Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecEwSh_VdwBhamSh_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwBhamSh_GeomP1P1_VF_c
51  * Electrostatics interaction: Ewald
52  * VdW interaction:            Buckingham
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecEwSh_VdwBhamSh_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     int              ewitab;
84     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
85     real             *ewtab;
86
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = fr->epsfac;
99     charge           = mdatoms->chargeA;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     sh_ewald         = fr->ic->sh_ewald;
105     ewtab            = fr->ic->tabq_coul_FDV0;
106     ewtabscale       = fr->ic->tabq_scale;
107     ewtabhalfspace   = 0.5/ewtabscale;
108
109     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
110     rcutoff          = fr->rcoulomb;
111     rcutoff2         = rcutoff*rcutoff;
112
113     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
114     rvdw             = fr->rvdw;
115
116     outeriter        = 0;
117     inneriter        = 0;
118
119     /* Start outer loop over neighborlists */
120     for(iidx=0; iidx<nri; iidx++)
121     {
122         /* Load shift vector for this list */
123         i_shift_offset   = DIM*shiftidx[iidx];
124         shX              = shiftvec[i_shift_offset+XX];
125         shY              = shiftvec[i_shift_offset+YY];
126         shZ              = shiftvec[i_shift_offset+ZZ];
127
128         /* Load limits for loop over neighbors */
129         j_index_start    = jindex[iidx];
130         j_index_end      = jindex[iidx+1];
131
132         /* Get outer coordinate index */
133         inr              = iinr[iidx];
134         i_coord_offset   = DIM*inr;
135
136         /* Load i particle coords and add shift vector */
137         ix0              = shX + x[i_coord_offset+DIM*0+XX];
138         iy0              = shY + x[i_coord_offset+DIM*0+YY];
139         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
140
141         fix0             = 0.0;
142         fiy0             = 0.0;
143         fiz0             = 0.0;
144
145         /* Load parameters for i particles */
146         iq0              = facel*charge[inr+0];
147         vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
148
149         /* Reset potential sums */
150         velecsum         = 0.0;
151         vvdwsum          = 0.0;
152
153         /* Start inner kernel loop */
154         for(jidx=j_index_start; jidx<j_index_end; jidx++)
155         {
156             /* Get j neighbor index, and coordinate index */
157             jnr              = jjnr[jidx];
158             j_coord_offset   = DIM*jnr;
159
160             /* load j atom coordinates */
161             jx0              = x[j_coord_offset+DIM*0+XX];
162             jy0              = x[j_coord_offset+DIM*0+YY];
163             jz0              = x[j_coord_offset+DIM*0+ZZ];
164
165             /* Calculate displacement vector */
166             dx00             = ix0 - jx0;
167             dy00             = iy0 - jy0;
168             dz00             = iz0 - jz0;
169
170             /* Calculate squared distance and things based on it */
171             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
172
173             rinv00           = gmx_invsqrt(rsq00);
174
175             rinvsq00         = rinv00*rinv00;
176
177             /* Load parameters for j particles */
178             jq0              = charge[jnr+0];
179             vdwjidx0         = 3*vdwtype[jnr+0];
180
181             /**************************
182              * CALCULATE INTERACTIONS *
183              **************************/
184
185             if (rsq00<rcutoff2)
186             {
187
188             r00              = rsq00*rinv00;
189
190             qq00             = iq0*jq0;
191             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
192             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
193             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
194
195             /* EWALD ELECTROSTATICS */
196
197             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
198             ewrt             = r00*ewtabscale;
199             ewitab           = ewrt;
200             eweps            = ewrt-ewitab;
201             ewitab           = 4*ewitab;
202             felec            = ewtab[ewitab]+eweps*ewtab[ewitab+1];
203             velec            = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
204             felec            = qq00*rinv00*(rinvsq00-felec);
205
206             /* BUCKINGHAM DISPERSION/REPULSION */
207             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
208             vvdw6            = c6_00*rinvsix;
209             br               = cexp2_00*r00;
210             vvdwexp          = cexp1_00*exp(-br);
211             vvdw             = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
212             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
213
214             /* Update potential sums from outer loop */
215             velecsum        += velec;
216             vvdwsum         += vvdw;
217
218             fscal            = felec+fvdw;
219
220             /* Calculate temporary vectorial force */
221             tx               = fscal*dx00;
222             ty               = fscal*dy00;
223             tz               = fscal*dz00;
224
225             /* Update vectorial force */
226             fix0            += tx;
227             fiy0            += ty;
228             fiz0            += tz;
229             f[j_coord_offset+DIM*0+XX] -= tx;
230             f[j_coord_offset+DIM*0+YY] -= ty;
231             f[j_coord_offset+DIM*0+ZZ] -= tz;
232
233             }
234
235             /* Inner loop uses 111 flops */
236         }
237         /* End of innermost loop */
238
239         tx = ty = tz = 0;
240         f[i_coord_offset+DIM*0+XX] += fix0;
241         f[i_coord_offset+DIM*0+YY] += fiy0;
242         f[i_coord_offset+DIM*0+ZZ] += fiz0;
243         tx                         += fix0;
244         ty                         += fiy0;
245         tz                         += fiz0;
246         fshift[i_shift_offset+XX]  += tx;
247         fshift[i_shift_offset+YY]  += ty;
248         fshift[i_shift_offset+ZZ]  += tz;
249
250         ggid                        = gid[iidx];
251         /* Update potential energies */
252         kernel_data->energygrp_elec[ggid] += velecsum;
253         kernel_data->energygrp_vdw[ggid] += vvdwsum;
254
255         /* Increment number of inner iterations */
256         inneriter                  += j_index_end - j_index_start;
257
258         /* Outer loop uses 15 flops */
259     }
260
261     /* Increment number of outer iterations */
262     outeriter        += nri;
263
264     /* Update outer/inner flops */
265
266     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*111);
267 }
268 /*
269  * Gromacs nonbonded kernel:   nb_kernel_ElecEwSh_VdwBhamSh_GeomP1P1_F_c
270  * Electrostatics interaction: Ewald
271  * VdW interaction:            Buckingham
272  * Geometry:                   Particle-Particle
273  * Calculate force/pot:        Force
274  */
275 void
276 nb_kernel_ElecEwSh_VdwBhamSh_GeomP1P1_F_c
277                     (t_nblist                    * gmx_restrict       nlist,
278                      rvec                        * gmx_restrict          xx,
279                      rvec                        * gmx_restrict          ff,
280                      t_forcerec                  * gmx_restrict          fr,
281                      t_mdatoms                   * gmx_restrict     mdatoms,
282                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
283                      t_nrnb                      * gmx_restrict        nrnb)
284 {
285     int              i_shift_offset,i_coord_offset,j_coord_offset;
286     int              j_index_start,j_index_end;
287     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
288     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
289     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
290     real             *shiftvec,*fshift,*x,*f;
291     int              vdwioffset0;
292     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
293     int              vdwjidx0;
294     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
295     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
296     real             velec,felec,velecsum,facel,crf,krf,krf2;
297     real             *charge;
298     int              nvdwtype;
299     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
300     int              *vdwtype;
301     real             *vdwparam;
302     int              ewitab;
303     real             ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
304     real             *ewtab;
305
306     x                = xx[0];
307     f                = ff[0];
308
309     nri              = nlist->nri;
310     iinr             = nlist->iinr;
311     jindex           = nlist->jindex;
312     jjnr             = nlist->jjnr;
313     shiftidx         = nlist->shift;
314     gid              = nlist->gid;
315     shiftvec         = fr->shift_vec[0];
316     fshift           = fr->fshift[0];
317     facel            = fr->epsfac;
318     charge           = mdatoms->chargeA;
319     nvdwtype         = fr->ntype;
320     vdwparam         = fr->nbfp;
321     vdwtype          = mdatoms->typeA;
322
323     sh_ewald         = fr->ic->sh_ewald;
324     ewtab            = fr->ic->tabq_coul_F;
325     ewtabscale       = fr->ic->tabq_scale;
326     ewtabhalfspace   = 0.5/ewtabscale;
327
328     /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
329     rcutoff          = fr->rcoulomb;
330     rcutoff2         = rcutoff*rcutoff;
331
332     sh_vdw_invrcut6  = fr->ic->sh_invrc6;
333     rvdw             = fr->rvdw;
334
335     outeriter        = 0;
336     inneriter        = 0;
337
338     /* Start outer loop over neighborlists */
339     for(iidx=0; iidx<nri; iidx++)
340     {
341         /* Load shift vector for this list */
342         i_shift_offset   = DIM*shiftidx[iidx];
343         shX              = shiftvec[i_shift_offset+XX];
344         shY              = shiftvec[i_shift_offset+YY];
345         shZ              = shiftvec[i_shift_offset+ZZ];
346
347         /* Load limits for loop over neighbors */
348         j_index_start    = jindex[iidx];
349         j_index_end      = jindex[iidx+1];
350
351         /* Get outer coordinate index */
352         inr              = iinr[iidx];
353         i_coord_offset   = DIM*inr;
354
355         /* Load i particle coords and add shift vector */
356         ix0              = shX + x[i_coord_offset+DIM*0+XX];
357         iy0              = shY + x[i_coord_offset+DIM*0+YY];
358         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
359
360         fix0             = 0.0;
361         fiy0             = 0.0;
362         fiz0             = 0.0;
363
364         /* Load parameters for i particles */
365         iq0              = facel*charge[inr+0];
366         vdwioffset0      = 3*nvdwtype*vdwtype[inr+0];
367
368         /* Start inner kernel loop */
369         for(jidx=j_index_start; jidx<j_index_end; jidx++)
370         {
371             /* Get j neighbor index, and coordinate index */
372             jnr              = jjnr[jidx];
373             j_coord_offset   = DIM*jnr;
374
375             /* load j atom coordinates */
376             jx0              = x[j_coord_offset+DIM*0+XX];
377             jy0              = x[j_coord_offset+DIM*0+YY];
378             jz0              = x[j_coord_offset+DIM*0+ZZ];
379
380             /* Calculate displacement vector */
381             dx00             = ix0 - jx0;
382             dy00             = iy0 - jy0;
383             dz00             = iz0 - jz0;
384
385             /* Calculate squared distance and things based on it */
386             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
387
388             rinv00           = gmx_invsqrt(rsq00);
389
390             rinvsq00         = rinv00*rinv00;
391
392             /* Load parameters for j particles */
393             jq0              = charge[jnr+0];
394             vdwjidx0         = 3*vdwtype[jnr+0];
395
396             /**************************
397              * CALCULATE INTERACTIONS *
398              **************************/
399
400             if (rsq00<rcutoff2)
401             {
402
403             r00              = rsq00*rinv00;
404
405             qq00             = iq0*jq0;
406             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
407             cexp1_00         = vdwparam[vdwioffset0+vdwjidx0+1];
408             cexp2_00         = vdwparam[vdwioffset0+vdwjidx0+2];
409
410             /* EWALD ELECTROSTATICS */
411
412             /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
413             ewrt             = r00*ewtabscale;
414             ewitab           = ewrt;
415             eweps            = ewrt-ewitab;
416             felec            = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
417             felec            = qq00*rinv00*(rinvsq00-felec);
418
419             /* BUCKINGHAM DISPERSION/REPULSION */
420             rinvsix          = rinvsq00*rinvsq00*rinvsq00;
421             vvdw6            = c6_00*rinvsix;
422             br               = cexp2_00*r00;
423             vvdwexp          = cexp1_00*exp(-br);
424             fvdw             = (br*vvdwexp-vvdw6)*rinvsq00;
425
426             fscal            = felec+fvdw;
427
428             /* Calculate temporary vectorial force */
429             tx               = fscal*dx00;
430             ty               = fscal*dy00;
431             tz               = fscal*dz00;
432
433             /* Update vectorial force */
434             fix0            += tx;
435             fiy0            += ty;
436             fiz0            += tz;
437             f[j_coord_offset+DIM*0+XX] -= tx;
438             f[j_coord_offset+DIM*0+YY] -= ty;
439             f[j_coord_offset+DIM*0+ZZ] -= tz;
440
441             }
442
443             /* Inner loop uses 69 flops */
444         }
445         /* End of innermost loop */
446
447         tx = ty = tz = 0;
448         f[i_coord_offset+DIM*0+XX] += fix0;
449         f[i_coord_offset+DIM*0+YY] += fiy0;
450         f[i_coord_offset+DIM*0+ZZ] += fiz0;
451         tx                         += fix0;
452         ty                         += fiy0;
453         tz                         += fiz0;
454         fshift[i_shift_offset+XX]  += tx;
455         fshift[i_shift_offset+YY]  += ty;
456         fshift[i_shift_offset+ZZ]  += tz;
457
458         /* Increment number of inner iterations */
459         inneriter                  += j_index_end - j_index_start;
460
461         /* Outer loop uses 13 flops */
462     }
463
464     /* Increment number of outer iterations */
465     outeriter        += nri;
466
467     /* Update outer/inner flops */
468
469     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*69);
470 }