Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSh_VdwBhamSh_GeomW4P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwBhamSh_GeomW4P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            Buckingham
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwBhamSh_GeomW4P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwioffset3;
79     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0;
81     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86     real             velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     int              ewitab;
93     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
94     real             *ewtab;
95
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = fr->epsfac;
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     sh_ewald         = fr->ic->sh_ewald;
114     ewtab            = fr->ic->tabq_coul_FDV0;
115     ewtabscale       = fr->ic->tabq_scale;
116     ewtabhalfspace   = 0.5/ewtabscale;
117
118     /* Setup water-specific parameters */
119     inr              = nlist->iinr[0];
120     iq1              = facel*charge[inr+1];
121     iq2              = facel*charge[inr+2];
122     iq3              = facel*charge[inr+3];
123     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
124
125     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
126     rcutoff          = fr->rcoulomb;
127     rcutoff2         = rcutoff*rcutoff;
128
129     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
130     rvdw             = fr->rvdw;
131
132     outeriter        = 0;
133     inneriter        = 0;
134
135     /* Start outer loop over neighborlists */
136     for(iidx=0; iidx<nri; iidx++)
137     {
138         /* Load shift vector for this list */
139         i_shift_offset   = DIM*shiftidx[iidx];
140         shX              = shiftvec[i_shift_offset+XX];
141         shY              = shiftvec[i_shift_offset+YY];
142         shZ              = shiftvec[i_shift_offset+ZZ];
143
144         /* Load limits for loop over neighbors */
145         j_index_start    = jindex[iidx];
146         j_index_end      = jindex[iidx+1];
147
148         /* Get outer coordinate index */
149         inr              = iinr[iidx];
150         i_coord_offset   = DIM*inr;
151
152         /* Load i particle coords and add shift vector */
153         ix0              = shX + x[i_coord_offset+DIM*0+XX];
154         iy0              = shY + x[i_coord_offset+DIM*0+YY];
155         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
156         ix1              = shX + x[i_coord_offset+DIM*1+XX];
157         iy1              = shY + x[i_coord_offset+DIM*1+YY];
158         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
159         ix2              = shX + x[i_coord_offset+DIM*2+XX];
160         iy2              = shY + x[i_coord_offset+DIM*2+YY];
161         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
162         ix3              = shX + x[i_coord_offset+DIM*3+XX];
163         iy3              = shY + x[i_coord_offset+DIM*3+YY];
164         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
165
166         fix0             = 0.0;
167         fiy0             = 0.0;
168         fiz0             = 0.0;
169         fix1             = 0.0;
170         fiy1             = 0.0;
171         fiz1             = 0.0;
172         fix2             = 0.0;
173         fiy2             = 0.0;
174         fiz2             = 0.0;
175         fix3             = 0.0;
176         fiy3             = 0.0;
177         fiz3             = 0.0;
178
179         /* Reset potential sums */
180         velecsum         = 0.0;
181         vvdwsum          = 0.0;
182
183         /* Start inner kernel loop */
184         for(jidx=j_index_start; jidx<j_index_end; jidx++)
185         {
186             /* Get j neighbor index, and coordinate index */
187             jnr              = jjnr[jidx];
188             j_coord_offset   = DIM*jnr;
189
190             /* load j atom coordinates */
191             jx0              = x[j_coord_offset+DIM*0+XX];
192             jy0              = x[j_coord_offset+DIM*0+YY];
193             jz0              = x[j_coord_offset+DIM*0+ZZ];
194
195             /* Calculate displacement vector */
196             dx00             = ix0 - jx0;
197             dy00             = iy0 - jy0;
198             dz00             = iz0 - jz0;
199             dx10             = ix1 - jx0;
200             dy10             = iy1 - jy0;
201             dz10             = iz1 - jz0;
202             dx20             = ix2 - jx0;
203             dy20             = iy2 - jy0;
204             dz20             = iz2 - jz0;
205             dx30             = ix3 - jx0;
206             dy30             = iy3 - jy0;
207             dz30             = iz3 - jz0;
208
209             /* Calculate squared distance and things based on it */
210             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
211             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
212             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
213             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
214
215             rinv00           = gmx_invsqrt(rsq00);
216             rinv10           = gmx_invsqrt(rsq10);
217             rinv20           = gmx_invsqrt(rsq20);
218             rinv30           = gmx_invsqrt(rsq30);
219
220             rinvsq00         = rinv00*rinv00;
221             rinvsq10         = rinv10*rinv10;
222             rinvsq20         = rinv20*rinv20;
223             rinvsq30         = rinv30*rinv30;
224
225             /* Load parameters for j particles */
226             jq0              = charge[jnr+0];
227             vdwjidx0         = 3*vdwtype[jnr+0];
228
229             /**************************
230              * CALCULATE INTERACTIONS *
231              **************************/
232
233             if (rsq00<rcutoff2)
234             {
235
236             r00              = rsq00*rinv00;
237
238             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
239             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
240             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
241
242             /* BUCKINGHAM DISPERSION/REPULSION */
243             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
244             vvdw6            = c6_00*rinvsix;
245             br               = cexp2_00*r00;
246             vvdwexp          = cexp1_00*exp(-br);
247             vvdw             = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
248             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
249
250             /* Update potential sums from outer loop */
251             vvdwsum         += vvdw;
252
253             fscal            = fvdw;
254
255             /* Calculate temporary vectorial force */
256             tx               = fscal*dx00;
257             ty               = fscal*dy00;
258             tz               = fscal*dz00;
259
260             /* Update vectorial force */
261             fix0            += tx;
262             fiy0            += ty;
263             fiz0            += tz;
264             f[j_coord_offset+DIM*0+XX] -= tx;
265             f[j_coord_offset+DIM*0+YY] -= ty;
266             f[j_coord_offset+DIM*0+ZZ] -= tz;
267
268             }
269
270             /**************************
271              * CALCULATE INTERACTIONS *
272              **************************/
273
274             if (rsq10<rcutoff2)
275             {
276
277             r10              = rsq10*rinv10;
278
279             qq10             = iq1*jq0;
280
281             /* EWALD ELECTROSTATICS */
282
283             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
284             ewrt             = r10*ewtabscale;
285             ewitab           = ewrt;
286             eweps            = ewrt-ewitab;
287             ewitab           = 4*ewitab;
288             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
289             velec            = qq10*((rinv10-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
290             felec            = qq10*rinv10*(rinvsq10-felec);
291
292             /* Update potential sums from outer loop */
293             velecsum        += velec;
294
295             fscal            = felec;
296
297             /* Calculate temporary vectorial force */
298             tx               = fscal*dx10;
299             ty               = fscal*dy10;
300             tz               = fscal*dz10;
301
302             /* Update vectorial force */
303             fix1            += tx;
304             fiy1            += ty;
305             fiz1            += tz;
306             f[j_coord_offset+DIM*0+XX] -= tx;
307             f[j_coord_offset+DIM*0+YY] -= ty;
308             f[j_coord_offset+DIM*0+ZZ] -= tz;
309
310             }
311
312             /**************************
313              * CALCULATE INTERACTIONS *
314              **************************/
315
316             if (rsq20<rcutoff2)
317             {
318
319             r20              = rsq20*rinv20;
320
321             qq20             = iq2*jq0;
322
323             /* EWALD ELECTROSTATICS */
324
325             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
326             ewrt             = r20*ewtabscale;
327             ewitab           = ewrt;
328             eweps            = ewrt-ewitab;
329             ewitab           = 4*ewitab;
330             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
331             velec            = qq20*((rinv20-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
332             felec            = qq20*rinv20*(rinvsq20-felec);
333
334             /* Update potential sums from outer loop */
335             velecsum        += velec;
336
337             fscal            = felec;
338
339             /* Calculate temporary vectorial force */
340             tx               = fscal*dx20;
341             ty               = fscal*dy20;
342             tz               = fscal*dz20;
343
344             /* Update vectorial force */
345             fix2            += tx;
346             fiy2            += ty;
347             fiz2            += tz;
348             f[j_coord_offset+DIM*0+XX] -= tx;
349             f[j_coord_offset+DIM*0+YY] -= ty;
350             f[j_coord_offset+DIM*0+ZZ] -= tz;
351
352             }
353
354             /**************************
355              * CALCULATE INTERACTIONS *
356              **************************/
357
358             if (rsq30<rcutoff2)
359             {
360
361             r30              = rsq30*rinv30;
362
363             qq30             = iq3*jq0;
364
365             /* EWALD ELECTROSTATICS */
366
367             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
368             ewrt             = r30*ewtabscale;
369             ewitab           = ewrt;
370             eweps            = ewrt-ewitab;
371             ewitab           = 4*ewitab;
372             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
373             velec            = qq30*((rinv30-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
374             felec            = qq30*rinv30*(rinvsq30-felec);
375
376             /* Update potential sums from outer loop */
377             velecsum        += velec;
378
379             fscal            = felec;
380
381             /* Calculate temporary vectorial force */
382             tx               = fscal*dx30;
383             ty               = fscal*dy30;
384             tz               = fscal*dz30;
385
386             /* Update vectorial force */
387             fix3            += tx;
388             fiy3            += ty;
389             fiz3            += tz;
390             f[j_coord_offset+DIM*0+XX] -= tx;
391             f[j_coord_offset+DIM*0+YY] -= ty;
392             f[j_coord_offset+DIM*0+ZZ] -= tz;
393
394             }
395
396             /* Inner loop uses 218 flops */
397         }
398         /* End of innermost loop */
399
400         tx = ty = tz = 0;
401         f[i_coord_offset+DIM*0+XX] += fix0;
402         f[i_coord_offset+DIM*0+YY] += fiy0;
403         f[i_coord_offset+DIM*0+ZZ] += fiz0;
404         tx                         += fix0;
405         ty                         += fiy0;
406         tz                         += fiz0;
407         f[i_coord_offset+DIM*1+XX] += fix1;
408         f[i_coord_offset+DIM*1+YY] += fiy1;
409         f[i_coord_offset+DIM*1+ZZ] += fiz1;
410         tx                         += fix1;
411         ty                         += fiy1;
412         tz                         += fiz1;
413         f[i_coord_offset+DIM*2+XX] += fix2;
414         f[i_coord_offset+DIM*2+YY] += fiy2;
415         f[i_coord_offset+DIM*2+ZZ] += fiz2;
416         tx                         += fix2;
417         ty                         += fiy2;
418         tz                         += fiz2;
419         f[i_coord_offset+DIM*3+XX] += fix3;
420         f[i_coord_offset+DIM*3+YY] += fiy3;
421         f[i_coord_offset+DIM*3+ZZ] += fiz3;
422         tx                         += fix3;
423         ty                         += fiy3;
424         tz                         += fiz3;
425         fshift[i_shift_offset+XX]  += tx;
426         fshift[i_shift_offset+YY]  += ty;
427         fshift[i_shift_offset+ZZ]  += tz;
428
429         ggid                        = gid[iidx];
430         /* Update potential energies */
431         kernel_data->energygrp_elec[ggid] += velecsum;
432         kernel_data->energygrp_vdw[ggid] += vvdwsum;
433
434         /* Increment number of inner iterations */
435         inneriter                  += j_index_end - j_index_start;
436
437         /* Outer loop uses 41 flops */
438     }
439
440     /* Increment number of outer iterations */
441     outeriter        += nri;
442
443     /* Update outer/inner flops */
444
445     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*218);
446 }
447 /*
448  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwBhamSh_GeomW4P1_F_c
449  * Electrostatics interaction: Ewald
450  * VdW interaction:            Buckingham
451  * Geometry:                   Water4-Particle
452  * Calculate force/pot:        Force
453  */
454 void
455 nb_kernel_ElecEwSh_VdwBhamSh_GeomW4P1_F_c
456                     (t_nblist                    * gmx_restrict       nlist,
457                      rvec                        * gmx_restrict          xx,
458                      rvec                        * gmx_restrict          ff,
459                      t_forcerec                  * gmx_restrict          fr,
460                      t_mdatoms                   * gmx_restrict     mdatoms,
461                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
462                      t_nrnb                      * gmx_restrict        nrnb)
463 {
464     int              i_shift_offset,i_coord_offset,j_coord_offset;
465     int              j_index_start,j_index_end;
466     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
467     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
468     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
469     real             *shiftvec,*fshift,*x,*f;
470     int              vdwioffset0;
471     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
472     int              vdwioffset1;
473     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
474     int              vdwioffset2;
475     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
476     int              vdwioffset3;
477     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
478     int              vdwjidx0;
479     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
480     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
481     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
482     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
483     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
484     real             velec,felec,velecsum,facel,crf,krf,krf2;
485     real             *charge;
486     int              nvdwtype;
487     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
488     int              *vdwtype;
489     real             *vdwparam;
490     int              ewitab;
491     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
492     real             *ewtab;
493
494     x                = xx[0];
495     f                = ff[0];
496
497     nri              = nlist->nri;
498     iinr             = nlist->iinr;
499     jindex           = nlist->jindex;
500     jjnr             = nlist->jjnr;
501     shiftidx         = nlist->shift;
502     gid              = nlist->gid;
503     shiftvec         = fr->shift_vec[0];
504     fshift           = fr->fshift[0];
505     facel            = fr->epsfac;
506     charge           = mdatoms->chargeA;
507     nvdwtype         = fr->ntype;
508     vdwparam         = fr->nbfp;
509     vdwtype          = mdatoms->typeA;
510
511     sh_ewald         = fr->ic->sh_ewald;
512     ewtab            = fr->ic->tabq_coul_F;
513     ewtabscale       = fr->ic->tabq_scale;
514     ewtabhalfspace   = 0.5/ewtabscale;
515
516     /* Setup water-specific parameters */
517     inr              = nlist->iinr[0];
518     iq1              = facel*charge[inr+1];
519     iq2              = facel*charge[inr+2];
520     iq3              = facel*charge[inr+3];
521     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
522
523     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
524     rcutoff          = fr->rcoulomb;
525     rcutoff2         = rcutoff*rcutoff;
526
527     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
528     rvdw             = fr->rvdw;
529
530     outeriter        = 0;
531     inneriter        = 0;
532
533     /* Start outer loop over neighborlists */
534     for(iidx=0; iidx<nri; iidx++)
535     {
536         /* Load shift vector for this list */
537         i_shift_offset   = DIM*shiftidx[iidx];
538         shX              = shiftvec[i_shift_offset+XX];
539         shY              = shiftvec[i_shift_offset+YY];
540         shZ              = shiftvec[i_shift_offset+ZZ];
541
542         /* Load limits for loop over neighbors */
543         j_index_start    = jindex[iidx];
544         j_index_end      = jindex[iidx+1];
545
546         /* Get outer coordinate index */
547         inr              = iinr[iidx];
548         i_coord_offset   = DIM*inr;
549
550         /* Load i particle coords and add shift vector */
551         ix0              = shX + x[i_coord_offset+DIM*0+XX];
552         iy0              = shY + x[i_coord_offset+DIM*0+YY];
553         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
554         ix1              = shX + x[i_coord_offset+DIM*1+XX];
555         iy1              = shY + x[i_coord_offset+DIM*1+YY];
556         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
557         ix2              = shX + x[i_coord_offset+DIM*2+XX];
558         iy2              = shY + x[i_coord_offset+DIM*2+YY];
559         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
560         ix3              = shX + x[i_coord_offset+DIM*3+XX];
561         iy3              = shY + x[i_coord_offset+DIM*3+YY];
562         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
563
564         fix0             = 0.0;
565         fiy0             = 0.0;
566         fiz0             = 0.0;
567         fix1             = 0.0;
568         fiy1             = 0.0;
569         fiz1             = 0.0;
570         fix2             = 0.0;
571         fiy2             = 0.0;
572         fiz2             = 0.0;
573         fix3             = 0.0;
574         fiy3             = 0.0;
575         fiz3             = 0.0;
576
577         /* Start inner kernel loop */
578         for(jidx=j_index_start; jidx<j_index_end; jidx++)
579         {
580             /* Get j neighbor index, and coordinate index */
581             jnr              = jjnr[jidx];
582             j_coord_offset   = DIM*jnr;
583
584             /* load j atom coordinates */
585             jx0              = x[j_coord_offset+DIM*0+XX];
586             jy0              = x[j_coord_offset+DIM*0+YY];
587             jz0              = x[j_coord_offset+DIM*0+ZZ];
588
589             /* Calculate displacement vector */
590             dx00             = ix0 - jx0;
591             dy00             = iy0 - jy0;
592             dz00             = iz0 - jz0;
593             dx10             = ix1 - jx0;
594             dy10             = iy1 - jy0;
595             dz10             = iz1 - jz0;
596             dx20             = ix2 - jx0;
597             dy20             = iy2 - jy0;
598             dz20             = iz2 - jz0;
599             dx30             = ix3 - jx0;
600             dy30             = iy3 - jy0;
601             dz30             = iz3 - jz0;
602
603             /* Calculate squared distance and things based on it */
604             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
605             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
606             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
607             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
608
609             rinv00           = gmx_invsqrt(rsq00);
610             rinv10           = gmx_invsqrt(rsq10);
611             rinv20           = gmx_invsqrt(rsq20);
612             rinv30           = gmx_invsqrt(rsq30);
613
614             rinvsq00         = rinv00*rinv00;
615             rinvsq10         = rinv10*rinv10;
616             rinvsq20         = rinv20*rinv20;
617             rinvsq30         = rinv30*rinv30;
618
619             /* Load parameters for j particles */
620             jq0              = charge[jnr+0];
621             vdwjidx0         = 3*vdwtype[jnr+0];
622
623             /**************************
624              * CALCULATE INTERACTIONS *
625              **************************/
626
627             if (rsq00<rcutoff2)
628             {
629
630             r00              = rsq00*rinv00;
631
632             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
633             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
634             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
635
636             /* BUCKINGHAM DISPERSION/REPULSION */
637             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
638             vvdw6            = c6_00*rinvsix;
639             br               = cexp2_00*r00;
640             vvdwexp          = cexp1_00*exp(-br);
641             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
642
643             fscal            = fvdw;
644
645             /* Calculate temporary vectorial force */
646             tx               = fscal*dx00;
647             ty               = fscal*dy00;
648             tz               = fscal*dz00;
649
650             /* Update vectorial force */
651             fix0            += tx;
652             fiy0            += ty;
653             fiz0            += tz;
654             f[j_coord_offset+DIM*0+XX] -= tx;
655             f[j_coord_offset+DIM*0+YY] -= ty;
656             f[j_coord_offset+DIM*0+ZZ] -= tz;
657
658             }
659
660             /**************************
661              * CALCULATE INTERACTIONS *
662              **************************/
663
664             if (rsq10<rcutoff2)
665             {
666
667             r10              = rsq10*rinv10;
668
669             qq10             = iq1*jq0;
670
671             /* EWALD ELECTROSTATICS */
672
673             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
674             ewrt             = r10*ewtabscale;
675             ewitab           = ewrt;
676             eweps            = ewrt-ewitab;
677             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
678             felec            = qq10*rinv10*(rinvsq10-felec);
679
680             fscal            = felec;
681
682             /* Calculate temporary vectorial force */
683             tx               = fscal*dx10;
684             ty               = fscal*dy10;
685             tz               = fscal*dz10;
686
687             /* Update vectorial force */
688             fix1            += tx;
689             fiy1            += ty;
690             fiz1            += tz;
691             f[j_coord_offset+DIM*0+XX] -= tx;
692             f[j_coord_offset+DIM*0+YY] -= ty;
693             f[j_coord_offset+DIM*0+ZZ] -= tz;
694
695             }
696
697             /**************************
698              * CALCULATE INTERACTIONS *
699              **************************/
700
701             if (rsq20<rcutoff2)
702             {
703
704             r20              = rsq20*rinv20;
705
706             qq20             = iq2*jq0;
707
708             /* EWALD ELECTROSTATICS */
709
710             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
711             ewrt             = r20*ewtabscale;
712             ewitab           = ewrt;
713             eweps            = ewrt-ewitab;
714             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
715             felec            = qq20*rinv20*(rinvsq20-felec);
716
717             fscal            = felec;
718
719             /* Calculate temporary vectorial force */
720             tx               = fscal*dx20;
721             ty               = fscal*dy20;
722             tz               = fscal*dz20;
723
724             /* Update vectorial force */
725             fix2            += tx;
726             fiy2            += ty;
727             fiz2            += tz;
728             f[j_coord_offset+DIM*0+XX] -= tx;
729             f[j_coord_offset+DIM*0+YY] -= ty;
730             f[j_coord_offset+DIM*0+ZZ] -= tz;
731
732             }
733
734             /**************************
735              * CALCULATE INTERACTIONS *
736              **************************/
737
738             if (rsq30<rcutoff2)
739             {
740
741             r30              = rsq30*rinv30;
742
743             qq30             = iq3*jq0;
744
745             /* EWALD ELECTROSTATICS */
746
747             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
748             ewrt             = r30*ewtabscale;
749             ewitab           = ewrt;
750             eweps            = ewrt-ewitab;
751             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
752             felec            = qq30*rinv30*(rinvsq30-felec);
753
754             fscal            = felec;
755
756             /* Calculate temporary vectorial force */
757             tx               = fscal*dx30;
758             ty               = fscal*dy30;
759             tz               = fscal*dz30;
760
761             /* Update vectorial force */
762             fix3            += tx;
763             fiy3            += ty;
764             fiz3            += tz;
765             f[j_coord_offset+DIM*0+XX] -= tx;
766             f[j_coord_offset+DIM*0+YY] -= ty;
767             f[j_coord_offset+DIM*0+ZZ] -= tz;
768
769             }
770
771             /* Inner loop uses 160 flops */
772         }
773         /* End of innermost loop */
774
775         tx = ty = tz = 0;
776         f[i_coord_offset+DIM*0+XX] += fix0;
777         f[i_coord_offset+DIM*0+YY] += fiy0;
778         f[i_coord_offset+DIM*0+ZZ] += fiz0;
779         tx                         += fix0;
780         ty                         += fiy0;
781         tz                         += fiz0;
782         f[i_coord_offset+DIM*1+XX] += fix1;
783         f[i_coord_offset+DIM*1+YY] += fiy1;
784         f[i_coord_offset+DIM*1+ZZ] += fiz1;
785         tx                         += fix1;
786         ty                         += fiy1;
787         tz                         += fiz1;
788         f[i_coord_offset+DIM*2+XX] += fix2;
789         f[i_coord_offset+DIM*2+YY] += fiy2;
790         f[i_coord_offset+DIM*2+ZZ] += fiz2;
791         tx                         += fix2;
792         ty                         += fiy2;
793         tz                         += fiz2;
794         f[i_coord_offset+DIM*3+XX] += fix3;
795         f[i_coord_offset+DIM*3+YY] += fiy3;
796         f[i_coord_offset+DIM*3+ZZ] += fiz3;
797         tx                         += fix3;
798         ty                         += fiy3;
799         tz                         += fiz3;
800         fshift[i_shift_offset+XX]  += tx;
801         fshift[i_shift_offset+YY]  += ty;
802         fshift[i_shift_offset+ZZ]  += tz;
803
804         /* Increment number of inner iterations */
805         inneriter                  += j_index_end - j_index_start;
806
807         /* Outer loop uses 39 flops */
808     }
809
810     /* Increment number of outer iterations */
811     outeriter        += nri;
812
813     /* Update outer/inner flops */
814
815     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*160);
816 }