Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSh_VdwBhamSh_GeomW3W3_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwBhamSh_GeomW3W3_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            Buckingham
53  * Geometry:                   Water3-Water3
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwBhamSh_GeomW3W3_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwjidx0;
79     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80     int              vdwjidx1;
81     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82     int              vdwjidx2;
83     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93     real             velec,felec,velecsum,facel,crf,krf,krf2;
94     real             *charge;
95     int              nvdwtype;
96     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97     int              *vdwtype;
98     real             *vdwparam;
99     int              ewitab;
100     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
101     real             *ewtab;
102
103     x                = xx[0];
104     f                = ff[0];
105
106     nri              = nlist->nri;
107     iinr             = nlist->iinr;
108     jindex           = nlist->jindex;
109     jjnr             = nlist->jjnr;
110     shiftidx         = nlist->shift;
111     gid              = nlist->gid;
112     shiftvec         = fr->shift_vec[0];
113     fshift           = fr->fshift[0];
114     facel            = fr->epsfac;
115     charge           = mdatoms->chargeA;
116     nvdwtype         = fr->ntype;
117     vdwparam         = fr->nbfp;
118     vdwtype          = mdatoms->typeA;
119
120     sh_ewald         = fr->ic->sh_ewald;
121     ewtab            = fr->ic->tabq_coul_FDV0;
122     ewtabscale       = fr->ic->tabq_scale;
123     ewtabhalfspace   = 0.5/ewtabscale;
124
125     /* Setup water-specific parameters */
126     inr              = nlist->iinr[0];
127     iq0              = facel*charge[inr+0];
128     iq1              = facel*charge[inr+1];
129     iq2              = facel*charge[inr+2];
130     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
131
132     jq0              = charge[inr+0];
133     jq1              = charge[inr+1];
134     jq2              = charge[inr+2];
135     vdwjidx0         = 3*vdwtype[inr+0];
136     qq00             = iq0*jq0;
137     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
138     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
139     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
140     qq01             = iq0*jq1;
141     qq02             = iq0*jq2;
142     qq10             = iq1*jq0;
143     qq11             = iq1*jq1;
144     qq12             = iq1*jq2;
145     qq20             = iq2*jq0;
146     qq21             = iq2*jq1;
147     qq22             = iq2*jq2;
148
149     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
150     rcutoff          = fr->rcoulomb;
151     rcutoff2         = rcutoff*rcutoff;
152
153     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
154     rvdw             = fr->rvdw;
155
156     outeriter        = 0;
157     inneriter        = 0;
158
159     /* Start outer loop over neighborlists */
160     for(iidx=0; iidx<nri; iidx++)
161     {
162         /* Load shift vector for this list */
163         i_shift_offset   = DIM*shiftidx[iidx];
164         shX              = shiftvec[i_shift_offset+XX];
165         shY              = shiftvec[i_shift_offset+YY];
166         shZ              = shiftvec[i_shift_offset+ZZ];
167
168         /* Load limits for loop over neighbors */
169         j_index_start    = jindex[iidx];
170         j_index_end      = jindex[iidx+1];
171
172         /* Get outer coordinate index */
173         inr              = iinr[iidx];
174         i_coord_offset   = DIM*inr;
175
176         /* Load i particle coords and add shift vector */
177         ix0              = shX + x[i_coord_offset+DIM*0+XX];
178         iy0              = shY + x[i_coord_offset+DIM*0+YY];
179         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
180         ix1              = shX + x[i_coord_offset+DIM*1+XX];
181         iy1              = shY + x[i_coord_offset+DIM*1+YY];
182         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
183         ix2              = shX + x[i_coord_offset+DIM*2+XX];
184         iy2              = shY + x[i_coord_offset+DIM*2+YY];
185         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
186
187         fix0             = 0.0;
188         fiy0             = 0.0;
189         fiz0             = 0.0;
190         fix1             = 0.0;
191         fiy1             = 0.0;
192         fiz1             = 0.0;
193         fix2             = 0.0;
194         fiy2             = 0.0;
195         fiz2             = 0.0;
196
197         /* Reset potential sums */
198         velecsum         = 0.0;
199         vvdwsum          = 0.0;
200
201         /* Start inner kernel loop */
202         for(jidx=j_index_start; jidx<j_index_end; jidx++)
203         {
204             /* Get j neighbor index, and coordinate index */
205             jnr              = jjnr[jidx];
206             j_coord_offset   = DIM*jnr;
207
208             /* load j atom coordinates */
209             jx0              = x[j_coord_offset+DIM*0+XX];
210             jy0              = x[j_coord_offset+DIM*0+YY];
211             jz0              = x[j_coord_offset+DIM*0+ZZ];
212             jx1              = x[j_coord_offset+DIM*1+XX];
213             jy1              = x[j_coord_offset+DIM*1+YY];
214             jz1              = x[j_coord_offset+DIM*1+ZZ];
215             jx2              = x[j_coord_offset+DIM*2+XX];
216             jy2              = x[j_coord_offset+DIM*2+YY];
217             jz2              = x[j_coord_offset+DIM*2+ZZ];
218
219             /* Calculate displacement vector */
220             dx00             = ix0 - jx0;
221             dy00             = iy0 - jy0;
222             dz00             = iz0 - jz0;
223             dx01             = ix0 - jx1;
224             dy01             = iy0 - jy1;
225             dz01             = iz0 - jz1;
226             dx02             = ix0 - jx2;
227             dy02             = iy0 - jy2;
228             dz02             = iz0 - jz2;
229             dx10             = ix1 - jx0;
230             dy10             = iy1 - jy0;
231             dz10             = iz1 - jz0;
232             dx11             = ix1 - jx1;
233             dy11             = iy1 - jy1;
234             dz11             = iz1 - jz1;
235             dx12             = ix1 - jx2;
236             dy12             = iy1 - jy2;
237             dz12             = iz1 - jz2;
238             dx20             = ix2 - jx0;
239             dy20             = iy2 - jy0;
240             dz20             = iz2 - jz0;
241             dx21             = ix2 - jx1;
242             dy21             = iy2 - jy1;
243             dz21             = iz2 - jz1;
244             dx22             = ix2 - jx2;
245             dy22             = iy2 - jy2;
246             dz22             = iz2 - jz2;
247
248             /* Calculate squared distance and things based on it */
249             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
250             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
251             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
252             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
253             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
254             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
255             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
256             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
257             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
258
259             rinv00           = gmx_invsqrt(rsq00);
260             rinv01           = gmx_invsqrt(rsq01);
261             rinv02           = gmx_invsqrt(rsq02);
262             rinv10           = gmx_invsqrt(rsq10);
263             rinv11           = gmx_invsqrt(rsq11);
264             rinv12           = gmx_invsqrt(rsq12);
265             rinv20           = gmx_invsqrt(rsq20);
266             rinv21           = gmx_invsqrt(rsq21);
267             rinv22           = gmx_invsqrt(rsq22);
268
269             rinvsq00         = rinv00*rinv00;
270             rinvsq01         = rinv01*rinv01;
271             rinvsq02         = rinv02*rinv02;
272             rinvsq10         = rinv10*rinv10;
273             rinvsq11         = rinv11*rinv11;
274             rinvsq12         = rinv12*rinv12;
275             rinvsq20         = rinv20*rinv20;
276             rinvsq21         = rinv21*rinv21;
277             rinvsq22         = rinv22*rinv22;
278
279             /**************************
280              * CALCULATE INTERACTIONS *
281              **************************/
282
283             if (rsq00<rcutoff2)
284             {
285
286             r00              = rsq00*rinv00;
287
288             /* EWALD ELECTROSTATICS */
289
290             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
291             ewrt             = r00*ewtabscale;
292             ewitab           = ewrt;
293             eweps            = ewrt-ewitab;
294             ewitab           = 4*ewitab;
295             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
296             velec            = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
297             felec            = qq00*rinv00*(rinvsq00-felec);
298
299             /* BUCKINGHAM DISPERSION/REPULSION */
300             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
301             vvdw6            = c6_00*rinvsix;
302             br               = cexp2_00*r00;
303             vvdwexp          = cexp1_00*exp(-br);
304             vvdw             = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
305             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
306
307             /* Update potential sums from outer loop */
308             velecsum        += velec;
309             vvdwsum         += vvdw;
310
311             fscal            = felec+fvdw;
312
313             /* Calculate temporary vectorial force */
314             tx               = fscal*dx00;
315             ty               = fscal*dy00;
316             tz               = fscal*dz00;
317
318             /* Update vectorial force */
319             fix0            += tx;
320             fiy0            += ty;
321             fiz0            += tz;
322             f[j_coord_offset+DIM*0+XX] -= tx;
323             f[j_coord_offset+DIM*0+YY] -= ty;
324             f[j_coord_offset+DIM*0+ZZ] -= tz;
325
326             }
327
328             /**************************
329              * CALCULATE INTERACTIONS *
330              **************************/
331
332             if (rsq01<rcutoff2)
333             {
334
335             r01              = rsq01*rinv01;
336
337             /* EWALD ELECTROSTATICS */
338
339             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
340             ewrt             = r01*ewtabscale;
341             ewitab           = ewrt;
342             eweps            = ewrt-ewitab;
343             ewitab           = 4*ewitab;
344             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
345             velec            = qq01*((rinv01-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
346             felec            = qq01*rinv01*(rinvsq01-felec);
347
348             /* Update potential sums from outer loop */
349             velecsum        += velec;
350
351             fscal            = felec;
352
353             /* Calculate temporary vectorial force */
354             tx               = fscal*dx01;
355             ty               = fscal*dy01;
356             tz               = fscal*dz01;
357
358             /* Update vectorial force */
359             fix0            += tx;
360             fiy0            += ty;
361             fiz0            += tz;
362             f[j_coord_offset+DIM*1+XX] -= tx;
363             f[j_coord_offset+DIM*1+YY] -= ty;
364             f[j_coord_offset+DIM*1+ZZ] -= tz;
365
366             }
367
368             /**************************
369              * CALCULATE INTERACTIONS *
370              **************************/
371
372             if (rsq02<rcutoff2)
373             {
374
375             r02              = rsq02*rinv02;
376
377             /* EWALD ELECTROSTATICS */
378
379             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
380             ewrt             = r02*ewtabscale;
381             ewitab           = ewrt;
382             eweps            = ewrt-ewitab;
383             ewitab           = 4*ewitab;
384             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
385             velec            = qq02*((rinv02-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
386             felec            = qq02*rinv02*(rinvsq02-felec);
387
388             /* Update potential sums from outer loop */
389             velecsum        += velec;
390
391             fscal            = felec;
392
393             /* Calculate temporary vectorial force */
394             tx               = fscal*dx02;
395             ty               = fscal*dy02;
396             tz               = fscal*dz02;
397
398             /* Update vectorial force */
399             fix0            += tx;
400             fiy0            += ty;
401             fiz0            += tz;
402             f[j_coord_offset+DIM*2+XX] -= tx;
403             f[j_coord_offset+DIM*2+YY] -= ty;
404             f[j_coord_offset+DIM*2+ZZ] -= tz;
405
406             }
407
408             /**************************
409              * CALCULATE INTERACTIONS *
410              **************************/
411
412             if (rsq10<rcutoff2)
413             {
414
415             r10              = rsq10*rinv10;
416
417             /* EWALD ELECTROSTATICS */
418
419             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
420             ewrt             = r10*ewtabscale;
421             ewitab           = ewrt;
422             eweps            = ewrt-ewitab;
423             ewitab           = 4*ewitab;
424             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
425             velec            = qq10*((rinv10-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
426             felec            = qq10*rinv10*(rinvsq10-felec);
427
428             /* Update potential sums from outer loop */
429             velecsum        += velec;
430
431             fscal            = felec;
432
433             /* Calculate temporary vectorial force */
434             tx               = fscal*dx10;
435             ty               = fscal*dy10;
436             tz               = fscal*dz10;
437
438             /* Update vectorial force */
439             fix1            += tx;
440             fiy1            += ty;
441             fiz1            += tz;
442             f[j_coord_offset+DIM*0+XX] -= tx;
443             f[j_coord_offset+DIM*0+YY] -= ty;
444             f[j_coord_offset+DIM*0+ZZ] -= tz;
445
446             }
447
448             /**************************
449              * CALCULATE INTERACTIONS *
450              **************************/
451
452             if (rsq11<rcutoff2)
453             {
454
455             r11              = rsq11*rinv11;
456
457             /* EWALD ELECTROSTATICS */
458
459             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
460             ewrt             = r11*ewtabscale;
461             ewitab           = ewrt;
462             eweps            = ewrt-ewitab;
463             ewitab           = 4*ewitab;
464             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
465             velec            = qq11*((rinv11-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
466             felec            = qq11*rinv11*(rinvsq11-felec);
467
468             /* Update potential sums from outer loop */
469             velecsum        += velec;
470
471             fscal            = felec;
472
473             /* Calculate temporary vectorial force */
474             tx               = fscal*dx11;
475             ty               = fscal*dy11;
476             tz               = fscal*dz11;
477
478             /* Update vectorial force */
479             fix1            += tx;
480             fiy1            += ty;
481             fiz1            += tz;
482             f[j_coord_offset+DIM*1+XX] -= tx;
483             f[j_coord_offset+DIM*1+YY] -= ty;
484             f[j_coord_offset+DIM*1+ZZ] -= tz;
485
486             }
487
488             /**************************
489              * CALCULATE INTERACTIONS *
490              **************************/
491
492             if (rsq12<rcutoff2)
493             {
494
495             r12              = rsq12*rinv12;
496
497             /* EWALD ELECTROSTATICS */
498
499             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
500             ewrt             = r12*ewtabscale;
501             ewitab           = ewrt;
502             eweps            = ewrt-ewitab;
503             ewitab           = 4*ewitab;
504             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
505             velec            = qq12*((rinv12-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
506             felec            = qq12*rinv12*(rinvsq12-felec);
507
508             /* Update potential sums from outer loop */
509             velecsum        += velec;
510
511             fscal            = felec;
512
513             /* Calculate temporary vectorial force */
514             tx               = fscal*dx12;
515             ty               = fscal*dy12;
516             tz               = fscal*dz12;
517
518             /* Update vectorial force */
519             fix1            += tx;
520             fiy1            += ty;
521             fiz1            += tz;
522             f[j_coord_offset+DIM*2+XX] -= tx;
523             f[j_coord_offset+DIM*2+YY] -= ty;
524             f[j_coord_offset+DIM*2+ZZ] -= tz;
525
526             }
527
528             /**************************
529              * CALCULATE INTERACTIONS *
530              **************************/
531
532             if (rsq20<rcutoff2)
533             {
534
535             r20              = rsq20*rinv20;
536
537             /* EWALD ELECTROSTATICS */
538
539             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
540             ewrt             = r20*ewtabscale;
541             ewitab           = ewrt;
542             eweps            = ewrt-ewitab;
543             ewitab           = 4*ewitab;
544             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
545             velec            = qq20*((rinv20-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
546             felec            = qq20*rinv20*(rinvsq20-felec);
547
548             /* Update potential sums from outer loop */
549             velecsum        += velec;
550
551             fscal            = felec;
552
553             /* Calculate temporary vectorial force */
554             tx               = fscal*dx20;
555             ty               = fscal*dy20;
556             tz               = fscal*dz20;
557
558             /* Update vectorial force */
559             fix2            += tx;
560             fiy2            += ty;
561             fiz2            += tz;
562             f[j_coord_offset+DIM*0+XX] -= tx;
563             f[j_coord_offset+DIM*0+YY] -= ty;
564             f[j_coord_offset+DIM*0+ZZ] -= tz;
565
566             }
567
568             /**************************
569              * CALCULATE INTERACTIONS *
570              **************************/
571
572             if (rsq21<rcutoff2)
573             {
574
575             r21              = rsq21*rinv21;
576
577             /* EWALD ELECTROSTATICS */
578
579             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
580             ewrt             = r21*ewtabscale;
581             ewitab           = ewrt;
582             eweps            = ewrt-ewitab;
583             ewitab           = 4*ewitab;
584             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
585             velec            = qq21*((rinv21-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
586             felec            = qq21*rinv21*(rinvsq21-felec);
587
588             /* Update potential sums from outer loop */
589             velecsum        += velec;
590
591             fscal            = felec;
592
593             /* Calculate temporary vectorial force */
594             tx               = fscal*dx21;
595             ty               = fscal*dy21;
596             tz               = fscal*dz21;
597
598             /* Update vectorial force */
599             fix2            += tx;
600             fiy2            += ty;
601             fiz2            += tz;
602             f[j_coord_offset+DIM*1+XX] -= tx;
603             f[j_coord_offset+DIM*1+YY] -= ty;
604             f[j_coord_offset+DIM*1+ZZ] -= tz;
605
606             }
607
608             /**************************
609              * CALCULATE INTERACTIONS *
610              **************************/
611
612             if (rsq22<rcutoff2)
613             {
614
615             r22              = rsq22*rinv22;
616
617             /* EWALD ELECTROSTATICS */
618
619             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
620             ewrt             = r22*ewtabscale;
621             ewitab           = ewrt;
622             eweps            = ewrt-ewitab;
623             ewitab           = 4*ewitab;
624             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
625             velec            = qq22*((rinv22-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
626             felec            = qq22*rinv22*(rinvsq22-felec);
627
628             /* Update potential sums from outer loop */
629             velecsum        += velec;
630
631             fscal            = felec;
632
633             /* Calculate temporary vectorial force */
634             tx               = fscal*dx22;
635             ty               = fscal*dy22;
636             tz               = fscal*dz22;
637
638             /* Update vectorial force */
639             fix2            += tx;
640             fiy2            += ty;
641             fiz2            += tz;
642             f[j_coord_offset+DIM*2+XX] -= tx;
643             f[j_coord_offset+DIM*2+YY] -= ty;
644             f[j_coord_offset+DIM*2+ZZ] -= tz;
645
646             }
647
648             /* Inner loop uses 438 flops */
649         }
650         /* End of innermost loop */
651
652         tx = ty = tz = 0;
653         f[i_coord_offset+DIM*0+XX] += fix0;
654         f[i_coord_offset+DIM*0+YY] += fiy0;
655         f[i_coord_offset+DIM*0+ZZ] += fiz0;
656         tx                         += fix0;
657         ty                         += fiy0;
658         tz                         += fiz0;
659         f[i_coord_offset+DIM*1+XX] += fix1;
660         f[i_coord_offset+DIM*1+YY] += fiy1;
661         f[i_coord_offset+DIM*1+ZZ] += fiz1;
662         tx                         += fix1;
663         ty                         += fiy1;
664         tz                         += fiz1;
665         f[i_coord_offset+DIM*2+XX] += fix2;
666         f[i_coord_offset+DIM*2+YY] += fiy2;
667         f[i_coord_offset+DIM*2+ZZ] += fiz2;
668         tx                         += fix2;
669         ty                         += fiy2;
670         tz                         += fiz2;
671         fshift[i_shift_offset+XX]  += tx;
672         fshift[i_shift_offset+YY]  += ty;
673         fshift[i_shift_offset+ZZ]  += tz;
674
675         ggid                        = gid[iidx];
676         /* Update potential energies */
677         kernel_data->energygrp_elec[ggid] += velecsum;
678         kernel_data->energygrp_vdw[ggid] += vvdwsum;
679
680         /* Increment number of inner iterations */
681         inneriter                  += j_index_end - j_index_start;
682
683         /* Outer loop uses 32 flops */
684     }
685
686     /* Increment number of outer iterations */
687     outeriter        += nri;
688
689     /* Update outer/inner flops */
690
691     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*438);
692 }
693 /*
694  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwBhamSh_GeomW3W3_F_c
695  * Electrostatics interaction: Ewald
696  * VdW interaction:            Buckingham
697  * Geometry:                   Water3-Water3
698  * Calculate force/pot:        Force
699  */
700 void
701 nb_kernel_ElecEwSh_VdwBhamSh_GeomW3W3_F_c
702                     (t_nblist                    * gmx_restrict       nlist,
703                      rvec                        * gmx_restrict          xx,
704                      rvec                        * gmx_restrict          ff,
705                      t_forcerec                  * gmx_restrict          fr,
706                      t_mdatoms                   * gmx_restrict     mdatoms,
707                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
708                      t_nrnb                      * gmx_restrict        nrnb)
709 {
710     int              i_shift_offset,i_coord_offset,j_coord_offset;
711     int              j_index_start,j_index_end;
712     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
713     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
714     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
715     real             *shiftvec,*fshift,*x,*f;
716     int              vdwioffset0;
717     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
718     int              vdwioffset1;
719     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
720     int              vdwioffset2;
721     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
722     int              vdwjidx0;
723     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
724     int              vdwjidx1;
725     real             jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
726     int              vdwjidx2;
727     real             jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
728     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
729     real             dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
730     real             dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
731     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
732     real             dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
733     real             dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
734     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
735     real             dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
736     real             dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
737     real             velec,felec,velecsum,facel,crf,krf,krf2;
738     real             *charge;
739     int              nvdwtype;
740     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
741     int              *vdwtype;
742     real             *vdwparam;
743     int              ewitab;
744     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
745     real             *ewtab;
746
747     x                = xx[0];
748     f                = ff[0];
749
750     nri              = nlist->nri;
751     iinr             = nlist->iinr;
752     jindex           = nlist->jindex;
753     jjnr             = nlist->jjnr;
754     shiftidx         = nlist->shift;
755     gid              = nlist->gid;
756     shiftvec         = fr->shift_vec[0];
757     fshift           = fr->fshift[0];
758     facel            = fr->epsfac;
759     charge           = mdatoms->chargeA;
760     nvdwtype         = fr->ntype;
761     vdwparam         = fr->nbfp;
762     vdwtype          = mdatoms->typeA;
763
764     sh_ewald         = fr->ic->sh_ewald;
765     ewtab            = fr->ic->tabq_coul_F;
766     ewtabscale       = fr->ic->tabq_scale;
767     ewtabhalfspace   = 0.5/ewtabscale;
768
769     /* Setup water-specific parameters */
770     inr              = nlist->iinr[0];
771     iq0              = facel*charge[inr+0];
772     iq1              = facel*charge[inr+1];
773     iq2              = facel*charge[inr+2];
774     vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
775
776     jq0              = charge[inr+0];
777     jq1              = charge[inr+1];
778     jq2              = charge[inr+2];
779     vdwjidx0         = 3*vdwtype[inr+0];
780     qq00             = iq0*jq0;
781     c6_00            = vdwparam[vdwioffset0+vdwjidx0];
782     cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
783     cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
784     qq01             = iq0*jq1;
785     qq02             = iq0*jq2;
786     qq10             = iq1*jq0;
787     qq11             = iq1*jq1;
788     qq12             = iq1*jq2;
789     qq20             = iq2*jq0;
790     qq21             = iq2*jq1;
791     qq22             = iq2*jq2;
792
793     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
794     rcutoff          = fr->rcoulomb;
795     rcutoff2         = rcutoff*rcutoff;
796
797     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
798     rvdw             = fr->rvdw;
799
800     outeriter        = 0;
801     inneriter        = 0;
802
803     /* Start outer loop over neighborlists */
804     for(iidx=0; iidx<nri; iidx++)
805     {
806         /* Load shift vector for this list */
807         i_shift_offset   = DIM*shiftidx[iidx];
808         shX              = shiftvec[i_shift_offset+XX];
809         shY              = shiftvec[i_shift_offset+YY];
810         shZ              = shiftvec[i_shift_offset+ZZ];
811
812         /* Load limits for loop over neighbors */
813         j_index_start    = jindex[iidx];
814         j_index_end      = jindex[iidx+1];
815
816         /* Get outer coordinate index */
817         inr              = iinr[iidx];
818         i_coord_offset   = DIM*inr;
819
820         /* Load i particle coords and add shift vector */
821         ix0              = shX + x[i_coord_offset+DIM*0+XX];
822         iy0              = shY + x[i_coord_offset+DIM*0+YY];
823         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
824         ix1              = shX + x[i_coord_offset+DIM*1+XX];
825         iy1              = shY + x[i_coord_offset+DIM*1+YY];
826         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
827         ix2              = shX + x[i_coord_offset+DIM*2+XX];
828         iy2              = shY + x[i_coord_offset+DIM*2+YY];
829         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
830
831         fix0             = 0.0;
832         fiy0             = 0.0;
833         fiz0             = 0.0;
834         fix1             = 0.0;
835         fiy1             = 0.0;
836         fiz1             = 0.0;
837         fix2             = 0.0;
838         fiy2             = 0.0;
839         fiz2             = 0.0;
840
841         /* Start inner kernel loop */
842         for(jidx=j_index_start; jidx<j_index_end; jidx++)
843         {
844             /* Get j neighbor index, and coordinate index */
845             jnr              = jjnr[jidx];
846             j_coord_offset   = DIM*jnr;
847
848             /* load j atom coordinates */
849             jx0              = x[j_coord_offset+DIM*0+XX];
850             jy0              = x[j_coord_offset+DIM*0+YY];
851             jz0              = x[j_coord_offset+DIM*0+ZZ];
852             jx1              = x[j_coord_offset+DIM*1+XX];
853             jy1              = x[j_coord_offset+DIM*1+YY];
854             jz1              = x[j_coord_offset+DIM*1+ZZ];
855             jx2              = x[j_coord_offset+DIM*2+XX];
856             jy2              = x[j_coord_offset+DIM*2+YY];
857             jz2              = x[j_coord_offset+DIM*2+ZZ];
858
859             /* Calculate displacement vector */
860             dx00             = ix0 - jx0;
861             dy00             = iy0 - jy0;
862             dz00             = iz0 - jz0;
863             dx01             = ix0 - jx1;
864             dy01             = iy0 - jy1;
865             dz01             = iz0 - jz1;
866             dx02             = ix0 - jx2;
867             dy02             = iy0 - jy2;
868             dz02             = iz0 - jz2;
869             dx10             = ix1 - jx0;
870             dy10             = iy1 - jy0;
871             dz10             = iz1 - jz0;
872             dx11             = ix1 - jx1;
873             dy11             = iy1 - jy1;
874             dz11             = iz1 - jz1;
875             dx12             = ix1 - jx2;
876             dy12             = iy1 - jy2;
877             dz12             = iz1 - jz2;
878             dx20             = ix2 - jx0;
879             dy20             = iy2 - jy0;
880             dz20             = iz2 - jz0;
881             dx21             = ix2 - jx1;
882             dy21             = iy2 - jy1;
883             dz21             = iz2 - jz1;
884             dx22             = ix2 - jx2;
885             dy22             = iy2 - jy2;
886             dz22             = iz2 - jz2;
887
888             /* Calculate squared distance and things based on it */
889             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
890             rsq01            = dx01*dx01+dy01*dy01+dz01*dz01;
891             rsq02            = dx02*dx02+dy02*dy02+dz02*dz02;
892             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
893             rsq11            = dx11*dx11+dy11*dy11+dz11*dz11;
894             rsq12            = dx12*dx12+dy12*dy12+dz12*dz12;
895             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
896             rsq21            = dx21*dx21+dy21*dy21+dz21*dz21;
897             rsq22            = dx22*dx22+dy22*dy22+dz22*dz22;
898
899             rinv00           = gmx_invsqrt(rsq00);
900             rinv01           = gmx_invsqrt(rsq01);
901             rinv02           = gmx_invsqrt(rsq02);
902             rinv10           = gmx_invsqrt(rsq10);
903             rinv11           = gmx_invsqrt(rsq11);
904             rinv12           = gmx_invsqrt(rsq12);
905             rinv20           = gmx_invsqrt(rsq20);
906             rinv21           = gmx_invsqrt(rsq21);
907             rinv22           = gmx_invsqrt(rsq22);
908
909             rinvsq00         = rinv00*rinv00;
910             rinvsq01         = rinv01*rinv01;
911             rinvsq02         = rinv02*rinv02;
912             rinvsq10         = rinv10*rinv10;
913             rinvsq11         = rinv11*rinv11;
914             rinvsq12         = rinv12*rinv12;
915             rinvsq20         = rinv20*rinv20;
916             rinvsq21         = rinv21*rinv21;
917             rinvsq22         = rinv22*rinv22;
918
919             /**************************
920              * CALCULATE INTERACTIONS *
921              **************************/
922
923             if (rsq00<rcutoff2)
924             {
925
926             r00              = rsq00*rinv00;
927
928             /* EWALD ELECTROSTATICS */
929
930             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
931             ewrt             = r00*ewtabscale;
932             ewitab           = ewrt;
933             eweps            = ewrt-ewitab;
934             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
935             felec            = qq00*rinv00*(rinvsq00-felec);
936
937             /* BUCKINGHAM DISPERSION/REPULSION */
938             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
939             vvdw6            = c6_00*rinvsix;
940             br               = cexp2_00*r00;
941             vvdwexp          = cexp1_00*exp(-br);
942             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
943
944             fscal            = felec+fvdw;
945
946             /* Calculate temporary vectorial force */
947             tx               = fscal*dx00;
948             ty               = fscal*dy00;
949             tz               = fscal*dz00;
950
951             /* Update vectorial force */
952             fix0            += tx;
953             fiy0            += ty;
954             fiz0            += tz;
955             f[j_coord_offset+DIM*0+XX] -= tx;
956             f[j_coord_offset+DIM*0+YY] -= ty;
957             f[j_coord_offset+DIM*0+ZZ] -= tz;
958
959             }
960
961             /**************************
962              * CALCULATE INTERACTIONS *
963              **************************/
964
965             if (rsq01<rcutoff2)
966             {
967
968             r01              = rsq01*rinv01;
969
970             /* EWALD ELECTROSTATICS */
971
972             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
973             ewrt             = r01*ewtabscale;
974             ewitab           = ewrt;
975             eweps            = ewrt-ewitab;
976             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
977             felec            = qq01*rinv01*(rinvsq01-felec);
978
979             fscal            = felec;
980
981             /* Calculate temporary vectorial force */
982             tx               = fscal*dx01;
983             ty               = fscal*dy01;
984             tz               = fscal*dz01;
985
986             /* Update vectorial force */
987             fix0            += tx;
988             fiy0            += ty;
989             fiz0            += tz;
990             f[j_coord_offset+DIM*1+XX] -= tx;
991             f[j_coord_offset+DIM*1+YY] -= ty;
992             f[j_coord_offset+DIM*1+ZZ] -= tz;
993
994             }
995
996             /**************************
997              * CALCULATE INTERACTIONS *
998              **************************/
999
1000             if (rsq02<rcutoff2)
1001             {
1002
1003             r02              = rsq02*rinv02;
1004
1005             /* EWALD ELECTROSTATICS */
1006
1007             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1008             ewrt             = r02*ewtabscale;
1009             ewitab           = ewrt;
1010             eweps            = ewrt-ewitab;
1011             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1012             felec            = qq02*rinv02*(rinvsq02-felec);
1013
1014             fscal            = felec;
1015
1016             /* Calculate temporary vectorial force */
1017             tx               = fscal*dx02;
1018             ty               = fscal*dy02;
1019             tz               = fscal*dz02;
1020
1021             /* Update vectorial force */
1022             fix0            += tx;
1023             fiy0            += ty;
1024             fiz0            += tz;
1025             f[j_coord_offset+DIM*2+XX] -= tx;
1026             f[j_coord_offset+DIM*2+YY] -= ty;
1027             f[j_coord_offset+DIM*2+ZZ] -= tz;
1028
1029             }
1030
1031             /**************************
1032              * CALCULATE INTERACTIONS *
1033              **************************/
1034
1035             if (rsq10<rcutoff2)
1036             {
1037
1038             r10              = rsq10*rinv10;
1039
1040             /* EWALD ELECTROSTATICS */
1041
1042             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1043             ewrt             = r10*ewtabscale;
1044             ewitab           = ewrt;
1045             eweps            = ewrt-ewitab;
1046             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1047             felec            = qq10*rinv10*(rinvsq10-felec);
1048
1049             fscal            = felec;
1050
1051             /* Calculate temporary vectorial force */
1052             tx               = fscal*dx10;
1053             ty               = fscal*dy10;
1054             tz               = fscal*dz10;
1055
1056             /* Update vectorial force */
1057             fix1            += tx;
1058             fiy1            += ty;
1059             fiz1            += tz;
1060             f[j_coord_offset+DIM*0+XX] -= tx;
1061             f[j_coord_offset+DIM*0+YY] -= ty;
1062             f[j_coord_offset+DIM*0+ZZ] -= tz;
1063
1064             }
1065
1066             /**************************
1067              * CALCULATE INTERACTIONS *
1068              **************************/
1069
1070             if (rsq11<rcutoff2)
1071             {
1072
1073             r11              = rsq11*rinv11;
1074
1075             /* EWALD ELECTROSTATICS */
1076
1077             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1078             ewrt             = r11*ewtabscale;
1079             ewitab           = ewrt;
1080             eweps            = ewrt-ewitab;
1081             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1082             felec            = qq11*rinv11*(rinvsq11-felec);
1083
1084             fscal            = felec;
1085
1086             /* Calculate temporary vectorial force */
1087             tx               = fscal*dx11;
1088             ty               = fscal*dy11;
1089             tz               = fscal*dz11;
1090
1091             /* Update vectorial force */
1092             fix1            += tx;
1093             fiy1            += ty;
1094             fiz1            += tz;
1095             f[j_coord_offset+DIM*1+XX] -= tx;
1096             f[j_coord_offset+DIM*1+YY] -= ty;
1097             f[j_coord_offset+DIM*1+ZZ] -= tz;
1098
1099             }
1100
1101             /**************************
1102              * CALCULATE INTERACTIONS *
1103              **************************/
1104
1105             if (rsq12<rcutoff2)
1106             {
1107
1108             r12              = rsq12*rinv12;
1109
1110             /* EWALD ELECTROSTATICS */
1111
1112             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1113             ewrt             = r12*ewtabscale;
1114             ewitab           = ewrt;
1115             eweps            = ewrt-ewitab;
1116             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1117             felec            = qq12*rinv12*(rinvsq12-felec);
1118
1119             fscal            = felec;
1120
1121             /* Calculate temporary vectorial force */
1122             tx               = fscal*dx12;
1123             ty               = fscal*dy12;
1124             tz               = fscal*dz12;
1125
1126             /* Update vectorial force */
1127             fix1            += tx;
1128             fiy1            += ty;
1129             fiz1            += tz;
1130             f[j_coord_offset+DIM*2+XX] -= tx;
1131             f[j_coord_offset+DIM*2+YY] -= ty;
1132             f[j_coord_offset+DIM*2+ZZ] -= tz;
1133
1134             }
1135
1136             /**************************
1137              * CALCULATE INTERACTIONS *
1138              **************************/
1139
1140             if (rsq20<rcutoff2)
1141             {
1142
1143             r20              = rsq20*rinv20;
1144
1145             /* EWALD ELECTROSTATICS */
1146
1147             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1148             ewrt             = r20*ewtabscale;
1149             ewitab           = ewrt;
1150             eweps            = ewrt-ewitab;
1151             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1152             felec            = qq20*rinv20*(rinvsq20-felec);
1153
1154             fscal            = felec;
1155
1156             /* Calculate temporary vectorial force */
1157             tx               = fscal*dx20;
1158             ty               = fscal*dy20;
1159             tz               = fscal*dz20;
1160
1161             /* Update vectorial force */
1162             fix2            += tx;
1163             fiy2            += ty;
1164             fiz2            += tz;
1165             f[j_coord_offset+DIM*0+XX] -= tx;
1166             f[j_coord_offset+DIM*0+YY] -= ty;
1167             f[j_coord_offset+DIM*0+ZZ] -= tz;
1168
1169             }
1170
1171             /**************************
1172              * CALCULATE INTERACTIONS *
1173              **************************/
1174
1175             if (rsq21<rcutoff2)
1176             {
1177
1178             r21              = rsq21*rinv21;
1179
1180             /* EWALD ELECTROSTATICS */
1181
1182             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1183             ewrt             = r21*ewtabscale;
1184             ewitab           = ewrt;
1185             eweps            = ewrt-ewitab;
1186             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1187             felec            = qq21*rinv21*(rinvsq21-felec);
1188
1189             fscal            = felec;
1190
1191             /* Calculate temporary vectorial force */
1192             tx               = fscal*dx21;
1193             ty               = fscal*dy21;
1194             tz               = fscal*dz21;
1195
1196             /* Update vectorial force */
1197             fix2            += tx;
1198             fiy2            += ty;
1199             fiz2            += tz;
1200             f[j_coord_offset+DIM*1+XX] -= tx;
1201             f[j_coord_offset+DIM*1+YY] -= ty;
1202             f[j_coord_offset+DIM*1+ZZ] -= tz;
1203
1204             }
1205
1206             /**************************
1207              * CALCULATE INTERACTIONS *
1208              **************************/
1209
1210             if (rsq22<rcutoff2)
1211             {
1212
1213             r22              = rsq22*rinv22;
1214
1215             /* EWALD ELECTROSTATICS */
1216
1217             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1218             ewrt             = r22*ewtabscale;
1219             ewitab           = ewrt;
1220             eweps            = ewrt-ewitab;
1221             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1222             felec            = qq22*rinv22*(rinvsq22-felec);
1223
1224             fscal            = felec;
1225
1226             /* Calculate temporary vectorial force */
1227             tx               = fscal*dx22;
1228             ty               = fscal*dy22;
1229             tz               = fscal*dz22;
1230
1231             /* Update vectorial force */
1232             fix2            += tx;
1233             fiy2            += ty;
1234             fiz2            += tz;
1235             f[j_coord_offset+DIM*2+XX] -= tx;
1236             f[j_coord_offset+DIM*2+YY] -= ty;
1237             f[j_coord_offset+DIM*2+ZZ] -= tz;
1238
1239             }
1240
1241             /* Inner loop uses 332 flops */
1242         }
1243         /* End of innermost loop */
1244
1245         tx = ty = tz = 0;
1246         f[i_coord_offset+DIM*0+XX] += fix0;
1247         f[i_coord_offset+DIM*0+YY] += fiy0;
1248         f[i_coord_offset+DIM*0+ZZ] += fiz0;
1249         tx                         += fix0;
1250         ty                         += fiy0;
1251         tz                         += fiz0;
1252         f[i_coord_offset+DIM*1+XX] += fix1;
1253         f[i_coord_offset+DIM*1+YY] += fiy1;
1254         f[i_coord_offset+DIM*1+ZZ] += fiz1;
1255         tx                         += fix1;
1256         ty                         += fiy1;
1257         tz                         += fiz1;
1258         f[i_coord_offset+DIM*2+XX] += fix2;
1259         f[i_coord_offset+DIM*2+YY] += fiy2;
1260         f[i_coord_offset+DIM*2+ZZ] += fiz2;
1261         tx                         += fix2;
1262         ty                         += fiy2;
1263         tz                         += fiz2;
1264         fshift[i_shift_offset+XX]  += tx;
1265         fshift[i_shift_offset+YY]  += ty;
1266         fshift[i_shift_offset+ZZ]  += tz;
1267
1268         /* Increment number of inner iterations */
1269         inneriter                  += j_index_end - j_index_start;
1270
1271         /* Outer loop uses 30 flops */
1272     }
1273
1274     /* Increment number of outer iterations */
1275     outeriter        += nri;
1276
1277     /* Update outer/inner flops */
1278
1279     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*332);
1280 }