Valgrind suppression for OS X 10.9
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSh_VdwBhamSh_GeomW4W4_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwBhamSh_GeomW4W4_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            Buckingham
53  * Geometry:                   Water4-Water4
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwBhamSh_GeomW4W4_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwioffset3;
79     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0;
81     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     int              vdwjidx1;
83     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84     int              vdwjidx2;
85     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86     int              vdwjidx3;
87     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98     real             velec,felec,velecsum,facel,crf,krf,krf2;
99     real             *charge;
100     int              nvdwtype;
101     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102     int              *vdwtype;
103     real             *vdwparam;
104     int              ewitab;
105     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
106     real             *ewtab;
107
108     x                = xx[0];
109     f                = ff[0];
110
111     nri              = nlist->nri;
112     iinr             = nlist->iinr;
113     jindex           = nlist->jindex;
114     jjnr             = nlist->jjnr;
115     shiftidx         = nlist->shift;
116     gid              = nlist->gid;
117     shiftvec         = fr->shift_vec[0];
118     fshift           = fr->fshift[0];
119     facel            = fr->epsfac;
120     charge           = mdatoms->chargeA;
121     nvdwtype         = fr->ntype;
122     vdwparam         = fr->nbfp;
123     vdwtype          = mdatoms->typeA;
124
125     sh_ewald         = fr->ic->sh_ewald;
126     ewtab            = fr->ic->tabq_coul_FDV0;
127     ewtabscale       = fr->ic->tabq_scale;
128     ewtabhalfspace   = 0.5/ewtabscale;
129
130     /* Setup water-specific parameters */
131     inr              = nlist->iinr[0];
132     iq1              = facel*charge[inr+1];
133     iq2              = facel*charge[inr+2];
134     iq3              = facel*charge[inr+3];
135     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
136
137     jq1              = charge[inr+1];
138     jq2              = charge[inr+2];
139     jq3              = charge[inr+3];
140     vdwjidx0         = 3*vdwtype[inr+0];
141     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
142     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
143     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
144     qq11             = iq1*jq1;
145     qq12             = iq1*jq2;
146     qq13             = iq1*jq3;
147     qq21             = iq2*jq1;
148     qq22             = iq2*jq2;
149     qq23             = iq2*jq3;
150     qq31             = iq3*jq1;
151     qq32             = iq3*jq2;
152     qq33             = iq3*jq3;
153
154     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
155     rcutoff          = fr->rcoulomb;
156     rcutoff2         = rcutoff*rcutoff;
157
158     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
159     rvdw             = fr->rvdw;
160
161     outeriter        = 0;
162     inneriter        = 0;
163
164     /* Start outer loop over neighborlists */
165     for(iidx=0; iidx<nri; iidx++)
166     {
167         /* Load shift vector for this list */
168         i_shift_offset   = DIM*shiftidx[iidx];
169         shX              = shiftvec[i_shift_offset+XX];
170         shY              = shiftvec[i_shift_offset+YY];
171         shZ              = shiftvec[i_shift_offset+ZZ];
172
173         /* Load limits for loop over neighbors */
174         j_index_start    = jindex[iidx];
175         j_index_end      = jindex[iidx+1];
176
177         /* Get outer coordinate index */
178         inr              = iinr[iidx];
179         i_coord_offset   = DIM*inr;
180
181         /* Load i particle coords and add shift vector */
182         ix0              = shX + x[i_coord_offset+DIM*0+XX];
183         iy0              = shY + x[i_coord_offset+DIM*0+YY];
184         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
185         ix1              = shX + x[i_coord_offset+DIM*1+XX];
186         iy1              = shY + x[i_coord_offset+DIM*1+YY];
187         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
188         ix2              = shX + x[i_coord_offset+DIM*2+XX];
189         iy2              = shY + x[i_coord_offset+DIM*2+YY];
190         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
191         ix3              = shX + x[i_coord_offset+DIM*3+XX];
192         iy3              = shY + x[i_coord_offset+DIM*3+YY];
193         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
194
195         fix0             = 0.0;
196         fiy0             = 0.0;
197         fiz0             = 0.0;
198         fix1             = 0.0;
199         fiy1             = 0.0;
200         fiz1             = 0.0;
201         fix2             = 0.0;
202         fiy2             = 0.0;
203         fiz2             = 0.0;
204         fix3             = 0.0;
205         fiy3             = 0.0;
206         fiz3             = 0.0;
207
208         /* Reset potential sums */
209         velecsum         = 0.0;
210         vvdwsum          = 0.0;
211
212         /* Start inner kernel loop */
213         for(jidx=j_index_start; jidx<j_index_end; jidx++)
214         {
215             /* Get j neighbor index, and coordinate index */
216             jnr              = jjnr[jidx];
217             j_coord_offset   = DIM*jnr;
218
219             /* load j atom coordinates */
220             jx0              = x[j_coord_offset+DIM*0+XX];
221             jy0              = x[j_coord_offset+DIM*0+YY];
222             jz0              = x[j_coord_offset+DIM*0+ZZ];
223             jx1              = x[j_coord_offset+DIM*1+XX];
224             jy1              = x[j_coord_offset+DIM*1+YY];
225             jz1              = x[j_coord_offset+DIM*1+ZZ];
226             jx2              = x[j_coord_offset+DIM*2+XX];
227             jy2              = x[j_coord_offset+DIM*2+YY];
228             jz2              = x[j_coord_offset+DIM*2+ZZ];
229             jx3              = x[j_coord_offset+DIM*3+XX];
230             jy3              = x[j_coord_offset+DIM*3+YY];
231             jz3              = x[j_coord_offset+DIM*3+ZZ];
232
233             /* Calculate displacement vector */
234             dx00             = ix0 - jx0;
235             dy00             = iy0 - jy0;
236             dz00             = iz0 - jz0;
237             dx11             = ix1 - jx1;
238             dy11             = iy1 - jy1;
239             dz11             = iz1 - jz1;
240             dx12             = ix1 - jx2;
241             dy12             = iy1 - jy2;
242             dz12             = iz1 - jz2;
243             dx13             = ix1 - jx3;
244             dy13             = iy1 - jy3;
245             dz13             = iz1 - jz3;
246             dx21             = ix2 - jx1;
247             dy21             = iy2 - jy1;
248             dz21             = iz2 - jz1;
249             dx22             = ix2 - jx2;
250             dy22             = iy2 - jy2;
251             dz22             = iz2 - jz2;
252             dx23             = ix2 - jx3;
253             dy23             = iy2 - jy3;
254             dz23             = iz2 - jz3;
255             dx31             = ix3 - jx1;
256             dy31             = iy3 - jy1;
257             dz31             = iz3 - jz1;
258             dx32             = ix3 - jx2;
259             dy32             = iy3 - jy2;
260             dz32             = iz3 - jz2;
261             dx33             = ix3 - jx3;
262             dy33             = iy3 - jy3;
263             dz33             = iz3 - jz3;
264
265             /* Calculate squared distance and things based on it */
266             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
267             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
268             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
269             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
270             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
271             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
272             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
273             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
274             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
275             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
276
277             rinv00           = gmx_invsqrt(rsq00);
278             rinv11           = gmx_invsqrt(rsq11);
279             rinv12           = gmx_invsqrt(rsq12);
280             rinv13           = gmx_invsqrt(rsq13);
281             rinv21           = gmx_invsqrt(rsq21);
282             rinv22           = gmx_invsqrt(rsq22);
283             rinv23           = gmx_invsqrt(rsq23);
284             rinv31           = gmx_invsqrt(rsq31);
285             rinv32           = gmx_invsqrt(rsq32);
286             rinv33           = gmx_invsqrt(rsq33);
287
288             rinvsq00         = rinv00*rinv00;
289             rinvsq11         = rinv11*rinv11;
290             rinvsq12         = rinv12*rinv12;
291             rinvsq13         = rinv13*rinv13;
292             rinvsq21         = rinv21*rinv21;
293             rinvsq22         = rinv22*rinv22;
294             rinvsq23         = rinv23*rinv23;
295             rinvsq31         = rinv31*rinv31;
296             rinvsq32         = rinv32*rinv32;
297             rinvsq33         = rinv33*rinv33;
298
299             /**************************
300              * CALCULATE INTERACTIONS *
301              **************************/
302
303             if (rsq00<rcutoff2)
304             {
305
306             r00              = rsq00*rinv00;
307
308             /* BUCKINGHAM DISPERSION/REPULSION */
309             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
310             vvdw6            = c6_00*rinvsix;
311             br               = cexp2_00*r00;
312             vvdwexp          = cexp1_00*exp(-br);
313             vvdw             = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
314             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
315
316             /* Update potential sums from outer loop */
317             vvdwsum         += vvdw;
318
319             fscal            = fvdw;
320
321             /* Calculate temporary vectorial force */
322             tx               = fscal*dx00;
323             ty               = fscal*dy00;
324             tz               = fscal*dz00;
325
326             /* Update vectorial force */
327             fix0            += tx;
328             fiy0            += ty;
329             fiz0            += tz;
330             f[j_coord_offset+DIM*0+XX] -= tx;
331             f[j_coord_offset+DIM*0+YY] -= ty;
332             f[j_coord_offset+DIM*0+ZZ] -= tz;
333
334             }
335
336             /**************************
337              * CALCULATE INTERACTIONS *
338              **************************/
339
340             if (rsq11<rcutoff2)
341             {
342
343             r11              = rsq11*rinv11;
344
345             /* EWALD ELECTROSTATICS */
346
347             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
348             ewrt             = r11*ewtabscale;
349             ewitab           = ewrt;
350             eweps            = ewrt-ewitab;
351             ewitab           = 4*ewitab;
352             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
353             velec            = qq11*((rinv11-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
354             felec            = qq11*rinv11*(rinvsq11-felec);
355
356             /* Update potential sums from outer loop */
357             velecsum        += velec;
358
359             fscal            = felec;
360
361             /* Calculate temporary vectorial force */
362             tx               = fscal*dx11;
363             ty               = fscal*dy11;
364             tz               = fscal*dz11;
365
366             /* Update vectorial force */
367             fix1            += tx;
368             fiy1            += ty;
369             fiz1            += tz;
370             f[j_coord_offset+DIM*1+XX] -= tx;
371             f[j_coord_offset+DIM*1+YY] -= ty;
372             f[j_coord_offset+DIM*1+ZZ] -= tz;
373
374             }
375
376             /**************************
377              * CALCULATE INTERACTIONS *
378              **************************/
379
380             if (rsq12<rcutoff2)
381             {
382
383             r12              = rsq12*rinv12;
384
385             /* EWALD ELECTROSTATICS */
386
387             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
388             ewrt             = r12*ewtabscale;
389             ewitab           = ewrt;
390             eweps            = ewrt-ewitab;
391             ewitab           = 4*ewitab;
392             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
393             velec            = qq12*((rinv12-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
394             felec            = qq12*rinv12*(rinvsq12-felec);
395
396             /* Update potential sums from outer loop */
397             velecsum        += velec;
398
399             fscal            = felec;
400
401             /* Calculate temporary vectorial force */
402             tx               = fscal*dx12;
403             ty               = fscal*dy12;
404             tz               = fscal*dz12;
405
406             /* Update vectorial force */
407             fix1            += tx;
408             fiy1            += ty;
409             fiz1            += tz;
410             f[j_coord_offset+DIM*2+XX] -= tx;
411             f[j_coord_offset+DIM*2+YY] -= ty;
412             f[j_coord_offset+DIM*2+ZZ] -= tz;
413
414             }
415
416             /**************************
417              * CALCULATE INTERACTIONS *
418              **************************/
419
420             if (rsq13<rcutoff2)
421             {
422
423             r13              = rsq13*rinv13;
424
425             /* EWALD ELECTROSTATICS */
426
427             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
428             ewrt             = r13*ewtabscale;
429             ewitab           = ewrt;
430             eweps            = ewrt-ewitab;
431             ewitab           = 4*ewitab;
432             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
433             velec            = qq13*((rinv13-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
434             felec            = qq13*rinv13*(rinvsq13-felec);
435
436             /* Update potential sums from outer loop */
437             velecsum        += velec;
438
439             fscal            = felec;
440
441             /* Calculate temporary vectorial force */
442             tx               = fscal*dx13;
443             ty               = fscal*dy13;
444             tz               = fscal*dz13;
445
446             /* Update vectorial force */
447             fix1            += tx;
448             fiy1            += ty;
449             fiz1            += tz;
450             f[j_coord_offset+DIM*3+XX] -= tx;
451             f[j_coord_offset+DIM*3+YY] -= ty;
452             f[j_coord_offset+DIM*3+ZZ] -= tz;
453
454             }
455
456             /**************************
457              * CALCULATE INTERACTIONS *
458              **************************/
459
460             if (rsq21<rcutoff2)
461             {
462
463             r21              = rsq21*rinv21;
464
465             /* EWALD ELECTROSTATICS */
466
467             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
468             ewrt             = r21*ewtabscale;
469             ewitab           = ewrt;
470             eweps            = ewrt-ewitab;
471             ewitab           = 4*ewitab;
472             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
473             velec            = qq21*((rinv21-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
474             felec            = qq21*rinv21*(rinvsq21-felec);
475
476             /* Update potential sums from outer loop */
477             velecsum        += velec;
478
479             fscal            = felec;
480
481             /* Calculate temporary vectorial force */
482             tx               = fscal*dx21;
483             ty               = fscal*dy21;
484             tz               = fscal*dz21;
485
486             /* Update vectorial force */
487             fix2            += tx;
488             fiy2            += ty;
489             fiz2            += tz;
490             f[j_coord_offset+DIM*1+XX] -= tx;
491             f[j_coord_offset+DIM*1+YY] -= ty;
492             f[j_coord_offset+DIM*1+ZZ] -= tz;
493
494             }
495
496             /**************************
497              * CALCULATE INTERACTIONS *
498              **************************/
499
500             if (rsq22<rcutoff2)
501             {
502
503             r22              = rsq22*rinv22;
504
505             /* EWALD ELECTROSTATICS */
506
507             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
508             ewrt             = r22*ewtabscale;
509             ewitab           = ewrt;
510             eweps            = ewrt-ewitab;
511             ewitab           = 4*ewitab;
512             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
513             velec            = qq22*((rinv22-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
514             felec            = qq22*rinv22*(rinvsq22-felec);
515
516             /* Update potential sums from outer loop */
517             velecsum        += velec;
518
519             fscal            = felec;
520
521             /* Calculate temporary vectorial force */
522             tx               = fscal*dx22;
523             ty               = fscal*dy22;
524             tz               = fscal*dz22;
525
526             /* Update vectorial force */
527             fix2            += tx;
528             fiy2            += ty;
529             fiz2            += tz;
530             f[j_coord_offset+DIM*2+XX] -= tx;
531             f[j_coord_offset+DIM*2+YY] -= ty;
532             f[j_coord_offset+DIM*2+ZZ] -= tz;
533
534             }
535
536             /**************************
537              * CALCULATE INTERACTIONS *
538              **************************/
539
540             if (rsq23<rcutoff2)
541             {
542
543             r23              = rsq23*rinv23;
544
545             /* EWALD ELECTROSTATICS */
546
547             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
548             ewrt             = r23*ewtabscale;
549             ewitab           = ewrt;
550             eweps            = ewrt-ewitab;
551             ewitab           = 4*ewitab;
552             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
553             velec            = qq23*((rinv23-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
554             felec            = qq23*rinv23*(rinvsq23-felec);
555
556             /* Update potential sums from outer loop */
557             velecsum        += velec;
558
559             fscal            = felec;
560
561             /* Calculate temporary vectorial force */
562             tx               = fscal*dx23;
563             ty               = fscal*dy23;
564             tz               = fscal*dz23;
565
566             /* Update vectorial force */
567             fix2            += tx;
568             fiy2            += ty;
569             fiz2            += tz;
570             f[j_coord_offset+DIM*3+XX] -= tx;
571             f[j_coord_offset+DIM*3+YY] -= ty;
572             f[j_coord_offset+DIM*3+ZZ] -= tz;
573
574             }
575
576             /**************************
577              * CALCULATE INTERACTIONS *
578              **************************/
579
580             if (rsq31<rcutoff2)
581             {
582
583             r31              = rsq31*rinv31;
584
585             /* EWALD ELECTROSTATICS */
586
587             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
588             ewrt             = r31*ewtabscale;
589             ewitab           = ewrt;
590             eweps            = ewrt-ewitab;
591             ewitab           = 4*ewitab;
592             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
593             velec            = qq31*((rinv31-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
594             felec            = qq31*rinv31*(rinvsq31-felec);
595
596             /* Update potential sums from outer loop */
597             velecsum        += velec;
598
599             fscal            = felec;
600
601             /* Calculate temporary vectorial force */
602             tx               = fscal*dx31;
603             ty               = fscal*dy31;
604             tz               = fscal*dz31;
605
606             /* Update vectorial force */
607             fix3            += tx;
608             fiy3            += ty;
609             fiz3            += tz;
610             f[j_coord_offset+DIM*1+XX] -= tx;
611             f[j_coord_offset+DIM*1+YY] -= ty;
612             f[j_coord_offset+DIM*1+ZZ] -= tz;
613
614             }
615
616             /**************************
617              * CALCULATE INTERACTIONS *
618              **************************/
619
620             if (rsq32<rcutoff2)
621             {
622
623             r32              = rsq32*rinv32;
624
625             /* EWALD ELECTROSTATICS */
626
627             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
628             ewrt             = r32*ewtabscale;
629             ewitab           = ewrt;
630             eweps            = ewrt-ewitab;
631             ewitab           = 4*ewitab;
632             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
633             velec            = qq32*((rinv32-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
634             felec            = qq32*rinv32*(rinvsq32-felec);
635
636             /* Update potential sums from outer loop */
637             velecsum        += velec;
638
639             fscal            = felec;
640
641             /* Calculate temporary vectorial force */
642             tx               = fscal*dx32;
643             ty               = fscal*dy32;
644             tz               = fscal*dz32;
645
646             /* Update vectorial force */
647             fix3            += tx;
648             fiy3            += ty;
649             fiz3            += tz;
650             f[j_coord_offset+DIM*2+XX] -= tx;
651             f[j_coord_offset+DIM*2+YY] -= ty;
652             f[j_coord_offset+DIM*2+ZZ] -= tz;
653
654             }
655
656             /**************************
657              * CALCULATE INTERACTIONS *
658              **************************/
659
660             if (rsq33<rcutoff2)
661             {
662
663             r33              = rsq33*rinv33;
664
665             /* EWALD ELECTROSTATICS */
666
667             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
668             ewrt             = r33*ewtabscale;
669             ewitab           = ewrt;
670             eweps            = ewrt-ewitab;
671             ewitab           = 4*ewitab;
672             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
673             velec            = qq33*((rinv33-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
674             felec            = qq33*rinv33*(rinvsq33-felec);
675
676             /* Update potential sums from outer loop */
677             velecsum        += velec;
678
679             fscal            = felec;
680
681             /* Calculate temporary vectorial force */
682             tx               = fscal*dx33;
683             ty               = fscal*dy33;
684             tz               = fscal*dz33;
685
686             /* Update vectorial force */
687             fix3            += tx;
688             fiy3            += ty;
689             fiz3            += tz;
690             f[j_coord_offset+DIM*3+XX] -= tx;
691             f[j_coord_offset+DIM*3+YY] -= ty;
692             f[j_coord_offset+DIM*3+ZZ] -= tz;
693
694             }
695
696             /* Inner loop uses 461 flops */
697         }
698         /* End of innermost loop */
699
700         tx = ty = tz = 0;
701         f[i_coord_offset+DIM*0+XX] += fix0;
702         f[i_coord_offset+DIM*0+YY] += fiy0;
703         f[i_coord_offset+DIM*0+ZZ] += fiz0;
704         tx                         += fix0;
705         ty                         += fiy0;
706         tz                         += fiz0;
707         f[i_coord_offset+DIM*1+XX] += fix1;
708         f[i_coord_offset+DIM*1+YY] += fiy1;
709         f[i_coord_offset+DIM*1+ZZ] += fiz1;
710         tx                         += fix1;
711         ty                         += fiy1;
712         tz                         += fiz1;
713         f[i_coord_offset+DIM*2+XX] += fix2;
714         f[i_coord_offset+DIM*2+YY] += fiy2;
715         f[i_coord_offset+DIM*2+ZZ] += fiz2;
716         tx                         += fix2;
717         ty                         += fiy2;
718         tz                         += fiz2;
719         f[i_coord_offset+DIM*3+XX] += fix3;
720         f[i_coord_offset+DIM*3+YY] += fiy3;
721         f[i_coord_offset+DIM*3+ZZ] += fiz3;
722         tx                         += fix3;
723         ty                         += fiy3;
724         tz                         += fiz3;
725         fshift[i_shift_offset+XX]  += tx;
726         fshift[i_shift_offset+YY]  += ty;
727         fshift[i_shift_offset+ZZ]  += tz;
728
729         ggid                        = gid[iidx];
730         /* Update potential energies */
731         kernel_data->energygrp_elec[ggid] += velecsum;
732         kernel_data->energygrp_vdw[ggid] += vvdwsum;
733
734         /* Increment number of inner iterations */
735         inneriter                  += j_index_end - j_index_start;
736
737         /* Outer loop uses 41 flops */
738     }
739
740     /* Increment number of outer iterations */
741     outeriter        += nri;
742
743     /* Update outer/inner flops */
744
745     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*461);
746 }
747 /*
748  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwBhamSh_GeomW4W4_F_c
749  * Electrostatics interaction: Ewald
750  * VdW interaction:            Buckingham
751  * Geometry:                   Water4-Water4
752  * Calculate force/pot:        Force
753  */
754 void
755 nb_kernel_ElecEwSh_VdwBhamSh_GeomW4W4_F_c
756                     (t_nblist                    * gmx_restrict       nlist,
757                      rvec                        * gmx_restrict          xx,
758                      rvec                        * gmx_restrict          ff,
759                      t_forcerec                  * gmx_restrict          fr,
760                      t_mdatoms                   * gmx_restrict     mdatoms,
761                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
762                      t_nrnb                      * gmx_restrict        nrnb)
763 {
764     int              i_shift_offset,i_coord_offset,j_coord_offset;
765     int              j_index_start,j_index_end;
766     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
767     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
768     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
769     real             *shiftvec,*fshift,*x,*f;
770     int              vdwioffset0;
771     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
772     int              vdwioffset1;
773     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
774     int              vdwioffset2;
775     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
776     int              vdwioffset3;
777     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
778     int              vdwjidx0;
779     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
780     int              vdwjidx1;
781     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
782     int              vdwjidx2;
783     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
784     int              vdwjidx3;
785     real             jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
786     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
787     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
788     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
789     real             dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
790     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
791     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
792     real             dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
793     real             dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
794     real             dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
795     real             dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
796     real             velec,felec,velecsum,facel,crf,krf,krf2;
797     real             *charge;
798     int              nvdwtype;
799     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
800     int              *vdwtype;
801     real             *vdwparam;
802     int              ewitab;
803     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
804     real             *ewtab;
805
806     x                = xx[0];
807     f                = ff[0];
808
809     nri              = nlist->nri;
810     iinr             = nlist->iinr;
811     jindex           = nlist->jindex;
812     jjnr             = nlist->jjnr;
813     shiftidx         = nlist->shift;
814     gid              = nlist->gid;
815     shiftvec         = fr->shift_vec[0];
816     fshift           = fr->fshift[0];
817     facel            = fr->epsfac;
818     charge           = mdatoms->chargeA;
819     nvdwtype         = fr->ntype;
820     vdwparam         = fr->nbfp;
821     vdwtype          = mdatoms->typeA;
822
823     sh_ewald         = fr->ic->sh_ewald;
824     ewtab            = fr->ic->tabq_coul_F;
825     ewtabscale       = fr->ic->tabq_scale;
826     ewtabhalfspace   = 0.5/ewtabscale;
827
828     /* Setup water-specific parameters */
829     inr              = nlist->iinr[0];
830     iq1              = facel*charge[inr+1];
831     iq2              = facel*charge[inr+2];
832     iq3              = facel*charge[inr+3];
833     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
834
835     jq1              = charge[inr+1];
836     jq2              = charge[inr+2];
837     jq3              = charge[inr+3];
838     vdwjidx0         = 3*vdwtype[inr+0];
839     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
840     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
841     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
842     qq11             = iq1*jq1;
843     qq12             = iq1*jq2;
844     qq13             = iq1*jq3;
845     qq21             = iq2*jq1;
846     qq22             = iq2*jq2;
847     qq23             = iq2*jq3;
848     qq31             = iq3*jq1;
849     qq32             = iq3*jq2;
850     qq33             = iq3*jq3;
851
852     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
853     rcutoff          = fr->rcoulomb;
854     rcutoff2         = rcutoff*rcutoff;
855
856     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
857     rvdw             = fr->rvdw;
858
859     outeriter        = 0;
860     inneriter        = 0;
861
862     /* Start outer loop over neighborlists */
863     for(iidx=0; iidx<nri; iidx++)
864     {
865         /* Load shift vector for this list */
866         i_shift_offset   = DIM*shiftidx[iidx];
867         shX              = shiftvec[i_shift_offset+XX];
868         shY              = shiftvec[i_shift_offset+YY];
869         shZ              = shiftvec[i_shift_offset+ZZ];
870
871         /* Load limits for loop over neighbors */
872         j_index_start    = jindex[iidx];
873         j_index_end      = jindex[iidx+1];
874
875         /* Get outer coordinate index */
876         inr              = iinr[iidx];
877         i_coord_offset   = DIM*inr;
878
879         /* Load i particle coords and add shift vector */
880         ix0              = shX + x[i_coord_offset+DIM*0+XX];
881         iy0              = shY + x[i_coord_offset+DIM*0+YY];
882         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
883         ix1              = shX + x[i_coord_offset+DIM*1+XX];
884         iy1              = shY + x[i_coord_offset+DIM*1+YY];
885         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
886         ix2              = shX + x[i_coord_offset+DIM*2+XX];
887         iy2              = shY + x[i_coord_offset+DIM*2+YY];
888         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
889         ix3              = shX + x[i_coord_offset+DIM*3+XX];
890         iy3              = shY + x[i_coord_offset+DIM*3+YY];
891         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
892
893         fix0             = 0.0;
894         fiy0             = 0.0;
895         fiz0             = 0.0;
896         fix1             = 0.0;
897         fiy1             = 0.0;
898         fiz1             = 0.0;
899         fix2             = 0.0;
900         fiy2             = 0.0;
901         fiz2             = 0.0;
902         fix3             = 0.0;
903         fiy3             = 0.0;
904         fiz3             = 0.0;
905
906         /* Start inner kernel loop */
907         for(jidx=j_index_start; jidx<j_index_end; jidx++)
908         {
909             /* Get j neighbor index, and coordinate index */
910             jnr              = jjnr[jidx];
911             j_coord_offset   = DIM*jnr;
912
913             /* load j atom coordinates */
914             jx0              = x[j_coord_offset+DIM*0+XX];
915             jy0              = x[j_coord_offset+DIM*0+YY];
916             jz0              = x[j_coord_offset+DIM*0+ZZ];
917             jx1              = x[j_coord_offset+DIM*1+XX];
918             jy1              = x[j_coord_offset+DIM*1+YY];
919             jz1              = x[j_coord_offset+DIM*1+ZZ];
920             jx2              = x[j_coord_offset+DIM*2+XX];
921             jy2              = x[j_coord_offset+DIM*2+YY];
922             jz2              = x[j_coord_offset+DIM*2+ZZ];
923             jx3              = x[j_coord_offset+DIM*3+XX];
924             jy3              = x[j_coord_offset+DIM*3+YY];
925             jz3              = x[j_coord_offset+DIM*3+ZZ];
926
927             /* Calculate displacement vector */
928             dx00             = ix0 - jx0;
929             dy00             = iy0 - jy0;
930             dz00             = iz0 - jz0;
931             dx11             = ix1 - jx1;
932             dy11             = iy1 - jy1;
933             dz11             = iz1 - jz1;
934             dx12             = ix1 - jx2;
935             dy12             = iy1 - jy2;
936             dz12             = iz1 - jz2;
937             dx13             = ix1 - jx3;
938             dy13             = iy1 - jy3;
939             dz13             = iz1 - jz3;
940             dx21             = ix2 - jx1;
941             dy21             = iy2 - jy1;
942             dz21             = iz2 - jz1;
943             dx22             = ix2 - jx2;
944             dy22             = iy2 - jy2;
945             dz22             = iz2 - jz2;
946             dx23             = ix2 - jx3;
947             dy23             = iy2 - jy3;
948             dz23             = iz2 - jz3;
949             dx31             = ix3 - jx1;
950             dy31             = iy3 - jy1;
951             dz31             = iz3 - jz1;
952             dx32             = ix3 - jx2;
953             dy32             = iy3 - jy2;
954             dz32             = iz3 - jz2;
955             dx33             = ix3 - jx3;
956             dy33             = iy3 - jy3;
957             dz33             = iz3 - jz3;
958
959             /* Calculate squared distance and things based on it */
960             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
961             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
962             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
963             rsq13            = dx13*dx13+dy13*dy13+dz13*dz13;
964             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
965             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
966             rsq23            = dx23*dx23+dy23*dy23+dz23*dz23;
967             rsq31            = dx31*dx31+dy31*dy31+dz31*dz31;
968             rsq32            = dx32*dx32+dy32*dy32+dz32*dz32;
969             rsq33            = dx33*dx33+dy33*dy33+dz33*dz33;
970
971             rinv00           = gmx_invsqrt(rsq00);
972             rinv11           = gmx_invsqrt(rsq11);
973             rinv12           = gmx_invsqrt(rsq12);
974             rinv13           = gmx_invsqrt(rsq13);
975             rinv21           = gmx_invsqrt(rsq21);
976             rinv22           = gmx_invsqrt(rsq22);
977             rinv23           = gmx_invsqrt(rsq23);
978             rinv31           = gmx_invsqrt(rsq31);
979             rinv32           = gmx_invsqrt(rsq32);
980             rinv33           = gmx_invsqrt(rsq33);
981
982             rinvsq00         = rinv00*rinv00;
983             rinvsq11         = rinv11*rinv11;
984             rinvsq12         = rinv12*rinv12;
985             rinvsq13         = rinv13*rinv13;
986             rinvsq21         = rinv21*rinv21;
987             rinvsq22         = rinv22*rinv22;
988             rinvsq23         = rinv23*rinv23;
989             rinvsq31         = rinv31*rinv31;
990             rinvsq32         = rinv32*rinv32;
991             rinvsq33         = rinv33*rinv33;
992
993             /**************************
994              * CALCULATE INTERACTIONS *
995              **************************/
996
997             if (rsq00<rcutoff2)
998             {
999
1000             r00              = rsq00*rinv00;
1001
1002             /* BUCKINGHAM DISPERSION/REPULSION */
1003             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
1004             vvdw6            = c6_00*rinvsix;
1005             br               = cexp2_00*r00;
1006             vvdwexp          = cexp1_00*exp(-br);
1007             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
1008
1009             fscal            = fvdw;
1010
1011             /* Calculate temporary vectorial force */
1012             tx               = fscal*dx00;
1013             ty               = fscal*dy00;
1014             tz               = fscal*dz00;
1015
1016             /* Update vectorial force */
1017             fix0            += tx;
1018             fiy0            += ty;
1019             fiz0            += tz;
1020             f[j_coord_offset+DIM*0+XX] -= tx;
1021             f[j_coord_offset+DIM*0+YY] -= ty;
1022             f[j_coord_offset+DIM*0+ZZ] -= tz;
1023
1024             }
1025
1026             /**************************
1027              * CALCULATE INTERACTIONS *
1028              **************************/
1029
1030             if (rsq11<rcutoff2)
1031             {
1032
1033             r11              = rsq11*rinv11;
1034
1035             /* EWALD ELECTROSTATICS */
1036
1037             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1038             ewrt             = r11*ewtabscale;
1039             ewitab           = ewrt;
1040             eweps            = ewrt-ewitab;
1041             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1042             felec            = qq11*rinv11*(rinvsq11-felec);
1043
1044             fscal            = felec;
1045
1046             /* Calculate temporary vectorial force */
1047             tx               = fscal*dx11;
1048             ty               = fscal*dy11;
1049             tz               = fscal*dz11;
1050
1051             /* Update vectorial force */
1052             fix1            += tx;
1053             fiy1            += ty;
1054             fiz1            += tz;
1055             f[j_coord_offset+DIM*1+XX] -= tx;
1056             f[j_coord_offset+DIM*1+YY] -= ty;
1057             f[j_coord_offset+DIM*1+ZZ] -= tz;
1058
1059             }
1060
1061             /**************************
1062              * CALCULATE INTERACTIONS *
1063              **************************/
1064
1065             if (rsq12<rcutoff2)
1066             {
1067
1068             r12              = rsq12*rinv12;
1069
1070             /* EWALD ELECTROSTATICS */
1071
1072             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1073             ewrt             = r12*ewtabscale;
1074             ewitab           = ewrt;
1075             eweps            = ewrt-ewitab;
1076             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1077             felec            = qq12*rinv12*(rinvsq12-felec);
1078
1079             fscal            = felec;
1080
1081             /* Calculate temporary vectorial force */
1082             tx               = fscal*dx12;
1083             ty               = fscal*dy12;
1084             tz               = fscal*dz12;
1085
1086             /* Update vectorial force */
1087             fix1            += tx;
1088             fiy1            += ty;
1089             fiz1            += tz;
1090             f[j_coord_offset+DIM*2+XX] -= tx;
1091             f[j_coord_offset+DIM*2+YY] -= ty;
1092             f[j_coord_offset+DIM*2+ZZ] -= tz;
1093
1094             }
1095
1096             /**************************
1097              * CALCULATE INTERACTIONS *
1098              **************************/
1099
1100             if (rsq13<rcutoff2)
1101             {
1102
1103             r13              = rsq13*rinv13;
1104
1105             /* EWALD ELECTROSTATICS */
1106
1107             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1108             ewrt             = r13*ewtabscale;
1109             ewitab           = ewrt;
1110             eweps            = ewrt-ewitab;
1111             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1112             felec            = qq13*rinv13*(rinvsq13-felec);
1113
1114             fscal            = felec;
1115
1116             /* Calculate temporary vectorial force */
1117             tx               = fscal*dx13;
1118             ty               = fscal*dy13;
1119             tz               = fscal*dz13;
1120
1121             /* Update vectorial force */
1122             fix1            += tx;
1123             fiy1            += ty;
1124             fiz1            += tz;
1125             f[j_coord_offset+DIM*3+XX] -= tx;
1126             f[j_coord_offset+DIM*3+YY] -= ty;
1127             f[j_coord_offset+DIM*3+ZZ] -= tz;
1128
1129             }
1130
1131             /**************************
1132              * CALCULATE INTERACTIONS *
1133              **************************/
1134
1135             if (rsq21<rcutoff2)
1136             {
1137
1138             r21              = rsq21*rinv21;
1139
1140             /* EWALD ELECTROSTATICS */
1141
1142             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1143             ewrt             = r21*ewtabscale;
1144             ewitab           = ewrt;
1145             eweps            = ewrt-ewitab;
1146             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1147             felec            = qq21*rinv21*(rinvsq21-felec);
1148
1149             fscal            = felec;
1150
1151             /* Calculate temporary vectorial force */
1152             tx               = fscal*dx21;
1153             ty               = fscal*dy21;
1154             tz               = fscal*dz21;
1155
1156             /* Update vectorial force */
1157             fix2            += tx;
1158             fiy2            += ty;
1159             fiz2            += tz;
1160             f[j_coord_offset+DIM*1+XX] -= tx;
1161             f[j_coord_offset+DIM*1+YY] -= ty;
1162             f[j_coord_offset+DIM*1+ZZ] -= tz;
1163
1164             }
1165
1166             /**************************
1167              * CALCULATE INTERACTIONS *
1168              **************************/
1169
1170             if (rsq22<rcutoff2)
1171             {
1172
1173             r22              = rsq22*rinv22;
1174
1175             /* EWALD ELECTROSTATICS */
1176
1177             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1178             ewrt             = r22*ewtabscale;
1179             ewitab           = ewrt;
1180             eweps            = ewrt-ewitab;
1181             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1182             felec            = qq22*rinv22*(rinvsq22-felec);
1183
1184             fscal            = felec;
1185
1186             /* Calculate temporary vectorial force */
1187             tx               = fscal*dx22;
1188             ty               = fscal*dy22;
1189             tz               = fscal*dz22;
1190
1191             /* Update vectorial force */
1192             fix2            += tx;
1193             fiy2            += ty;
1194             fiz2            += tz;
1195             f[j_coord_offset+DIM*2+XX] -= tx;
1196             f[j_coord_offset+DIM*2+YY] -= ty;
1197             f[j_coord_offset+DIM*2+ZZ] -= tz;
1198
1199             }
1200
1201             /**************************
1202              * CALCULATE INTERACTIONS *
1203              **************************/
1204
1205             if (rsq23<rcutoff2)
1206             {
1207
1208             r23              = rsq23*rinv23;
1209
1210             /* EWALD ELECTROSTATICS */
1211
1212             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1213             ewrt             = r23*ewtabscale;
1214             ewitab           = ewrt;
1215             eweps            = ewrt-ewitab;
1216             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1217             felec            = qq23*rinv23*(rinvsq23-felec);
1218
1219             fscal            = felec;
1220
1221             /* Calculate temporary vectorial force */
1222             tx               = fscal*dx23;
1223             ty               = fscal*dy23;
1224             tz               = fscal*dz23;
1225
1226             /* Update vectorial force */
1227             fix2            += tx;
1228             fiy2            += ty;
1229             fiz2            += tz;
1230             f[j_coord_offset+DIM*3+XX] -= tx;
1231             f[j_coord_offset+DIM*3+YY] -= ty;
1232             f[j_coord_offset+DIM*3+ZZ] -= tz;
1233
1234             }
1235
1236             /**************************
1237              * CALCULATE INTERACTIONS *
1238              **************************/
1239
1240             if (rsq31<rcutoff2)
1241             {
1242
1243             r31              = rsq31*rinv31;
1244
1245             /* EWALD ELECTROSTATICS */
1246
1247             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1248             ewrt             = r31*ewtabscale;
1249             ewitab           = ewrt;
1250             eweps            = ewrt-ewitab;
1251             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1252             felec            = qq31*rinv31*(rinvsq31-felec);
1253
1254             fscal            = felec;
1255
1256             /* Calculate temporary vectorial force */
1257             tx               = fscal*dx31;
1258             ty               = fscal*dy31;
1259             tz               = fscal*dz31;
1260
1261             /* Update vectorial force */
1262             fix3            += tx;
1263             fiy3            += ty;
1264             fiz3            += tz;
1265             f[j_coord_offset+DIM*1+XX] -= tx;
1266             f[j_coord_offset+DIM*1+YY] -= ty;
1267             f[j_coord_offset+DIM*1+ZZ] -= tz;
1268
1269             }
1270
1271             /**************************
1272              * CALCULATE INTERACTIONS *
1273              **************************/
1274
1275             if (rsq32<rcutoff2)
1276             {
1277
1278             r32              = rsq32*rinv32;
1279
1280             /* EWALD ELECTROSTATICS */
1281
1282             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1283             ewrt             = r32*ewtabscale;
1284             ewitab           = ewrt;
1285             eweps            = ewrt-ewitab;
1286             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1287             felec            = qq32*rinv32*(rinvsq32-felec);
1288
1289             fscal            = felec;
1290
1291             /* Calculate temporary vectorial force */
1292             tx               = fscal*dx32;
1293             ty               = fscal*dy32;
1294             tz               = fscal*dz32;
1295
1296             /* Update vectorial force */
1297             fix3            += tx;
1298             fiy3            += ty;
1299             fiz3            += tz;
1300             f[j_coord_offset+DIM*2+XX] -= tx;
1301             f[j_coord_offset+DIM*2+YY] -= ty;
1302             f[j_coord_offset+DIM*2+ZZ] -= tz;
1303
1304             }
1305
1306             /**************************
1307              * CALCULATE INTERACTIONS *
1308              **************************/
1309
1310             if (rsq33<rcutoff2)
1311             {
1312
1313             r33              = rsq33*rinv33;
1314
1315             /* EWALD ELECTROSTATICS */
1316
1317             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1318             ewrt             = r33*ewtabscale;
1319             ewitab           = ewrt;
1320             eweps            = ewrt-ewitab;
1321             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1322             felec            = qq33*rinv33*(rinvsq33-felec);
1323
1324             fscal            = felec;
1325
1326             /* Calculate temporary vectorial force */
1327             tx               = fscal*dx33;
1328             ty               = fscal*dy33;
1329             tz               = fscal*dz33;
1330
1331             /* Update vectorial force */
1332             fix3            += tx;
1333             fiy3            += ty;
1334             fiz3            += tz;
1335             f[j_coord_offset+DIM*3+XX] -= tx;
1336             f[j_coord_offset+DIM*3+YY] -= ty;
1337             f[j_coord_offset+DIM*3+ZZ] -= tz;
1338
1339             }
1340
1341             /* Inner loop uses 355 flops */
1342         }
1343         /* End of innermost loop */
1344
1345         tx = ty = tz = 0;
1346         f[i_coord_offset+DIM*0+XX] += fix0;
1347         f[i_coord_offset+DIM*0+YY] += fiy0;
1348         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1349         tx                         += fix0;
1350         ty                         += fiy0;
1351         tz                         += fiz0;
1352         f[i_coord_offset+DIM*1+XX] += fix1;
1353         f[i_coord_offset+DIM*1+YY] += fiy1;
1354         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1355         tx                         += fix1;
1356         ty                         += fiy1;
1357         tz                         += fiz1;
1358         f[i_coord_offset+DIM*2+XX] += fix2;
1359         f[i_coord_offset+DIM*2+YY] += fiy2;
1360         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1361         tx                         += fix2;
1362         ty                         += fiy2;
1363         tz                         += fiz2;
1364         f[i_coord_offset+DIM*3+XX] += fix3;
1365         f[i_coord_offset+DIM*3+YY] += fiy3;
1366         f[i_coord_offset+DIM*3+ZZ] += fiz3;
1367         tx                         += fix3;
1368         ty                         += fiy3;
1369         tz                         += fiz3;
1370         fshift[i_shift_offset+XX]  += tx;
1371         fshift[i_shift_offset+YY]  += ty;
1372         fshift[i_shift_offset+ZZ]  += tz;
1373
1374         /* Increment number of inner iterations */
1375         inneriter                  += j_index_end - j_index_start;
1376
1377         /* Outer loop uses 39 flops */
1378     }
1379
1380     /* Increment number of outer iterations */
1381     outeriter        += nri;
1382
1383     /* Update outer/inner flops */
1384
1385     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*355);
1386 }