+YY];
549             jz0              = x[j_coord_offset+DIM*0+ZZ];
550
551             /* Calculate displacement vector */
552             dx00             = ix0 - jx0;
553             dy00             = iy0 - jy0;
554             dz00             = iz0 - jz0;
555             dx10             = ix1 - jx0;
556             dy10             = iy1 - jy0;
557             dz10             = iz1 - jz0;
558             dx20             = ix2 - jx0;
559             dy20             = iy2 - jy0;
560             dz20             = iz2 - jz0;
561
562             /* Calculate squared distance and things based on it */
563             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
564             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
565             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
566
567             rinv00           = gmx_invsqrt(rsq00);
568             rinv10           = gmx_invsqrt(rsq10);
569             rinv20           = gmx_invsqrt(rsq20);
570
571             rinvsq00         = rinv00*rinv00;
572             rinvsq10         = rinv10*rinv10;
573             rinvsq20         = rinv20*rinv20;
574
575             /* Load parameters for j particles */
576             jq0              = charge[jnr+0];
577             vdwjidx0         = 2*vdwtype[jnr+0];
578
579             /**************************
580              * CALCULATE INTERACTIONS *
581              **************************/
582
583             if (rsq00<rcutoff2)
584             {
585
586             r00              = rsq00*rinv00;
587
588             qq00             = iq0*jq0;
589             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
590             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
591             c6grid_00        = vdwgridparam[vdwioffset0+vdwjidx0];
592
593             /* EWALD ELECTROSTATICS */
594
595             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
596             ewrt             = r00*ewtabscale;
597             ewitab           = ewrt;
598             eweps            = ewrt-ewitab;
599             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
600             felec            = qq00*rinv00*(rinvsq00-felec);
601
602             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
603             ewcljrsq         = ewclj2*rsq00;
604             exponent         = exp(-ewcljrsq);
605             poly             = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
606             fvdw             = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
607
608             fscal            = felec+fvdw;
609
610             /* Calculate temporary vectorial force */
611             tx               = fscal*dx00;
612             ty               = fscal*dy00;
613             tz               = fscal*dz00;
614
615             /* Update vectorial force */
616             fix0            += tx;
617             fiy0            += ty;
618             fiz0            += tz;
619             f[j_coord_offset+DIM*0+XX] -= tx;
620             f[j_coord_offset+DIM*0+YY] -= ty;
621             f[j_coord_offset+DIM*0+ZZ] -= tz;
622
623             }
624
625             /**************************
626              * CALCULATE INTERACTIONS *
627              **************************/
628
629             if (rsq10<rcutoff2)
630             {
631
632             r10              = rsq10*rinv10;
633
634             qq10             = iq1*jq0;
635
636             /* EWALD ELECTROSTATICS */
637
638             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
639             ewrt             = r10*ewtabscale;
640             ewitab           = ewrt;
641             eweps            = ewrt-ewitab;
642             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
643             felec            = qq10*rinv10*(rinvsq10-felec);
644
645             fscal            = felec;
646
647             /* Calculate temporary vectorial force */
648             tx               = fscal*dx10;
649             ty               = fscal*dy10;
650             tz               = fscal*dz10;
651
652             /* Update vectorial force */
653             fix1            += tx;
654             fiy1            += ty;
655             fiz1            += tz;
656             f[j_coord_offset+DIM*0+XX] -= tx;
657             f[j_coord_offset+DIM*0+YY] -= ty;
658             f[j_coord_offset+DIM*0+ZZ] -= tz;
659
660             }
661
662             /**************************
663              * CALCULATE INTERACTIONS *
664              **************************/
665
666             if (rsq20<rcutoff2)
667             {
668
669             r20              = rsq20*rinv20;
670
671             qq20             = iq2*jq0;
672
673             /* EWALD ELECTROSTATICS */
674
675             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
676             ewrt             = r20*ewtabscale;
677             ewitab           = ewrt;
678             eweps            = ewrt-ewitab;
679             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
680             felec            = qq20*rinv20*(rinvsq20-felec);
681
682             fscal            = felec;
683
684             /* Calculate temporary vectorial force */
685             tx               = fscal*dx20;
686             ty               = fscal*dy20;
687             tz               = fscal*dz20;
688
689             /* Update vectorial force */
690             fix2            += tx;
691             fiy2            += ty;
692             fiz2            += tz;
693             f[j_coord_offset+DIM*0+XX] -= tx;
694             f[j_coord_offset+DIM*0+YY] -= ty;
695             f[j_coord_offset+DIM*0+ZZ] -= tz;
696
697             }
698
699             /* Inner loop uses 123 flops */
700         }
701         /* End of innermost loop */
702
703         tx = ty = tz = 0;
704         f[i_coord_offset+DIM*0+XX] += fix0;
705         f[i_coord_offset+DIM*0+YY] += fiy0;
706         f[i_coord_offset+DIM*0+ZZ] += fiz0;
707         tx                         += fix0;
708         ty                         += fiy0;
709         tz                         += fiz0;
710         f[i_coord_offset+DIM*1+XX] += fix1;
711         f[i_coord_offset+DIM*1+YY] += fiy1;
712         f[i_coord_offset+DIM*1+ZZ] += fiz1;
713         tx                         += fix1;
714         ty                         += fiy1;
715         tz                         += fiz1;
716         f[i_coord_offset+DIM*2+XX] += fix2;
717         f[i_coord_offset+DIM*2+YY] += fiy2;
718         f[i_coord_offset+DIM*2+ZZ] += fiz2;
719         tx                         += fix2;
720         ty                         += fiy2;
721         tz                         += fiz2;
722         fshift[i_shift_offset+XX]  += tx;
723         fshift[i_shift_offset+YY]  += ty;
724         fshift[i_shift_offset+ZZ]  += tz;
725
726         /* Increment number of inner iterations */
727         inneriter                  += j_index_end - j_index_start;
728
729         /* Outer loop uses 30 flops */
730     }
731
732     /* Increment number of outer iterations */
733     outeriter        += nri;
734
735     /* Update outer/inner flops */
736
737     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*123);
738 }