7cf851525dac69beaa6139f0c34a0c92716858bb
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "config.h"
39
40 #include <math.h>
41
42 #include "../nb_kernel.h"
43 #include "gromacs/legacyheaders/types/simple.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/legacyheaders/nrnb.h"
46
47 /*
48  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_c
49  * Electrostatics interaction: Ewald
50  * VdW interaction:            LJEwald
51  * Geometry:                   Particle-Particle
52  * Calculate force/pot:        PotentialAndForce
53  */
54 void
55 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_VF_c
56                     (t_nblist                    * gmx_restrict       nlist,
57                      rvec                        * gmx_restrict          xx,
58                      rvec                        * gmx_restrict          ff,
59                      t_forcerec                  * gmx_restrict          fr,
60                      t_mdatoms                   * gmx_restrict     mdatoms,
61                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
62                      t_nrnb                      * gmx_restrict        nrnb)
63 {
64     int              i_shift_offset,i_coord_offset,j_coord_offset;
65     int              j_index_start,j_index_end;
66     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
67     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
68     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
69     real             *shiftvec,*fshift,*x,*f;
70     int              vdwioffset0;
71     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
72     int              vdwjidx0;
73     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
74     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
75     real             velec,felec,velecsum,facel,crf,krf,krf2;
76     real             *charge;
77     int              nvdwtype;
78     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
79     int              *vdwtype;
80     real             *vdwparam;
81     real             c6grid_00;
82     real             ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
83     real             *vdwgridparam;
84     int              ewitab;
85     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
86     real             *ewtab;
87
88     x                = xx[0];
89     f                = ff[0];
90
91     nri              = nlist->nri;
92     iinr             = nlist->iinr;
93     jindex           = nlist->jindex;
94     jjnr             = nlist->jjnr;
95     shiftidx         = nlist->shift;
96     gid              = nlist->gid;
97     shiftvec         = fr->shift_vec[0];
98     fshift           = fr->fshift[0];
99     facel            = fr->epsfac;
100     charge           = mdatoms->chargeA;
101     nvdwtype         = fr->ntype;
102     vdwparam         = fr->nbfp;
103     vdwtype          = mdatoms->typeA;
104     vdwgridparam     = fr->ljpme_c6grid;
105     ewclj            = fr->ewaldcoeff_lj;
106     sh_lj_ewald      = fr->ic->sh_lj_ewald;
107     ewclj2           = ewclj*ewclj;
108     ewclj6           = ewclj2*ewclj2*ewclj2;
109
110     sh_ewald         = fr->ic->sh_ewald;
111     ewtab            = fr->ic->tabq_coul_FDV0;
112     ewtabscale       = fr->ic->tabq_scale;
113     ewtabhalfspace   = 0.5/ewtabscale;
114
115     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
116     rcutoff          = fr->rcoulomb;
117     rcutoff2         = rcutoff*rcutoff;
118
119     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
120     rvdw             = fr->rvdw;
121
122     outeriter        = 0;
123     inneriter        = 0;
124
125     /* Start outer loop over neighborlists */
126     for(iidx=0; iidx<nri; iidx++)
127     {
128         /* Load shift vector for this list */
129         i_shift_offset   = DIM*shiftidx[iidx];
130         shX              = shiftvec[i_shift_offset+XX];
131         shY              = shiftvec[i_shift_offset+YY];
132         shZ              = shiftvec[i_shift_offset+ZZ];
133
134         /* Load limits for loop over neighbors */
135         j_index_start    = jindex[iidx];
136         j_index_end      = jindex[iidx+1];
137
138         /* Get outer coordinate index */
139         inr              = iinr[iidx];
140         i_coord_offset   = DIM*inr;
141
142         /* Load i particle coords and add shift vector */
143         ix0              = shX + x[i_coord_offset+DIM*0+XX];
144         iy0              = shY + x[i_coord_offset+DIM*0+YY];
145         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
146
147         fix0             = 0.0;
148         fiy0             = 0.0;
149         fiz0             = 0.0;
150
151         /* Load parameters for i particles */
152         iq0              = facel*charge[inr+0];
153         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
154
155         /* Reset potential sums */
156         velecsum         = 0.0;
157         vvdwsum          = 0.0;
158
159         /* Start inner kernel loop */
160         for(jidx=j_index_start; jidx<j_index_end; jidx++)
161         {
162             /* Get j neighbor index, and coordinate index */
163             jnr              = jjnr[jidx];
164             j_coord_offset   = DIM*jnr;
165
166             /* load j atom coordinates */
167             jx0              = x[j_coord_offset+DIM*0+XX];
168             jy0              = x[j_coord_offset+DIM*0+YY];
169             jz0              = x[j_coord_offset+DIM*0+ZZ];
170
171             /* Calculate displacement vector */
172             dx00             = ix0 - jx0;
173             dy00             = iy0 - jy0;
174             dz00             = iz0 - jz0;
175
176             /* Calculate squared distance and things based on it */
177             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
178
179             rinv00           = gmx_invsqrt(rsq00);
180
181             rinvsq00         = rinv00*rinv00;
182
183             /* Load parameters for j particles */
184             jq0              = charge[jnr+0];
185             vdwjidx0         = 2*vdwtype[jnr+0];
186
187             /**************************
188              * CALCULATE INTERACTIONS *
189              **************************/
190
191             if (rsq00<rcutoff2)
192             {
193
194             r00              = rsq00*rinv00;
195
196             qq00             = iq0*jq0;
197             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
198             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
199             c6grid_00        = vdwgridparam[vdwioffset0+vdwjidx0];
200
201             /* EWALD ELECTROSTATICS */
202
203             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
204             ewrt             = r00*ewtabscale;
205             ewitab           = ewrt;
206             eweps            = ewrt-ewitab;
207             ewitab           = 4*ewitab;
208             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
209             velec            = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
210             felec            = qq00*rinv00*(rinvsq00-felec);
211
212             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
213             ewcljrsq         = ewclj2*rsq00;
214             exponent         = exp(-ewcljrsq);
215             poly             = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
216             vvdw6            = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
217             vvdw12           = c12_00*rinvsix*rinvsix;
218             vvdw             = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6 - c6grid_00*sh_lj_ewald)*(1.0/6.0);
219             fvdw             = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
220
221             /* Update potential sums from outer loop */
222             velecsum        += velec;
223             vvdwsum         += vvdw;
224
225             fscal            = felec+fvdw;
226
227             /* Calculate temporary vectorial force */
228             tx               = fscal*dx00;
229             ty               = fscal*dy00;
230             tz               = fscal*dz00;
231
232             /* Update vectorial force */
233             fix0            += tx;
234             fiy0            += ty;
235             fiz0            += tz;
236             f[j_coord_offset+DIM*0+XX] -= tx;
237             f[j_coord_offset+DIM*0+YY] -= ty;
238             f[j_coord_offset+DIM*0+ZZ] -= tz;
239
240             }
241
242             /* Inner loop uses 74 flops */
243         }
244         /* End of innermost loop */
245
246         tx = ty = tz = 0;
247         f[i_coord_offset+DIM*0+XX] += fix0;
248         f[i_coord_offset+DIM*0+YY] += fiy0;
249         f[i_coord_offset+DIM*0+ZZ] += fiz0;
250         tx                         += fix0;
251         ty                         += fiy0;
252         tz                         += fiz0;
253         fshift[i_shift_offset+XX]  += tx;
254         fshift[i_shift_offset+YY]  += ty;
255         fshift[i_shift_offset+ZZ]  += tz;
256
257         ggid                        = gid[iidx];
258         /* Update potential energies */
259         kernel_data->energygrp_elec[ggid] += velecsum;
260         kernel_data->energygrp_vdw[ggid] += vvdwsum;
261
262         /* Increment number of inner iterations */
263         inneriter                  += j_index_end - j_index_start;
264
265         /* Outer loop uses 15 flops */
266     }
267
268     /* Increment number of outer iterations */
269     outeriter        += nri;
270
271     /* Update outer/inner flops */
272
273     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*74);
274 }
275 /*
276  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_c
277  * Electrostatics interaction: Ewald
278  * VdW interaction:            LJEwald
279  * Geometry:                   Particle-Particle
280  * Calculate force/pot:        Force
281  */
282 void
283 nb_kernel_ElecEwSh_VdwLJEwSh_GeomP1P1_F_c
284                     (t_nblist                    * gmx_restrict       nlist,
285                      rvec                        * gmx_restrict          xx,
286                      rvec                        * gmx_restrict          ff,
287                      t_forcerec                  * gmx_restrict          fr,
288                      t_mdatoms                   * gmx_restrict     mdatoms,
289                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
290                      t_nrnb                      * gmx_restrict        nrnb)
291 {
292     int              i_shift_offset,i_coord_offset,j_coord_offset;
293     int              j_index_start,j_index_end;
294     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
295     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
296     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
297     real             *shiftvec,*fshift,*x,*f;
298     int              vdwioffset0;
299     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
300     int              vdwjidx0;
301     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
302     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
303     real             velec,felec,velecsum,facel,crf,krf,krf2;
304     real             *charge;
305     int              nvdwtype;
306     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
307     int              *vdwtype;
308     real             *vdwparam;
309     real             c6grid_00;
310     real             ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
311     real             *vdwgridparam;
312     int              ewitab;
313     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
314     real             *ewtab;
315
316     x                = xx[0];
317     f                = ff[0];
318
319     nri              = nlist->nri;
320     iinr             = nlist->iinr;
321     jindex           = nlist->jindex;
322     jjnr             = nlist->jjnr;
323     shiftidx         = nlist->shift;
324     gid              = nlist->gid;
325     shiftvec         = fr->shift_vec[0];
326     fshift           = fr->fshift[0];
327     facel            = fr->epsfac;
328     charge           = mdatoms->chargeA;
329     nvdwtype         = fr->ntype;
330     vdwparam         = fr->nbfp;
331     vdwtype          = mdatoms->typeA;
332     vdwgridparam     = fr->ljpme_c6grid;
333     ewclj            = fr->ewaldcoeff_lj;
334     sh_lj_ewald      = fr->ic->sh_lj_ewald;
335     ewclj2           = ewclj*ewclj;
336     ewclj6           = ewclj2*ewclj2*ewclj2;
337
338     sh_ewald         = fr->ic->sh_ewald;
339     ewtab            = fr->ic->tabq_coul_F;
340     ewtabscale       = fr->ic->tabq_scale;
341     ewtabhalfspace   = 0.5/ewtabscale;
342
343     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
344     rcutoff          = fr->rcoulomb;
345     rcutoff2         = rcutoff*rcutoff;
346
347     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
348     rvdw             = fr->rvdw;
349
350     outeriter        = 0;
351     inneriter        = 0;
352
353     /* Start outer loop over neighborlists */
354     for(iidx=0; iidx<nri; iidx++)
355     {
356         /* Load shift vector for this list */
357         i_shift_offset   = DIM*shiftidx[iidx];
358         shX              = shiftvec[i_shift_offset+XX];
359         shY              = shiftvec[i_shift_offset+YY];
360         shZ              = shiftvec[i_shift_offset+ZZ];
361
362         /* Load limits for loop over neighbors */
363         j_index_start    = jindex[iidx];
364         j_index_end      = jindex[iidx+1];
365
366         /* Get outer coordinate index */
367         inr              = iinr[iidx];
368         i_coord_offset   = DIM*inr;
369
370         /* Load i particle coords and add shift vector */
371         ix0              = shX + x[i_coord_offset+DIM*0+XX];
372         iy0              = shY + x[i_coord_offset+DIM*0+YY];
373         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
374
375         fix0             = 0.0;
376         fiy0             = 0.0;
377         fiz0             = 0.0;
378
379         /* Load parameters for i particles */
380         iq0              = facel*charge[inr+0];
381         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
382
383         /* Start inner kernel loop */
384         for(jidx=j_index_start; jidx<j_index_end; jidx++)
385         {
386             /* Get j neighbor index, and coordinate index */
387             jnr              = jjnr[jidx];
388             j_coord_offset   = DIM*jnr;
389
390             /* load j atom coordinates */
391             jx0              = x[j_coord_offset+DIM*0+XX];
392             jy0              = x[j_coord_offset+DIM*0+YY];
393             jz0              = x[j_coord_offset+DIM*0+ZZ];
394
395             /* Calculate displacement vector */
396             dx00             = ix0 - jx0;
397             dy00             = iy0 - jy0;
398             dz00             = iz0 - jz0;
399
400             /* Calculate squared distance and things based on it */
401             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
402
403             rinv00           = gmx_invsqrt(rsq00);
404
405             rinvsq00         = rinv00*rinv00;
406
407             /* Load parameters for j particles */
408             jq0              = charge[jnr+0];
409             vdwjidx0         = 2*vdwtype[jnr+0];
410
411             /**************************
412              * CALCULATE INTERACTIONS *
413              **************************/
414
415             if (rsq00<rcutoff2)
416             {
417
418             r00              = rsq00*rinv00;
419
420             qq00             = iq0*jq0;
421             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
422             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
423             c6grid_00        = vdwgridparam[vdwioffset0+vdwjidx0];
424
425             /* EWALD ELECTROSTATICS */
426
427             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
428             ewrt             = r00*ewtabscale;
429             ewitab           = ewrt;
430             eweps            = ewrt-ewitab;
431             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
432             felec            = qq00*rinv00*(rinvsq00-felec);
433
434             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
435             ewcljrsq         = ewclj2*rsq00;
436             exponent         = exp(-ewcljrsq);
437             poly             = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
438             fvdw             = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
439
440             fscal            = felec+fvdw;
441
442             /* Calculate temporary vectorial force */
443             tx               = fscal*dx00;
444             ty               = fscal*dy00;
445             tz               = fscal*dz00;
446
447             /* Update vectorial force */
448             fix0            += tx;
449             fiy0            += ty;
450             fiz0            += tz;
451             f[j_coord_offset+DIM*0+XX] -= tx;
452             f[j_coord_offset+DIM*0+YY] -= ty;
453             f[j_coord_offset+DIM*0+ZZ] -= tz;
454
455             }
456
457             /* Inner loop uses 55 flops */
458         }
459         /* End of innermost loop */
460
461         tx = ty = tz = 0;
462         f[i_coord_offset+DIM*0+XX] += fix0;
463         f[i_coord_offset+DIM*0+YY] += fiy0;
464         f[i_coord_offset+DIM*0+ZZ] += fiz0;
465         tx                         += fix0;
466         ty                         += fiy0;
467         tz                         += fiz0;
468         fshift[i_shift_offset+XX]  += tx;
469         fshift[i_shift_offset+YY]  += ty;
470         fshift[i_shift_offset+ZZ]  += tz;
471
472         /* Increment number of inner iterations */
473         inneriter                  += j_index_end - j_index_start;
474
475         /* Outer loop uses 13 flops */
476     }
477
478     /* Increment number of outer iterations */
479     outeriter        += nri;
480
481     /* Update outer/inner flops */
482
483     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*55);
484 }