Merge branch release-4-6 into release-5-0
[alexxy/gromacs.git] / src / gromacs / gmxlib / nonbonded / nb_kernel_c / nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_c.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*
36  * Note: this file was generated by the GROMACS c kernel generator.
37  */
38 #ifdef HAVE_CONFIG_H
39 #include <config.h>
40 #endif
41
42 #include <math.h>
43
44 #include "../nb_kernel.h"
45 #include "types/simple.h"
46 #include "vec.h"
47 #include "nrnb.h"
48
49 /*
50  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_c
51  * Electrostatics interaction: Coulomb
52  * VdW interaction:            CubicSplineTable
53  * Geometry:                   Particle-Particle
54  * Calculate force/pot:        PotentialAndForce
55  */
56 void
57 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_VF_c
58                     (t_nblist                    * gmx_restrict       nlist,
59                      rvec                        * gmx_restrict          xx,
60                      rvec                        * gmx_restrict          ff,
61                      t_forcerec                  * gmx_restrict          fr,
62                      t_mdatoms                   * gmx_restrict     mdatoms,
63                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
64                      t_nrnb                      * gmx_restrict        nrnb)
65 {
66     int              i_shift_offset,i_coord_offset,j_coord_offset;
67     int              j_index_start,j_index_end;
68     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
71     real             *shiftvec,*fshift,*x,*f;
72     int              vdwioffset0;
73     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74     int              vdwjidx0;
75     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77     real             velec,felec,velecsum,facel,crf,krf,krf2;
78     real             *charge;
79     int              nvdwtype;
80     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81     int              *vdwtype;
82     real             *vdwparam;
83     int              vfitab;
84     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
85     real             *vftab;
86
87     x                = xx[0];
88     f                = ff[0];
89
90     nri              = nlist->nri;
91     iinr             = nlist->iinr;
92     jindex           = nlist->jindex;
93     jjnr             = nlist->jjnr;
94     shiftidx         = nlist->shift;
95     gid              = nlist->gid;
96     shiftvec         = fr->shift_vec[0];
97     fshift           = fr->fshift[0];
98     facel            = fr->epsfac;
99     charge           = mdatoms->chargeA;
100     nvdwtype         = fr->ntype;
101     vdwparam         = fr->nbfp;
102     vdwtype          = mdatoms->typeA;
103
104     vftab            = kernel_data->table_vdw->data;
105     vftabscale       = kernel_data->table_vdw->scale;
106
107     outeriter        = 0;
108     inneriter        = 0;
109
110     /* Start outer loop over neighborlists */
111     for(iidx=0; iidx<nri; iidx++)
112     {
113         /* Load shift vector for this list */
114         i_shift_offset   = DIM*shiftidx[iidx];
115         shX              = shiftvec[i_shift_offset+XX];
116         shY              = shiftvec[i_shift_offset+YY];
117         shZ              = shiftvec[i_shift_offset+ZZ];
118
119         /* Load limits for loop over neighbors */
120         j_index_start    = jindex[iidx];
121         j_index_end      = jindex[iidx+1];
122
123         /* Get outer coordinate index */
124         inr              = iinr[iidx];
125         i_coord_offset   = DIM*inr;
126
127         /* Load i particle coords and add shift vector */
128         ix0              = shX + x[i_coord_offset+DIM*0+XX];
129         iy0              = shY + x[i_coord_offset+DIM*0+YY];
130         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
131
132         fix0             = 0.0;
133         fiy0             = 0.0;
134         fiz0             = 0.0;
135
136         /* Load parameters for i particles */
137         iq0              = facel*charge[inr+0];
138         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
139
140         /* Reset potential sums */
141         velecsum         = 0.0;
142         vvdwsum          = 0.0;
143
144         /* Start inner kernel loop */
145         for(jidx=j_index_start; jidx<j_index_end; jidx++)
146         {
147             /* Get j neighbor index, and coordinate index */
148             jnr              = jjnr[jidx];
149             j_coord_offset   = DIM*jnr;
150
151             /* load j atom coordinates */
152             jx0              = x[j_coord_offset+DIM*0+XX];
153             jy0              = x[j_coord_offset+DIM*0+YY];
154             jz0              = x[j_coord_offset+DIM*0+ZZ];
155
156             /* Calculate displacement vector */
157             dx00             = ix0 - jx0;
158             dy00             = iy0 - jy0;
159             dz00             = iz0 - jz0;
160
161             /* Calculate squared distance and things based on it */
162             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
163
164             rinv00           = gmx_invsqrt(rsq00);
165
166             rinvsq00         = rinv00*rinv00;
167
168             /* Load parameters for j particles */
169             jq0              = charge[jnr+0];
170             vdwjidx0         = 2*vdwtype[jnr+0];
171
172             /**************************
173              * CALCULATE INTERACTIONS *
174              **************************/
175
176             r00              = rsq00*rinv00;
177
178             qq00             = iq0*jq0;
179             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
180             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
181
182             /* Calculate table index by multiplying r with table scale and truncate to integer */
183             rt               = r00*vftabscale;
184             vfitab           = rt;
185             vfeps            = rt-vfitab;
186             vfitab           = 2*4*vfitab;
187
188             /* COULOMB ELECTROSTATICS */
189             velec            = qq00*rinv00;
190             felec            = velec*rinvsq00;
191
192             /* CUBIC SPLINE TABLE DISPERSION */
193             vfitab          += 0;
194             Y                = vftab[vfitab];
195             F                = vftab[vfitab+1];
196             Geps             = vfeps*vftab[vfitab+2];
197             Heps2            = vfeps*vfeps*vftab[vfitab+3];
198             Fp               = F+Geps+Heps2;
199             VV               = Y+vfeps*Fp;
200             vvdw6            = c6_00*VV;
201             FF               = Fp+Geps+2.0*Heps2;
202             fvdw6            = c6_00*FF;
203
204             /* CUBIC SPLINE TABLE REPULSION */
205             Y                = vftab[vfitab+4];
206             F                = vftab[vfitab+5];
207             Geps             = vfeps*vftab[vfitab+6];
208             Heps2            = vfeps*vfeps*vftab[vfitab+7];
209             Fp               = F+Geps+Heps2;
210             VV               = Y+vfeps*Fp;
211             vvdw12           = c12_00*VV;
212             FF               = Fp+Geps+2.0*Heps2;
213             fvdw12           = c12_00*FF;
214             vvdw             = vvdw12+vvdw6;
215             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
216
217             /* Update potential sums from outer loop */
218             velecsum        += velec;
219             vvdwsum         += vvdw;
220
221             fscal            = felec+fvdw;
222
223             /* Calculate temporary vectorial force */
224             tx               = fscal*dx00;
225             ty               = fscal*dy00;
226             tz               = fscal*dz00;
227
228             /* Update vectorial force */
229             fix0            += tx;
230             fiy0            += ty;
231             fiz0            += tz;
232             f[j_coord_offset+DIM*0+XX] -= tx;
233             f[j_coord_offset+DIM*0+YY] -= ty;
234             f[j_coord_offset+DIM*0+ZZ] -= tz;
235
236             /* Inner loop uses 62 flops */
237         }
238         /* End of innermost loop */
239
240         tx = ty = tz = 0;
241         f[i_coord_offset+DIM*0+XX] += fix0;
242         f[i_coord_offset+DIM*0+YY] += fiy0;
243         f[i_coord_offset+DIM*0+ZZ] += fiz0;
244         tx                         += fix0;
245         ty                         += fiy0;
246         tz                         += fiz0;
247         fshift[i_shift_offset+XX]  += tx;
248         fshift[i_shift_offset+YY]  += ty;
249         fshift[i_shift_offset+ZZ]  += tz;
250
251         ggid                        = gid[iidx];
252         /* Update potential energies */
253         kernel_data->energygrp_elec[ggid] += velecsum;
254         kernel_data->energygrp_vdw[ggid] += vvdwsum;
255
256         /* Increment number of inner iterations */
257         inneriter                  += j_index_end - j_index_start;
258
259         /* Outer loop uses 15 flops */
260     }
261
262     /* Increment number of outer iterations */
263     outeriter        += nri;
264
265     /* Update outer/inner flops */
266
267     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*62);
268 }
269 /*
270  * Gromacs nonbonded kernel:   nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_c
271  * Electrostatics interaction: Coulomb
272  * VdW interaction:            CubicSplineTable
273  * Geometry:                   Particle-Particle
274  * Calculate force/pot:        Force
275  */
276 void
277 nb_kernel_ElecCoul_VdwCSTab_GeomP1P1_F_c
278                     (t_nblist                    * gmx_restrict       nlist,
279                      rvec                        * gmx_restrict          xx,
280                      rvec                        * gmx_restrict          ff,
281                      t_forcerec                  * gmx_restrict          fr,
282                      t_mdatoms                   * gmx_restrict     mdatoms,
283                      nb_kernel_data_t gmx_unused * gmx_restrict kernel_data,
284                      t_nrnb                      * gmx_restrict        nrnb)
285 {
286     int              i_shift_offset,i_coord_offset,j_coord_offset;
287     int              j_index_start,j_index_end;
288     int              nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
289     real             shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
290     int              *iinr,*jindex,*jjnr,*shiftidx,*gid;
291     real             *shiftvec,*fshift,*x,*f;
292     int              vdwioffset0;
293     real             ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
294     int              vdwjidx0;
295     real             jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
296     real             dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
297     real             velec,felec,velecsum,facel,crf,krf,krf2;
298     real             *charge;
299     int              nvdwtype;
300     real             rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
301     int              *vdwtype;
302     real             *vdwparam;
303     int              vfitab;
304     real             rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
305     real             *vftab;
306
307     x                = xx[0];
308     f                = ff[0];
309
310     nri              = nlist->nri;
311     iinr             = nlist->iinr;
312     jindex           = nlist->jindex;
313     jjnr             = nlist->jjnr;
314     shiftidx         = nlist->shift;
315     gid              = nlist->gid;
316     shiftvec         = fr->shift_vec[0];
317     fshift           = fr->fshift[0];
318     facel            = fr->epsfac;
319     charge           = mdatoms->chargeA;
320     nvdwtype         = fr->ntype;
321     vdwparam         = fr->nbfp;
322     vdwtype          = mdatoms->typeA;
323
324     vftab            = kernel_data->table_vdw->data;
325     vftabscale       = kernel_data->table_vdw->scale;
326
327     outeriter        = 0;
328     inneriter        = 0;
329
330     /* Start outer loop over neighborlists */
331     for(iidx=0; iidx<nri; iidx++)
332     {
333         /* Load shift vector for this list */
334         i_shift_offset   = DIM*shiftidx[iidx];
335         shX              = shiftvec[i_shift_offset+XX];
336         shY              = shiftvec[i_shift_offset+YY];
337         shZ              = shiftvec[i_shift_offset+ZZ];
338
339         /* Load limits for loop over neighbors */
340         j_index_start    = jindex[iidx];
341         j_index_end      = jindex[iidx+1];
342
343         /* Get outer coordinate index */
344         inr              = iinr[iidx];
345         i_coord_offset   = DIM*inr;
346
347         /* Load i particle coords and add shift vector */
348         ix0              = shX + x[i_coord_offset+DIM*0+XX];
349         iy0              = shY + x[i_coord_offset+DIM*0+YY];
350         iz0              = shZ + x[i_coord_offset+DIM*0+ZZ];
351
352         fix0             = 0.0;
353         fiy0             = 0.0;
354         fiz0             = 0.0;
355
356         /* Load parameters for i particles */
357         iq0              = facel*charge[inr+0];
358         vdwioffset0      = 2*nvdwtype*vdwtype[inr+0];
359
360         /* Start inner kernel loop */
361         for(jidx=j_index_start; jidx<j_index_end; jidx++)
362         {
363             /* Get j neighbor index, and coordinate index */
364             jnr              = jjnr[jidx];
365             j_coord_offset   = DIM*jnr;
366
367             /* load j atom coordinates */
368             jx0              = x[j_coord_offset+DIM*0+XX];
369             jy0              = x[j_coord_offset+DIM*0+YY];
370             jz0              = x[j_coord_offset+DIM*0+ZZ];
371
372             /* Calculate displacement vector */
373             dx00             = ix0 - jx0;
374             dy00             = iy0 - jy0;
375             dz00             = iz0 - jz0;
376
377             /* Calculate squared distance and things based on it */
378             rsq00            = dx00*dx00+dy00*dy00+dz00*dz00;
379
380             rinv00           = gmx_invsqrt(rsq00);
381
382             rinvsq00         = rinv00*rinv00;
383
384             /* Load parameters for j particles */
385             jq0              = charge[jnr+0];
386             vdwjidx0         = 2*vdwtype[jnr+0];
387
388             /**************************
389              * CALCULATE INTERACTIONS *
390              **************************/
391
392             r00              = rsq00*rinv00;
393
394             qq00             = iq0*jq0;
395             c6_00            = vdwparam[vdwioffset0+vdwjidx0];
396             c12_00           = vdwparam[vdwioffset0+vdwjidx0+1];
397
398             /* Calculate table index by multiplying r with table scale and truncate to integer */
399             rt               = r00*vftabscale;
400             vfitab           = rt;
401             vfeps            = rt-vfitab;
402             vfitab           = 2*4*vfitab;
403
404             /* COULOMB ELECTROSTATICS */
405             velec            = qq00*rinv00;
406             felec            = velec*rinvsq00;
407
408             /* CUBIC SPLINE TABLE DISPERSION */
409             vfitab          += 0;
410             F                = vftab[vfitab+1];
411             Geps             = vfeps*vftab[vfitab+2];
412             Heps2            = vfeps*vfeps*vftab[vfitab+3];
413             Fp               = F+Geps+Heps2;
414             FF               = Fp+Geps+2.0*Heps2;
415             fvdw6            = c6_00*FF;
416
417             /* CUBIC SPLINE TABLE REPULSION */
418             F                = vftab[vfitab+5];
419             Geps             = vfeps*vftab[vfitab+6];
420             Heps2            = vfeps*vfeps*vftab[vfitab+7];
421             Fp               = F+Geps+Heps2;
422             FF               = Fp+Geps+2.0*Heps2;
423             fvdw12           = c12_00*FF;
424             fvdw             = -(fvdw6+fvdw12)*vftabscale*rinv00;
425
426             fscal            = felec+fvdw;
427
428             /* Calculate temporary vectorial force */
429             tx               = fscal*dx00;
430             ty               = fscal*dy00;
431             tz               = fscal*dz00;
432
433             /* Update vectorial force */
434             fix0            += tx;
435             fiy0            += ty;
436             fiz0            += tz;
437             f[j_coord_offset+DIM*0+XX] -= tx;
438             f[j_coord_offset+DIM*0+YY] -= ty;
439             f[j_coord_offset+DIM*0+ZZ] -= tz;
440
441             /* Inner loop uses 53 flops */
442         }
443         /* End of innermost loop */
444
445         tx = ty = tz = 0;
446         f[i_coord_offset+DIM*0+XX] += fix0;
447         f[i_coord_offset+DIM*0+YY] += fiy0;
448         f[i_coord_offset+DIM*0+ZZ] += fiz0;
449         tx                         += fix0;
450         ty                         += fiy0;
451         tz                         += fiz0;
452         fshift[i_shift_offset+XX]  += tx;
453         fshift[i_shift_offset+YY]  += ty;
454         fshift[i_shift_offset+ZZ]  += tz;
455
456         /* Increment number of inner iterations */
457         inneriter                  += j_index_end - j_index_start;
458
459         /* Outer loop uses 13 flops */
460     }
461
462     /* Increment number of outer iterations */
463     outeriter        += nri;
464
465     /* Update outer/inner flops */
466
467     inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*53);
468 }