Introduce gmxpre.h for truly global definitions
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #include "gmxpre.h"
39
40 #include "config.h"
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "gromacs/legacyheaders/types/simple.h"
46 #include "gromacs/math/vec.h"
47 #include "gromacs/legacyheaders/nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_c
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Water4-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwioffset1;
75     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76     int              vdwioffset2;
77     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78     int              vdwioffset3;
79     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80     int              vdwjidx0;
81     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86     real             velec,felec,velecsum,facel,crf,krf,krf2;
87     real             *charge;
88     int              nvdwtype;
89     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90     int              *vdwtype;
91     real             *vdwparam;
92     int              vfitab;
93     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
94     real             *vftab;
95
96     x                = xx[0];
97     f                = ff[0];
98
99     nri              = nlist->nri;
100     iinr             = nlist->iinr;
101     jindex           = nlist->jindex;
102     jjnr             = nlist->jjnr;
103     shiftidx         = nlist->shift;
104     gid              = nlist->gid;
105     shiftvec         = fr->shift_vec[0];
106     fshift           = fr->fshift[0];
107     facel            = fr->epsfac;
108     charge           = mdatoms->chargeA;
109     nvdwtype         = fr->ntype;
110     vdwparam         = fr->nbfp;
111     vdwtype          = mdatoms->typeA;
112
113     vftab            = kernel_data->table_vdw->data;
114     vftabscale       = kernel_data->table_vdw->scale;
115
116     /* Setup water-specific parameters */
117     inr              = nlist->iinr[0];
118     iq1              = facel*charge[inr+1];
119     iq2              = facel*charge[inr+2];
120     iq3              = facel*charge[inr+3];
121     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
122
123     outeriter        = 0;
124     inneriter        = 0;
125
126     /* Start outer loop over neighborlists */
127     for(iidx=0; iidx<nri; iidx++)
128     {
129         /* Load shift vector for this list */
130         i_shift_offset   = DIM*shiftidx[iidx];
131         shX              = shiftvec[i_shift_offset+XX];
132         shY              = shiftvec[i_shift_offset+YY];
133         shZ              = shiftvec[i_shift_offset+ZZ];
134
135         /* Load limits for loop over neighbors */
136         j_index_start    = jindex[iidx];
137         j_index_end      = jindex[iidx+1];
138
139         /* Get outer coordinate index */
140         inr              = iinr[iidx];
141         i_coord_offset   = DIM*inr;
142
143         /* Load i particle coords and add shift vector */
144         ix0              = shX + x[i_coord_offset+DIM*0+XX];
145         iy0              = shY + x[i_coord_offset+DIM*0+YY];
146         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
147         ix1              = shX + x[i_coord_offset+DIM*1+XX];
148         iy1              = shY + x[i_coord_offset+DIM*1+YY];
149         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
150         ix2              = shX + x[i_coord_offset+DIM*2+XX];
151         iy2              = shY + x[i_coord_offset+DIM*2+YY];
152         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
153         ix3              = shX + x[i_coord_offset+DIM*3+XX];
154         iy3              = shY + x[i_coord_offset+DIM*3+YY];
155         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
156
157         fix0             = 0.0;
158         fiy0             = 0.0;
159         fiz0             = 0.0;
160         fix1             = 0.0;
161         fiy1             = 0.0;
162         fiz1             = 0.0;
163         fix2             = 0.0;
164         fiy2             = 0.0;
165         fiz2             = 0.0;
166         fix3             = 0.0;
167         fiy3             = 0.0;
168         fiz3             = 0.0;
169
170         /* Reset potential sums */
171         velecsum         = 0.0;
172         vvdwsum          = 0.0;
173
174         /* Start inner kernel loop */
175         for(jidx=j_index_start; jidx<j_index_end; jidx++)
176         {
177             /* Get j neighbor index, and coordinate index */
178             jnr              = jjnr[jidx];
179             j_coord_offset   = DIM*jnr;
180
181             /* load j atom coordinates */
182             jx0              = x[j_coord_offset+DIM*0+XX];
183             jy0              = x[j_coord_offset+DIM*0+YY];
184             jz0              = x[j_coord_offset+DIM*0+ZZ];
185
186             /* Calculate displacement vector */
187             dx00             = ix0 - jx0;
188             dy00             = iy0 - jy0;
189             dz00             = iz0 - jz0;
190             dx10             = ix1 - jx0;
191             dy10             = iy1 - jy0;
192             dz10             = iz1 - jz0;
193             dx20             = ix2 - jx0;
194             dy20             = iy2 - jy0;
195             dz20             = iz2 - jz0;
196             dx30             = ix3 - jx0;
197             dy30             = iy3 - jy0;
198             dz30             = iz3 - jz0;
199
200             /* Calculate squared distance and things based on it */
201             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
202             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
203             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
204             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
205
206             rinv00           = gmx_invsqrt(rsq00);
207             rinv10           = gmx_invsqrt(rsq10);
208             rinv20           = gmx_invsqrt(rsq20);
209             rinv30           = gmx_invsqrt(rsq30);
210
211             rinvsq10         = rinv10*rinv10;
212             rinvsq20         = rinv20*rinv20;
213             rinvsq30         = rinv30*rinv30;
214
215             /* Load parameters for j particles */
216             jq0              = charge[jnr+0];
217             vdwjidx0         = 2*vdwtype[jnr+0];
218
219             /**************************
220              * CALCULATE INTERACTIONS *
221              **************************/
222
223             r00              = rsq00*rinv00;
224
225             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
226             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
227
228             /* Calculate table index by multiplying r with table scale and truncate to integer */
229             rt               = r00*vftabscale;
230             vfitab           = rt;
231             vfeps            = rt-vfitab;
232             vfitab           = 2*4*vfitab;
233
234             /* CUBIC SPLINE TABLE DISPERSION */
235             vfitab          += 0;
236             Y                = vftab[vfitab];
237             F                = vftab[vfitab+1];
238             Geps             = vfeps*vftab[vfitab+2];
239             Heps2            = vfeps*vfeps*vftab[vfitab+3];
240             Fp               = F+Geps+Heps2;
241             VV               = Y+vfeps*Fp;
242             vvdw6            = c6_00*VV;
243             FF               = Fp+Geps+2.0*Heps2;
244             fvdw6            = c6_00*FF;
245
246             /* CUBIC SPLINE TABLE REPULSION */
247             Y                = vftab[vfitab+4];
248             F                = vftab[vfitab+5];
249             Geps             = vfeps*vftab[vfitab+6];
250             Heps2            = vfeps*vfeps*vftab[vfitab+7];
251             Fp               = F+Geps+Heps2;
252             VV               = Y+vfeps*Fp;
253             vvdw12           = c12_00*VV;
254             FF               = Fp+Geps+2.0*Heps2;
255             fvdw12           = c12_00*FF;
256             vvdw             = vvdw12+vvdw6;
257             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
258
259             /* Update potential sums from outer loop */
260             vvdwsum         += vvdw;
261
262             fscal            = fvdw;
263
264             /* Calculate temporary vectorial force */
265             tx               = fscal*dx00;
266             ty               = fscal*dy00;
267             tz               = fscal*dz00;
268
269             /* Update vectorial force */
270             fix0            += tx;
271             fiy0            += ty;
272             fiz0            += tz;
273             f[j_coord_offset+DIM*0+XX] -= tx;
274             f[j_coord_offset+DIM*0+YY] -= ty;
275             f[j_coord_offset+DIM*0+ZZ] -= tz;
276
277             /**************************
278              * CALCULATE INTERACTIONS *
279              **************************/
280
281             qq10             = iq1*jq0;
282
283             /* COULOMB ELECTROSTATICS */
284             velec            = qq10*rinv10;
285             felec            = velec*rinvsq10;
286
287             /* Update potential sums from outer loop */
288             velecsum        += velec;
289
290             fscal            = felec;
291
292             /* Calculate temporary vectorial force */
293             tx               = fscal*dx10;
294             ty               = fscal*dy10;
295             tz               = fscal*dz10;
296
297             /* Update vectorial force */
298             fix1            += tx;
299             fiy1            += ty;
300             fiz1            += tz;
301             f[j_coord_offset+DIM*0+XX] -= tx;
302             f[j_coord_offset+DIM*0+YY] -= ty;
303             f[j_coord_offset+DIM*0+ZZ] -= tz;
304
305             /**************************
306              * CALCULATE INTERACTIONS *
307              **************************/
308
309             qq20             = iq2*jq0;
310
311             /* COULOMB ELECTROSTATICS */
312             velec            = qq20*rinv20;
313             felec            = velec*rinvsq20;
314
315             /* Update potential sums from outer loop */
316             velecsum        += velec;
317
318             fscal            = felec;
319
320             /* Calculate temporary vectorial force */
321             tx               = fscal*dx20;
322             ty               = fscal*dy20;
323             tz               = fscal*dz20;
324
325             /* Update vectorial force */
326             fix2            += tx;
327             fiy2            += ty;
328             fiz2            += tz;
329             f[j_coord_offset+DIM*0+XX] -= tx;
330             f[j_coord_offset+DIM*0+YY] -= ty;
331             f[j_coord_offset+DIM*0+ZZ] -= tz;
332
333             /**************************
334              * CALCULATE INTERACTIONS *
335              **************************/
336
337             qq30             = iq3*jq0;
338
339             /* COULOMB ELECTROSTATICS */
340             velec            = qq30*rinv30;
341             felec            = velec*rinvsq30;
342
343             /* Update potential sums from outer loop */
344             velecsum        += velec;
345
346             fscal            = felec;
347
348             /* Calculate temporary vectorial force */
349             tx               = fscal*dx30;
350             ty               = fscal*dy30;
351             tz               = fscal*dz30;
352
353             /* Update vectorial force */
354             fix3            += tx;
355             fiy3            += ty;
356             fiz3            += tz;
357             f[j_coord_offset+DIM*0+XX] -= tx;
358             f[j_coord_offset+DIM*0+YY] -= ty;
359             f[j_coord_offset+DIM*0+ZZ] -= tz;
360
361             /* Inner loop uses 139 flops */
362         }
363         /* End of innermost loop */
364
365         tx = ty = tz = 0;
366         f[i_coord_offset+DIM*0+XX] += fix0;
367         f[i_coord_offset+DIM*0+YY] += fiy0;
368         f[i_coord_offset+DIM*0+ZZ] += fiz0;
369         tx                         += fix0;
370         ty                         += fiy0;
371         tz                         += fiz0;
372         f[i_coord_offset+DIM*1+XX] += fix1;
373         f[i_coord_offset+DIM*1+YY] += fiy1;
374         f[i_coord_offset+DIM*1+ZZ] += fiz1;
375         tx                         += fix1;
376         ty                         += fiy1;
377         tz                         += fiz1;
378         f[i_coord_offset+DIM*2+XX] += fix2;
379         f[i_coord_offset+DIM*2+YY] += fiy2;
380         f[i_coord_offset+DIM*2+ZZ] += fiz2;
381         tx                         += fix2;
382         ty                         += fiy2;
383         tz                         += fiz2;
384         f[i_coord_offset+DIM*3+XX] += fix3;
385         f[i_coord_offset+DIM*3+YY] += fiy3;
386         f[i_coord_offset+DIM*3+ZZ] += fiz3;
387         tx                         += fix3;
388         ty                         += fiy3;
389         tz                         += fiz3;
390         fshift[i_shift_offset+XX]  += tx;
391         fshift[i_shift_offset+YY]  += ty;
392         fshift[i_shift_offset+ZZ]  += tz;
393
394         ggid                        = gid[iidx];
395         /* Update potential energies */
396         kernel_data->energygrp_elec[ggid] += velecsum;
397         kernel_data->energygrp_vdw[ggid] += vvdwsum;
398
399         /* Increment number of inner iterations */
400         inneriter                  += j_index_end - j_index_start;
401
402         /* Outer loop uses 41 flops */
403     }
404
405     /* Increment number of outer iterations */
406     outeriter        += nri;
407
408     /* Update outer/inner flops */
409
410     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*139);
411 }
412 /*
413  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_c
414  * Electrostatics interaction: Coulomb
415  * VdW interaction:            CubicSplineTable
416  * Geometry:                   Water4-Particle
417  * Calculate force/pot:        Force
418  */
419 void
420 nb_kernel_ElecCoul_VdwCSTab_GeomW4P1_F_c
421                     (t_nblist                    * gmx_restrict       nlist,
422                      rvec                        * gmx_restrict          xx,
423                      rvec                        * gmx_restrict          ff,
424                      t_forcerec                  * gmx_restrict          fr,
425                      t_mdatoms                   * gmx_restrict     mdatoms,
426                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
427                      t_nrnb                      * gmx_restrict        nrnb)
428 {
429     int              i_shift_offset,i_coord_offset,j_coord_offset;
430     int              j_index_start,j_index_end;
431     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
432     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
433     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
434     real             *shiftvec,*fshift,*x,*f;
435     int              vdwioffset0;
436     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
437     int              vdwioffset1;
438     real             ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
439     int              vdwioffset2;
440     real             ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
441     int              vdwioffset3;
442     real             ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
443     int              vdwjidx0;
444     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
445     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
446     real             dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
447     real             dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
448     real             dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
449     real             velec,felec,velecsum,facel,crf,krf,krf2;
450     real             *charge;
451     int              nvdwtype;
452     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
453     int              *vdwtype;
454     real             *vdwparam;
455     int              vfitab;
456     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
457     real             *vftab;
458
459     x                = xx[0];
460     f                = ff[0];
461
462     nri              = nlist->nri;
463     iinr             = nlist->iinr;
464     jindex           = nlist->jindex;
465     jjnr             = nlist->jjnr;
466     shiftidx         = nlist->shift;
467     gid              = nlist->gid;
468     shiftvec         = fr->shift_vec[0];
469     fshift           = fr->fshift[0];
470     facel            = fr->epsfac;
471     charge           = mdatoms->chargeA;
472     nvdwtype         = fr->ntype;
473     vdwparam         = fr->nbfp;
474     vdwtype          = mdatoms->typeA;
475
476     vftab            = kernel_data->table_vdw->data;
477     vftabscale       = kernel_data->table_vdw->scale;
478
479     /* Setup water-specific parameters */
480     inr              = nlist->iinr[0];
481     iq1              = facel*charge[inr+1];
482     iq2              = facel*charge[inr+2];
483     iq3              = facel*charge[inr+3];
484     vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
485
486     outeriter        = 0;
487     inneriter        = 0;
488
489     /* Start outer loop over neighborlists */
490     for(iidx=0; iidx<nri; iidx++)
491     {
492         /* Load shift vector for this list */
493         i_shift_offset   = DIM*shiftidx[iidx];
494         shX              = shiftvec[i_shift_offset+XX];
495         shY              = shiftvec[i_shift_offset+YY];
496         shZ              = shiftvec[i_shift_offset+ZZ];
497
498         /* Load limits for loop over neighbors */
499         j_index_start    = jindex[iidx];
500         j_index_end      = jindex[iidx+1];
501
502         /* Get outer coordinate index */
503         inr              = iinr[iidx];
504         i_coord_offset   = DIM*inr;
505
506         /* Load i particle coords and add shift vector */
507         ix0              = shX + x[i_coord_offset+DIM*0+XX];
508         iy0              = shY + x[i_coord_offset+DIM*0+YY];
509         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
510         ix1              = shX + x[i_coord_offset+DIM*1+XX];
511         iy1              = shY + x[i_coord_offset+DIM*1+YY];
512         iz1              = shZ + x[i_coord_offset+DIM*1+ZZ];
513         ix2              = shX + x[i_coord_offset+DIM*2+XX];
514         iy2              = shY + x[i_coord_offset+DIM*2+YY];
515         iz2              = shZ + x[i_coord_offset+DIM*2+ZZ];
516         ix3              = shX + x[i_coord_offset+DIM*3+XX];
517         iy3              = shY + x[i_coord_offset+DIM*3+YY];
518         iz3              = shZ + x[i_coord_offset+DIM*3+ZZ];
519
520         fix0             = 0.0;
521         fiy0             = 0.0;
522         fiz0             = 0.0;
523         fix1             = 0.0;
524         fiy1             = 0.0;
525         fiz1             = 0.0;
526         fix2             = 0.0;
527         fiy2             = 0.0;
528         fiz2             = 0.0;
529         fix3             = 0.0;
530         fiy3             = 0.0;
531         fiz3             = 0.0;
532
533         /* Start inner kernel loop */
534         for(jidx=j_index_start; jidx<j_index_end; jidx++)
535         {
536             /* Get j neighbor index, and coordinate index */
537             jnr              = jjnr[jidx];
538             j_coord_offset   = DIM*jnr;
539
540             /* load j atom coordinates */
541             jx0              = x[j_coord_offset+DIM*0+XX];
542             jy0              = x[j_coord_offset+DIM*0+YY];
543             jz0              = x[j_coord_offset+DIM*0+ZZ];
544
545             /* Calculate displacement vector */
546             dx00             = ix0 - jx0;
547             dy00             = iy0 - jy0;
548             dz00             = iz0 - jz0;
549             dx10             = ix1 - jx0;
550             dy10             = iy1 - jy0;
551             dz10             = iz1 - jz0;
552             dx20             = ix2 - jx0;
553             dy20             = iy2 - jy0;
554             dz20             = iz2 - jz0;
555             dx30             = ix3 - jx0;
556             dy30             = iy3 - jy0;
557             dz30             = iz3 - jz0;
558
559             /* Calculate squared distance and things based on it */
560             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
561             rsq10            = dx10*dx10+dy10*dy10+dz10*dz10;
562             rsq20            = dx20*dx20+dy20*dy20+dz20*dz20;
563             rsq30            = dx30*dx30+dy30*dy30+dz30*dz30;
564
565             rinv00           = gmx_invsqrt(rsq00);
566             rinv10           = gmx_invsqrt(rsq10);
567             rinv20           = gmx_invsqrt(rsq20);
568             rinv30           = gmx_invsqrt(rsq30);
569
570             rinvsq10         = rinv10*rinv10;
571             rinvsq20         = rinv20*rinv20;
572             rinvsq30         = rinv30*rinv30;
573
574             /* Load parameters for j particles */
575             jq0              = charge[jnr+0];
576             vdwjidx0         = 2*vdwtype[jnr+0];
577
578             /**************************
579              * CALCULATE INTERACTIONS *
580              **************************/
581
582             r00              = rsq00*rinv00;
583
584             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
585             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
586
587             /* Calculate table index by multiplying r with table scale and truncate to integer */
588             rt               = r00*vftabscale;
589             vfitab           = rt;
590             vfeps            = rt-vfitab;
591             vfitab           = 2*4*vfitab;
592
593             /* CUBIC SPLINE TABLE DISPERSION */
594             vfitab          += 0;
595             F                = vftab[vfitab+1];
596             Geps             = vfeps*vftab[vfitab+2];
597             Heps2            = vfeps*vfeps*vftab[vfitab+3];
598             Fp               = F+Geps+Heps2;
599             FF               = Fp+Geps+2.0*Heps2;
600             fvdw6            = c6_00*FF;
601
602             /* CUBIC SPLINE TABLE REPULSION */
603             F                = vftab[vfitab+5];
604             Geps             = vfeps*vftab[vfitab+6];
605             Heps2            = vfeps*vfeps*vftab[vfitab+7];
606             Fp               = F+Geps+Heps2;
607             FF               = Fp+Geps+2.0*Heps2;
608             fvdw12           = c12_00*FF;
609             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
610
611             fscal            = fvdw;
612
613             /* Calculate temporary vectorial force */
614             tx               = fscal*dx00;
615             ty               = fscal*dy00;
616             tz               = fscal*dz00;
617
618             /* Update vectorial force */
619             fix0            += tx;
620             fiy0            += ty;
621             fiz0            += tz;
622             f[j_coord_offset+DIM*0+XX] -= tx;
623             f[j_coord_offset+DIM*0+YY] -= ty;
624             f[j_coord_offset+DIM*0+ZZ] -= tz;
625
626             /**************************
627              * CALCULATE INTERACTIONS *
628              **************************/
629
630             qq10             = iq1*jq0;
631
632             /* COULOMB ELECTROSTATICS */
633             velec            = qq10*rinv10;
634             felec            = velec*rinvsq10;
635
636             fscal            = felec;
637
638             /* Calculate temporary vectorial force */
639             tx               = fscal*dx10;
640             ty               = fscal*dy10;
641             tz               = fscal*dz10;
642
643             /* Update vectorial force */
644             fix1            += tx;
645             fiy1            += ty;
646             fiz1            += tz;
647             f[j_coord_offset+DIM*0+XX] -= tx;
648             f[j_coord_offset+DIM*0+YY] -= ty;
649             f[j_coord_offset+DIM*0+ZZ] -= tz;
650
651             /**************************
652              * CALCULATE INTERACTIONS *
653              **************************/
654
655             qq20             = iq2*jq0;
656
657             /* COULOMB ELECTROSTATICS */
658             velec            = qq20*rinv20;
659             felec            = velec*rinvsq20;
660
661             fscal            = felec;
662
663             /* Calculate temporary vectorial force */
664             tx               = fscal*dx20;
665             ty               = fscal*dy20;
666             tz               = fscal*dz20;
667
668             /* Update vectorial force */
669             fix2            += tx;
670             fiy2            += ty;
671             fiz2            += tz;
672             f[j_coord_offset+DIM*0+XX] -= tx;
673             f[j_coord_offset+DIM*0+YY] -= ty;
674             f[j_coord_offset+DIM*0+ZZ] -= tz;
675
676             /**************************
677              * CALCULATE INTERACTIONS *
678              **************************/
679
680             qq30             = iq3*jq0;
681
682             /* COULOMB ELECTROSTATICS */
683             velec            = qq30*rinv30;
684             felec            = velec*rinvsq30;
685
686             fscal            = felec;
687
688             /* Calculate temporary vectorial force */
689             tx               = fscal*dx30;
690             ty               = fscal*dy30;
691             tz               = fscal*dz30;
692
693             /* Update vectorial force */
694             fix3            += tx;
695             fiy3            += ty;
696             fiz3            += tz;
697             f[j_coord_offset+DIM*0+XX] -= tx;
698             f[j_coord_offset+DIM*0+YY] -= ty;
699             f[j_coord_offset+DIM*0+ZZ] -= tz;
700
701             /* Inner loop uses 128 flops */
702         }
703         /* End of innermost loop */
704
705         tx = ty = tz = 0;
706         f[i_coord_offset+DIM*0+XX] += fix0;
707         f[i_coord_offset+DIM*0+YY] += fiy0;
708         f[i_coord_offset+DIM*0+ZZ] += fiz0;
709         tx                         += fix0;
710         ty                         += fiy0;
711         tz                         += fiz0;
712         f[i_coord_offset+DIM*1+XX] += fix1;
713         f[i_coord_offset+DIM*1+YY] += fiy1;
714         f[i_coord_offset+DIM*1+ZZ] += fiz1;
715         tx                         += fix1;
716         ty                         += fiy1;
717         tz                         += fiz1;
718         f[i_coord_offset+DIM*2+XX] += fix2;
719         f[i_coord_offset+DIM*2+YY] += fiy2;
720         f[i_coord_offset+DIM*2+ZZ] += fiz2;
721         tx                         += fix2;
722         ty                         += fiy2;
723         tz                         += fiz2;
724         f[i_coord_offset+DIM*3+XX] += fix3;
725         f[i_coord_offset+DIM*3+YY] += fiy3;
726         f[i_coord_offset+DIM*3+ZZ] += fiz3;
727         tx                         += fix3;
728         ty                         += fiy3;
729         tz                         += fiz3;
730         fshift[i_shift_offset+XX]  += tx;
731         fshift[i_shift_offset+YY]  += ty;
732         fshift[i_shift_offset+ZZ]  += tz;
733
734         /* Increment number of inner iterations */
735         inneriter                  += j_index_end - j_index_start;
736
737         /* Outer loop uses 39 flops */
738     }
739
740     /* Increment number of outer iterations */
741     outeriter        += nri;
742
743     /* Update outer/inner flops */
744
745     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*128);
746 }